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Abstract

Handling of data below the lower limit of quantification (LLOQ), below the

limit of quantification (BLOQ) in population pharmacokinetic (PopPK) analy-

ses is important for reducing bias and imprecision in parameter estimation. We

aimed to evaluate whether using the concentration data below the LLOQ has

superior performance over several established methods. The performance of this

approach (“All data”) was evaluated and compared to other methods: “Dis-

card,” “LLOQ/2,” and “LIKE” (likelihood-based). An analytical and residual

error model was constructed on the basis of in-house analytical method valida-

tions and analyses from literature, with additional included variability to

account for model misspecification. Simulation analyses were performed for

various levels of BLOQ, several structural PopPK models, and additional influ-

ences. Performance was evaluated by relative root mean squared error (RMSE),

and run success for the various BLOQ approaches. Performance was also evalu-

ated for a real PopPK data set. For all PopPK models and levels of censoring,

RMSE values were lowest using “All data.” Performance of the “LIKE” method

was better than the “LLOQ/2” or “Discard” method. Differences between all

methods were small at the lowest level of BLOQ censoring. “LIKE” method

resulted in low successful minimization (<50%) and covariance step success

(<30%), although estimates were obtained in most runs (~90%). For the real

PK data set (7.4% BLOQ), similar parameter estimates were obtained using all

methods. Incorporation of BLOQ concentrations showed superior performance

in terms of bias and precision over established BLOQ methods, and shown to

be feasible in a real PopPK analysis.

Abbreviations

BLOQ, below the limit of quantification; BSV, between-subject variation; FO, first-
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Introduction

In population pharmacokinetic (PopPK) analyses of con-

centration–time data, the modeler is often confronted

with concentrations that are reported as below the lower

limit of quantification (LLOQ). Drug concentrations in

PK samples obtained in (pre-)clinical trials are generally

quantified using chromatographic methods, combined

with either absorbance-, fluorescence-, or mass spectro-

metric detectors. During validation of the method, a cali-

bration curve is constructed relating raw bioanalytical

data, usually peak areas or peak area ratios, to concentra-

tions. Also, a LLOQ is defined for the method, and some-

times a limit of detection (LOD). During routine analysis,

concentrations that are calculated to be under the LLOQ

are generally not reported, but left censored as “below the

limit of quantification” (BLOQ). Often, laboratories also

specify “nondetectable” (ND) instead of BLOQ when no

analyte could be detected at all.

The U.S. Food and Drug Administration (FDA) has

issued guidelines on bioanalytical method validation,

which are adhered to by most laboratories. These guide-

lines specify that the analytical method should ensure an

interassay precision of ≤20% at the LLOQ, and ≤15% at

all other levels, and that four of every six samples taken

in quality control (QC) should be within �15% of the

nominal value (FDA 2001). In practice, however, the

LLOQ is often chosen “on the safe side,” that is, some-

what higher than absolutely necessary such that the inter-

assay variation at the LLOQ is well below the 20% limit.

This is done to reduce chances of invalidation of a

method during the application of the method to routine

drug analysis, due to variation in the (mass spectrometry

[MS]) detector response over time. The variation may

result in rejecting analytical batches or raising the LLOQ

for particular batches. It is, therefore, likely that BLOQ

data, although potentially measured with less precision

than concentration data greater than LLOQ, are still a

valuable information source and, when used in the analy-

sis of PK, may aid in defining the proper structural model

and increase the precision of parameter estimates.

Several methods have been proposed to deal with these

left-censored values. The most commonly applied meth-

ods include: discarding the BLOQ value, replacing the

BLOQ value with 0, replacing the value by LLOQ/2, or

by maximizing the likelihood of these concentrations

reported as being BLOQ (Wakefield and Racine-Poon

1995; Beal 2001). It has been shown that the use of the

latter method, performs best in terms of bias and preci-

sion of the methods mentioned above (Beal 2001; Ahn

et al. 2008; Byon et al. 2008). In effect, this incorporates

BLOQ data as binary information. We hypothesize that

the information contained in concentration data BLOQ

offers an even more valid approach to handling such data.

A schematic representation of this is offered in Figure 1.

In this report, a study is presented exploring the potential

benefits of the use of data over the approaches introduced

above. Performance is first evaluated using simulation

studies. Second, a real PK data set from a phase I trial

was used to evaluate the feasibility of using BLOQ data in

a PopPK analysis, and the resulting parameter estimates

between the various BLOQ methods were compared.

Materials and Methods

Methods for handling BLOQ data that were evaluated in

this analysis were the following:

� “Discard”: all BLOQ data were discarded.

� “LLOQ/2”: all BLOQ data in the absorption phase were

substituted with LLOQ/2, while in the elimination

phase only the first data point under the LLOQ was

substituted with LLOQ/2 and subsequent points were

discarded.

� “LIKE”: LIKE is a method that enables simultaneously

modeling of the continuous data above the LLOQ and

binary data below the LLOQ (Wakefield and Racine-

Poon 1995). In this, the likelihood of the BLOQ data

being below the LLOQ is maximized with respect to

the model parameters. Of the likelihood-based methods

as summarized by Beal et al., we chose to focus solely

on the “M3” as this method has been shown to be the

most accurate and precise (Ahn 1998; Beal 2001).

Figure 1. Schematic representation of calibration curve showing

quantification and detection limits. The thin gray lines indicate a

hypothetical uncertainty interval around the calibration line. In the

“All data” method, data between the limit of detection (LOD) and

lower limit of quantification (LLOQ) is used in the same manner as

data above the LLOQ.
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� “All data” method: all detectable concentrations were

included as continuous data, including points below

the LLOQ. Concentrations below the LOD were dis-

carded.

The first part of the analysis concerned simulation

studies. First, a bioanalytical and residual error model was

constructed based on literature data. Next, the four

BLOQ methods were compared using PK data simulated

from various PopPK models, with varying levels of BLOQ

censoring. Afterward, several additional factors that might

influence the performance of the BLOQ methods were

investigated such as the estimation method and the use of

the approach in unbalanced study designs. In the second

part of the analysis, we evaluated the feasibility of the

“All data” approach, and how the methods compared in

a realistic setting.

Simulation studies

Analytical and residual error model

Broadly, two separate sources of residual error can be dis-

tinguished in PopPK modeling analyses: one stemming

from model misspecification, the other from inaccuracy

in bioanalysis. To obtain a credible model for the part of

the residual error describing the bioanalytical uncertainty,

we reviewed published data on interday precision

from validation studies performed in our own laboratory

(Vainchtein et al. 2006a,b, 2007a,b; ter Heine et al. 2007,

2009; Damen et al. 2008, 2009a,b; Jansen et al. 2009,

2010). To avoid interlaboratory bias in establishing an

appropriate bioanalytical error model, the data set was

combined with a similar-sized data set obtained from bio-

analysis validation reports published in 2009 in J Chroma-

togr B Analyt Technol Biomed Life Sci that contained

information on the interday precision at the LLOQ and a

low–mid–high concentration range (Borges et al. 2009;

Carli et al. 2009; Clavijo et al. 2009; Gu et al. 2009; Ling

et al. 2009; Nirogi et al. 2009a,b; Qiao et al. 2009; Zhang

et al. 2009; Ptolemy et al. 2010; Stanton et al. 2010). To

these validation data, a mean error model of the form

y = ax + b was fitted, in which x is the ratio of the nomi-

nal concentration relative to the LLOQ, y is the absolute

error, calculated as the reported relative interday uncer-

tainty at nominal concentration x multiplied by x, a

defines the part of the error proportional to the concen-

tration, and b is the additive part of the error. The fitted

analytical error model represents the error model for an

analytical method with average performance in terms of

interassay precision. To investigate the influence of ana-

lytical methods with worse-than-average precision, we

also defined an analytical error model for a “worst-case”

analytical method, of which the interassay precision was

20% at the LLOQ, and 40% at the LOD. For the other

part of the residual error model, that is, the error due to

model misspecification, an additional 20% variation was

added, proportional to the concentration. The complete

residual error model thus was of the form:

y ¼ ðŷ � ð1þ a � e1Þ þ b � e2Þ � ð1þ 0:2 � e3Þ, in which y is

the observed concentration, ŷ is the predicted concentra-

tion, and en are the stochastic variance components of the

residual error model sampled from N (0,1). Usually, bio-

analytical laboratories also define a LOD for the analytical

method. In this analysis, the LOD was defined to be 30%

of the LLOQ, as often the LOD is defined as three times

the signal noise, and the LLOQ as 10 times signal noise.

Data below the LOD should be considered unquantifiable

and, therefore, were discarded when using the “All data”

method.

PK models and simulations

The PK models and parameters used to generate the data

sets are shown in Table 1. In all PK models, between-sub-

ject variation (BSV) in parameters was defined at 25% in

the PK parameters CL and V only. Covariance between

parameters was not considered. A dose of 100 mg was

administered, orally in one dose, or i.v. (intravenous) as a

2-h infusion. Data sets were simulated, initially without

residual error, for cohorts of 25 patients. One curve per

patient was simulated, using a dense scheme at nominal

times of 15 and 30 min, and 1, 2, 4, 6, 8, 12, 16, and

24 h. After simulation, the LLOQ was defined for each

data set at three different levels (“moderate,” “high,” and

“very high”) such that respectively 10%, 20%, or 40% of

the simulated data (without residual variability) were

below the LLOQ. Next, using the analytical error model

obtained from literature, residual variability was added to

the data set, as well as model misspecification error. Con-

centrations were then determined to be above or below

the LLOQ.

To account for BSV and variation in residual errors,

100 simulated data sets were created for each PK model,

level of BLOQ censoring, and residual error scenario.

After simulation, the generated data sets were fitted to the

Table 1. Pharmacokinetic (PK) model parameters used for the simula-

tion of data sets.

Structural model: CL (L/h) V (L) Q2 (L/h) V2 (L) ka (/h)

IV1 – 1 comp. i.v. 5 50 – – –

IV2 – 2 comp. i.v. 5 50 10 100 –

O1 – 1 comp. oral 5 50 – – 0.5

i.v., intravenous; 1 comp., one-compartment linear model; 2 comp.,

two-compartment linear model.
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“correct” structural model, that is, the same model that

was used in the simulation, which was repeated for 100

times for each specific method for handling BLOQ data,

and repeated for all scenarios. A combined proportional

and additive error model was used. BSV was estimated

only on CL and V.

Comparison of methods

Bias of the parameter estimates was defined as the differ-

ence between the parameter estimate and the nominal

value (the value that was used to simulate the data), rela-

tive to the nominal value. Relative root mean squared

error (RMSE) was calculated for each scenario using the

equation:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

CLest�CLnom
CLnom

� �2

n

vuuut
(1)

with CLest being the estimated parameter for clearance,

CLnom the nominal clearance value used to simulate the

data, and the number of simulation and reestimations

performed for each scenario (n = 100).

Also, the significance of systematic bias, that is, the

significance of the mean bias being different from zero

(P < 0.01) was determined. Box plots were created to

reveal the distribution of bias in each scenario. To

judge model estimation stability, the number of runs

that produced parameter estimates, the number of suc-

cessful minimizations, and the number of runs that

produced a successful covariance step were recorded

(Table 2).

Other influences

To study several additional possible influences on perfor-

mance, additional simulation and reestimation analyses

were performed, however, only for the linear one-

compartment oral PK model. First, we evaluated if the

performance of the BLOQ methods was similar for the

worst-case analytical error model compared to the realis-

tic error model. We also evaluated the performance of the

stochastic approximation expectation maximization

(SAEM) algorithm (as implemented in NONMEM [non-

linear mixed-effects modeling]) for the various BLOQ

methods. Furthermore, dose escalation trials often show

an unbalanced amount of left censoring due to data

BLOQ. We investigated the influence of analyzing such

an “unbalanced” data set with the BLOQ methods:

instead of 25 patients at the same dose as was done previ-

ously, a dose escalation trial was mimicked, in which

doses of 5–10–20–30–50, and 100 mg were administered

to three patients at each level, and 10 at the 50 mg level.

Finally, an additional likelihood-based method was evalu-

ated, in which the “All data” method was used for all the

concentration data above the LOD, with the additional

implementation of the LIKE method for data below the

LOD. This method was termed “LIKE-LOD.”

Real PopPK data set

A PK data set was available for the anticancer agent in-

disulam, obtained from a dose escalation trial evaluating

combination chemotherapy with irinotecan (Ryan et al.

2005). Patients received a 2-h infusion of indisulam, and

per patient one PK curve was available, obtained over

Table 2. Observed percentages of successful minimizations and successful covariance steps.

PK model

LOQ

censoring

Parameter estimation (%) Minimization successful1 (%) Covariance step successful (%)

Discard LOQ/2 LIKE All data Discard LOQ/2 LIKE All data Discard LOQ/2 LIKE All data

i.v., 1 comp. Moderate 100 100 90 100 100 98 53 100 100 98 34 100

High 100 100 92 100 100 99 43 100 100 99 15 100

Very high 100 100 91 100 96 100 25 100 94 100 7 100

i.v., 2 comp. Moderate 100 100 94 100 68 87 13 86 28 40 4 38

High 100 100 93 100 65 84 18 88 24 50 2 48

Very high 100 100 100 100 64 79 26 82 11 50 5 53

Oral, 1 comp. Moderate 100 100 91 100 93 96 46 93 91 94 20 91

High 100 100 80 100 96 97 34 98 95 93 14 97

Very high 100 100 79 100 99 98 21 100 98 98 1 98

Oral, 1 comp.,

NONMEM VII

Moderate 100 100 100 100 100 100 62 100 100 100 32 100

High 100 100 100 100 100 96 54 100 100 95 16 100

Very high 100 100 100 100 99 97 54 98 98 93 18 98

PK, pharmacokinetic; LOQ, limit of quantification; LIKE, likelihood-based; i.v., intravenous; 1 comp., one-compartment linear model; 2 comp.,

two-compartment linear model; NONMEM, nonlinear mixed-effects modeling.
1

As reported by NONMEM.
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120 h. Plasma samples were analyzed using a validated

LC-MS/MS (liquid chromatography–mass spectrometry)

method with a concentration range of 0.1–20 lg/mL

(Beumer et al. 2004). The assay fulfilled all generally

accepted requirements for linearity (r > 0.99, residuals

between �8% and 10%), accuracy (�13.5% to 1.4%) and

precision (<11% for all tested concentration levels).

Although an extensive semiphysiological PK model has

already been established for this drug (Zandvliet et al.

2006), we only performed basic compartmental PK mod-

eling on this limited data set, and, for example, the influ-

ence of covariates was not investigated. First, using the

“All data” method, the most adequate structural model

was defined, and using this PK model, the performance

of the other BLOQ methods was evaluated. A bootstrap

analysis was performed for the final model and data set

for each BLOQ method, to investigate difference between

parameter estimates and imprecision. The Medical Ethics

Committee in all study centers approved the study proto-

cols and all patients gave written informed consent.

Software

Model creation and output processing was performed

using Perl (version 5.8.8, ActiveState, Vancouver, BC,

Canada). Simulation, data handling, and plotting were

performed in R (http://cran.r-project.org/, version 2.10.0).

Model estimation was performed with nonlinear mixed-

effects modeling implemented in NONMEM VI level 2.0

or NONMEM VII (both ICON Development Solutions,

Ellicott City, MD; Beal and Sheiner 1989). The Laplacian

method was used for modeling continuous data (“All

data”/“LLOQ/2” approaches) and combined censored and

continuous data (“LIKE” approach). The SAEM method

was used only to evaluate the difference between this esti-

mation method and linearization-based estimation. When

the SAEM was used, the first-order estimation (FO)

method was implemented prior to the SAEM to obtain

initial estimates for the SAEM. For the “LIKE” method,

instead of FO, the Laplacian estimation method was

implemented prior to SAEM.

Results

Simulation studies

Analytical and residual error model

Figure 2 shows the interday precision from validations

performed in our own laboratory or published in litera-

ture, for a total of 62 analytical methods for drugs or

drug metabolites. This shows that interday uncertainty

for all published methods was <15% at concentrations

above the LLOQ, and at the LLOQ the uncertainty was

slightly higher for most methods, but always <20%. No

apparent differences were observed between precision of

methods validated in our laboratory compared to other

published methods. Fitting of a model of the form

y = ax + b (solid line), showed that at the LLOQ, the

median interday variation was 9.3%. For the simulations,

the values found for a and b corresponded to a propor-

tional error magnitude of 7.4%, and an additive error

magnitude of 5.6% of the LLOQ. In Figure 2, the gray

dashed line indicates the “worst-case scenario,” of a bio-

analytical method that just complies with FDA standards,

having interday precision of just below 15% at low, mid,

and high QC concentrations, and 20% at the LLOQ.

Using this model, for which parameters were set at

a = 12, and b = 8, the measurement error at the LLOQ

is 20%, and 38.7% at the LOD.

Comparison of methods

Boxplots of parameter bias obtained in the simulation

and reestimation procedures for the several models are

shown in Figures 3–5. As in a high percentage of runs the

data sets did not support the estimation of the magnitude

of additive error term in the residual error model,

this parameter was fixed to a small size (� LLOQ).
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Figure 2. Interday variation (CV%) plotted versus concentration

relative to lower limit of quantification (LLOQ). Black dots represent

data from validations performed in our own laboratories, open circles

represent data from published validation reports. The gray line shows

the analytical residual error model fitted on these data (y = ax + b),

in which y is the standard deviation of the absolute error at nominal

concentration x (relative to the LLOQ), which was used as realistic

scenario. The dotted gray line indicates the error model for the worst-

case scenario.
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Moreover, also estimation of BSV in parameters other

than CL and V was not supported by the data, and there-

fore only BSV in CL and V was estimated.

For the linear one-compartment i.v. model (Fig. 3), it

was observed that for the population parameters CL and

V, no systematic bias was observed using any of the

BLOQ methods for the situations where the percentage of

BLOQ censoring was “moderate” (10%) or “high” (20%).

Only for the situation where BLOQ censoring was “very

high” (40%), considerable bias and imprecision was

observed for CL for the “Discard” and “LLOQ/2” meth-

ods. Using the “LIKE” method, higher RMSE values were

obtained than in the “LLOQ/2” or “All data” methods,

and also more outliers were observed, both for fixed and

random parameters. In general, the lowest values for

RMSE for all parameters especially at the 40% level were

obtained using the “All data” method. For the random

effects, RMSE were higher than fixed parameters, but

comparable for all methods at the 10% and 20% level of

BLOQ, except for the “LIKE” method which showed

higher variation in estimates.

Results obtained for the linear two-compartment i.v.

model (Fig. 4), showed that bias in fixed parameters was

very apparent for the “Discard” and “LLOQ/2” method,

even at “moderate” censoring levels, except for the esti-

mation of V and BSV in V. As for the one-compartmen-

tal PK model, the “All data” method again performed

best in all situations for both fixed and random parame-

ters. Although significant systematic bias was observed for

the “All data” method for some parameters, RMSE values

were much smaller than the other methods.

For the linear one-compartment oral model (Fig. 5), at

“moderate” and “high” levels of LLOQ censoring, all

methods except “Discard” provided reasonable and
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NONMEM VI (nonlinear mixed-effects modeling), Laplacian method with interaction. The root mean squared error (RMSE, shown in the bottom of

each plot), should be as low as possible: low values for RMSE indicate lower probabilities of obtaining biased parameter estimates when

performing a single population pharmacokinetic (PopPK) analysis. Mean bias should be as minimally different from 0 as possible, as it is desirable

for methods to show as little systematic bias as possible in parameter estimation. Significance of systematic bias (P < 0.05) is shown by coloring:

gray indicates bias, white indicates no bias.

2015 | Vol. 3 | Iss. 2 | e00131
Page 6

ª 2015 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd,

British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

PopPK BLOQ R. J. Keizer et al.



broadly similar performance for both fixed and random

parameters. Again, the “All data” method showed lowest

RMSE values. At the highest level of censoring, only the

“All data” method could estimate parameters with lower

than 10% RMSE. BSV in CL was overestimated at all

censoring levels using the LIKE method but not using the

“All data” method.

For all PK models that were evaluated, the “LIKE”

method produced the lowest number of successful runs

and successful performance of a covariance step, as shown
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Figure 4. Performance of lower limit of quantification (LLOQ) methods for i.v. (intravenous) two-compartment linear model. Performed with

NONMEM VI (nonlinear mixed-effects modeling), Laplacian method with interaction.
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in Table 3. These were most apparent for the two-com-

partment i.v. model, for which ≤5% of runs a covariance

step could be retrieved, compared to 40–50% for the

“LLOQ/2” or the “All data” method. Although a high

percentage of model estimations were reported by

NONMEM to be unsuccessful, NONMEM did provide

final parameter estimates for many of these runs. It was

found that in general, bias and precision were similar for

runs that were labeled successful compared to unsuccess-

ful ones (data not shown).
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Figure 5. Performance of lower limit of quantification (LLOQ) methods for oral one-compartment linear model. Performed with NONMEM VI

(nonlinear mixed-effects modeling), Laplacian method with interaction.
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Other influences

It was observed that the worst-case scenario (Fig. 6), for

the “low” and “high” scenarios provided similar RMSE

values as to when the realistic analytical error model was

used for all methods. However, for the “very high” sce-

nario, the “All data” method performed worse than

“LLOQ/2” and “LIKE” in the estimation of V and ka:

RMSE values were obtained that were almost double that

of the “LIKE” method, and similar to the “Discard”

method. The use of SAEM provided very similar results

for bias and precision as when the Laplacian estimation

method was used. The analysis of the unbalanced data

sets did not reveal relevant differences compared to the

results of the data sets with equal doses for all patients.

The modified “LIKE” method, in which all data above

the LOD were used as continuous data, and the likeli-

hood was calculated for points below the LOD (“LIKE_-

LOD”), did not result in markedly less bias than using

the “All data” method or the “LIKE” method. It did,

however, lead to increased RMSE values, of similar size to

the “LIKE” method. The percentages of points below the

LOD in this analysis were 4.4% (CV 15%), 8.4% (CV

12%), and 14.5 (CV 9%), for the “low,” “high,” and “very

high” scenarios, respectively.

Real data sets

PK data were available from 34 patients receiving doses

of 250–525 mg/m2. Disregarding samples taken before the

first dose, 17 (7.4%) of 231 PK samples were BLOQ. The

(extrapolated) concentrations for the BLOQ data could be

extracted from raw data files exported by the software of

the mass spectrometer (Analyst 1.2, Applied Biosystems,

Foster City, CA). It was found that a two-compartment

linear model showed a better fit than a linear one-com-

partment model. Although indisulam is known to exhibit

more complex PK, the inclusion of nonlinearity or addi-

tional peripheral compartments was not supported by the

current data set. Visual predictive checks (not shown) of

the current model and data, did, however, not reveal rele-

vant model misspecification.

For all four BLOQ methods that were evaluated, the

parameter estimates for this model were very similar, as is

shown in Table 3. Furthermore, the bootstrap distribu-

tions of the fixed and random parameters (Fig. 7) showed

no sign of differences in mean parameter estimates or

precision between the evaluated BLOQ methods. Estima-

tion stability was, however, different between methods in

the bootstrap runs. Successful minimization was highest

in the “All data” methods, followed by “Discard” and

“LLOQ/2.” Similar to what was found in the simulations,

the “LIKE” method showed poorest performance in terms

of run success. Successful implementation of the covari-

ance step occurred only in adequate percentages in the

“All data” method and in very low percentages in the

other methods, which could not be improved by, for

example, tweaking of initial estimates.

Discussion

In this article, we investigated the hypothesis that the

incorporation of concentration data below the LLOQ is

both advantageous, in terms of bias and precision, and

feasible. We demonstrated that the proposed “All data”

approach provided two distinct advantages over the like-

lihood-based approach (“LIKE”). The “LIKE” method is

often advocated as the most suitable way to handle

BLOQ data (Ahn et al. 2008; Bergstrand and Karlsson

2009). In almost all situations evaluated here, the “All

data” method gave the lowest RMSE values. The RMSE

value is in our opinion the most useful parameter in this

analysis, as it is directly related to the probability of

obtaining biased parameter estimates when performing a

PopPK analysis. We should note, however, that, since

the error model contained only random noise, and the

correct structural models were used to analyze the data,

systematic bias is not expected in the current analysis

and it the RMSE most likely is a reflection of random

error only.

The “All data” method also has the advantage of more

stable model estimation, as it showed much higher per-

centages of successful runs compared to the “LIKE”

method. The joint likelihood function for censored and

continuous data employed in the “LIKE” method seemed

to induce less a stable estimation than a likelihood func-

tion solely defined for continuous data. We have chosen

in this analysis to use the Laplacian method also for the

analysis of continuous data, since it would allow a direct

comparison between the “LIKE” and “All data”

Table 3. Parameter estimates and performance statistics for E7070

real data set.

Discard LLOQ/2 LIKE All data

CL (L/h) 0.823 0.819 0.822 0.828

V (L) 5.61 5.65 5.61 5.63

Q (L/h) 1.90 1.89 1.9 1.88

Vper (L) 12.4 12.5 12.4 12.6

gCL 62.3% 61.5% 61.8% 60.6%

radd (mg/L) 0.071 0.0344 0.055 0.0364

rprop 25.8% 26.6% 26.1% 26.7%

Successful minimization 74.1% 69.7% 66.7% 91.5%

Successful

covariance step

14.4% 7.5% 11.4% 85.7%

LLOQ, lower limit of quantification; LIKE, likelihood-based.
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approaches. The first-order conditional estimation

method with interaction (FOCEI) is a more commonly

employed approach in NONMEM analyses for continuous

data. We felt, however, the choice for using the Laplacian

method in this analysis to be justifiable since initial

results for the “All data” approach showed no meaningful

differences between analysis with FOCEI and/or Laplacian

at any level of censoring (data not shown). Besides being

known to be less stable, the Laplacian estimation method

is also a slower estimation method than FOCEI. Such
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Figure 6. Performance of lower limit of quantification (LLOQ) methods for oral one-compartment linear model for the worst-case scenario.

Performed with NONMEM VI (nonlinear mixed-effects modeling), Laplacian method with interaction.
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nuisances associated with the Laplacian/“LIKE” approach

make the model development process and identification

of covariates more cumbersome (because results from

unsuccessful runs need closer inspection), slower, and

potentially less powerful. Limited testing revealed that the

“LIKE” method also was much more sensitive to initial

estimates and the requested precision of the estimation.

Only when the “All data” method was pushed to the

limit, that is, the error of the analytical method was just

within the FDA specified precision limits, and a high per-

centage of data (40%) was below the LLOQ, did the “All

data” method performed worse than the “LIKE” method.

This is not so surprising, given the fact that in this worst-

case scenario the interassay variation for the concentra-

tion range from the LLOQ to the LOD was between 20%

and 40%. When also a high percentage of data is in this

range, inclusions of these noisy data will likely lead to

increased imprecision (and possibly bias) compared to

the “LIKE” method. However, based on our limited liter-

ature review, such a “worst-case scenario” is not likely to

occur. If such a situation would occur, validation results

of the bioanalytical method will likely be available, and

alert the analysts and modeler that such a situation is

present.

Although we advocate the use of concentration data

BLOQ based on the results from the analysis presented

here, we do agree with other reports that if these data are

truly not available, the “LIKE” likelihood method offers

the best alternative to handle BLOQ data points. How-

ever, if this method is used, it must be ensured that

model estimation is stable, and that consistent parameter

estimates are obtained for the model. The simulations

also showed that when the percentage of data below the

LLOQ is low (≤10%), using the simple “LLOQ/2” method

gave adequate results for the PK models that were tested,

similar to the “LIKE” method or the “All data” method.

It was only at higher levels of censoring that differences

between the methods became apparent. It seems therefore

reasonable to suggest that when the percentage of cen-

sored data is low, using an “LLOQ/2” approach instead

of advanced approaches is unlikely to result in biased esti-

mates.

The percentage of BLOQ data per se is, however, not

the most meaningful parameter to compare approaches

for handling of BLOQ data. For example, even if >40% of

concentrations are censored, if enough data points per

individual remain to support adequate fitting of the

model, removing data might not damage the precision of
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Figure 7. Bootstrap distributions for parameter estimates obtained with different methods.
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the estimates relevantly. Conversely, even 5–10% BLOQ

censoring could impede the identification of a peripheral

compartment or other model features. It is therefore

essential to view the problem of BLOQ data in terms of

what fraction of the data is censored in relation to the

model being fitted and the parameters being estimated.

We have therefore labeled the scenarios “low,” “high,”

and “very high” to apply a more general classification

than referring to the specific percentages BLOQ.

It must also be noted that in the current analysis, it

was assumed that the error below the LLOQ was ran-

domly distributed. This might, however, not always be

the case for real bioanalytical assays, and the results

obtained in this analysis do not necessarily hold in such

situations. It was beyond the scope of this article to inves-

tigate bias in BLOQ data in addition to the current com-

parisons, but if for a particular analysis there is evidence

(or suspicion) of bias in the data BLOQ, a simulation

and reestimation analysis similar to the one presented

here could be implemented to evaluate the impact of bias

on BLOQ approaches.

In the “All data” approach, concentrations that were

below the LOD (defined as 30% of the LLOQ in this

analysis) were discarded as these concentrations are based

on signals that are hardly distinguishable from signal

noise. In theory, one could incorporate these data using

the LIKE likelihood method, by maximizing on the likeli-

hood of these data actually being <LOD. This approach

was evaluated as well, however, we did not observe a rele-

vant decrease in bias, compared to the “LIKE” or the “All

data” method but did notice an increase in imprecision

and percentage of unsuccessful runs. This approach there-

fore does not offer advantages over the “All data”

method. The “All data” approach was also shown to per-

form best in the analysis of unbalanced data sets, such as

obtained from dose escalation trials.

The evaluation of the performance of the methods

using a real PK data set showed that it is feasible to use

the proposed “All data” method. We were able to obtain

the necessary (extrapolated) concentrations from the bio-

analytical laboratory, and incorporated these. In the

resulting data set, only 7.4% of data were BLOQ. Similar

to what was seen in the simulations for data sets with low

percentages of BLOQ data, no relevant differences were

seen between the parameter estimates obtained with the

four methods. In a previous PopPK analysis, in which the

percentage of BLOQ data was only 5%, we also observed

similar parameter estimates when using either the “LIKE”

method compared to discarding the BLOQ data (Keizer

et al. 2008). These findings confirm the result of the sim-

ulation studies that when the percentage of BLOQ is low

(<10%), the method for handling BLOQ data is irrele-

vant. Stability of estimation was, however, better for the

“All data” method than for the other methods, judged by

the percentages of successful minimization. Surprisingly,

successful completion of the covariance steps was mark-

edly different between the “All data” method and the

other methods. However, as has been noticed before

(Bergstrand and Karlsson 2009), no significant differences

in parameter estimates were found between runs with

successful and unsuccessful minimizations, or runs with

successful and unsuccessful covariance steps.

The feasibility of the proposed approach particularly

depends on a good collaboration and understanding

between the analytical laboratory and the PK analyst. For

example, if the “All data” method is to be used in a Pop-

PK analysis, it must be ensured that BLOQ data are

recorded with as much care as data above the LLOQ:

integration parameters should provide adequate integra-

tion below the LLOQ. Based on the results of the current

analysis, we feel that, when the LLOQ data are handled

appropriately by the PK analyst, there is no need for the

bioanalytical laboratory to censor data below that cutoff

level. In fact, solely from a modeling perspective, there is

no need for the bioanalytical laboratory to report the

LLOQ at all besides as a measure of reliability of data,

since all measurable concentration data can be used in

the construction of the PK model. However, it must be

stressed that the results of the current analysis only apply

to model-based population PK analyses, and these find-

ings cannot directly be extrapolated to noncompartmental

PK analyses.

Besides the statistical advantages of the “All data”

method discussed above, the ethical and regulatory

aspects of handling BLOQ data deserve consideration as

well. Since concentration data for PK analyses are gener-

ally obtained from trials in patients, we feel it is the

moral obligation of the bioanalytical and data-analysts to

extract as much data from the collected patient samples

as possible. This ethical argument may be considered

especially important in PK analyses performed in special

patients groups such as children or critically ill patients,

and handling BLOQ data in the most appropriate way is

imperative in such situations. We feel that regulators are

often open to accept novel methodology if presented with

clear and unambiguous evidence that the new approach is

unbiased and reliable. The current paper is a first step to

(re-)start discussions around this topic, and subsequent

analyses would be useful to investigate its validity further

for a wider variety of cases. When using the “All data”

approach in a regulatory filing, and especially when con-

cerning model structures outside the scenarios evaluated

in this paper, we would advise to provide evidence that

the chosen BLOQ method did either not affect the model

building in a meaningful way or provided a better

approach than current standard approaches. This can, for
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example, be done with a simulation study similar to the

one presented in this article.

In this report, we limited our analysis of performance

of the various BLOQ methods to PK examples, as we

were able to define credible analytical error models from

literature data for bioanalysis of drugs and metabolites

for PK data. In the modeling of pharmacodynamic (PD)

data, a much wider variety of models and data is encoun-

tered, and bioanalytical methods are seldom validated as

rigorously as PK assays. However, the conclusions drawn

here are likely to apply to PD analyses in a similar fash-

ion, if an LLOQs is defined at all for the bioanalysis of

the PD analyte. For PD data and PD modeling analyses,

the magnitude of analytical error and model misspecifica-

tion, are often higher than in PK analyses. Therefore, in

the case of specific PD analyses, additional prospective or

retrospective simulation and reestimation analyses may be

indicated to guide the choice of the BLOQ method.

Conclusion

Using simulation and reestimation analyses, we showed

that the use of concentration data under the LLOQ

resulted in increased performance in terms of bias and

precision especially when the percentage of data BLOQ is

above 10%. Also, better performance in terms of model

stability and successful minimization were observed com-

pared to a likelihood-based method. We also showed that

the approach is feasible by applying it to a population PK

analysis of a data set obtained from an actual clinical

trial. We therefore advocate the use of extrapolated con-

centrations below the LLOQ, and would like to advise

modelers to establish consent with the bioanalysis con-

tractor to obtain these data.
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