

# Road traffic injury mortality and its mechanisms in India: nationally representative mortality survey of 1.1 million homes

| Journal:                                                                                                                        | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID:                                                                                                                  | bmjopen-2013-002621                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Article Type:                                                                                                                   | Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Date Submitted by the Author:                                                                                                   | 21-Jan-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Complete List of Authors:                                                                                                       | Hsiao, Marvin; University of Toronto, Centre for Global Health Research;<br>University of Toronto, Department of Surgery<br>Malhotra, Ajai; VCU Medical Center, Virginia Commonwealth University,<br>Department of Surgery<br>Thakur, JS; Post Graduate Institute of Medical Education and Research,<br>Department of Community Medicine<br>Sheth, Jay; Smt. N.H.L. Municipal Medical College,<br>Nathens, Avery; University of Toronto, Department of Surgery;<br>Sunnybrook Health Sciences Centre, Sunnybrook Research Institute<br>Dhingra, Neeraj; National AIDS Control Organization,<br>Jha, Prabhat; University of Toronto, Centre for Global Health Research |
| <b>Primary Subject<br/>Heading</b> :                                                                                            | Epidemiology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Secondary Subject Heading:                                                                                                      | Global health, Public health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Keywords:                                                                                                                       | road traffic injury, verbal autopsy, India, low- and middle-income countries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                 | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Note: The following files were su<br>PDF. You must view these files                                                             | ibmitted by the author for peer review, but cannot be converted to (e.g. movies) online.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Figure 1 - v7.3 - 2013-01-21<br>Figure 2 - v2.5 2013-01-21<br>Figure 3 - Reported Injuries v5.1<br>STROBE_checklist_BMJ-Open_cr |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

SCHOLARONE<sup>™</sup> Manuscripts

# Road traffic injury mortality and its mechanisms in India: nationally representative mortality survey of 1.1 million homes

Marvin Hsiao, Ajai Malhotra, JS Thakur, Jay K Sheth, Avery B Nathens, Neeraj Dhingra, Prabhat Jha, for the Million Death Study Collaborators.

Centre for Global Health Research, Li Ka Shing Knowledge Institute, St Michael's Hospital, University of Toronto, Toronto, Canada (M Hsiao MD, Prof P Jha DPhil); Division of General Surgery, Department of Surgery, University of Toronto, Toronto, Canada (M Hsiao MD, Prof AB Nathens MD); Department of Surgery, VCU Medical Center, Virginia Commonwealth University, Richmond, USA (Prof A Malhotra MD); Department of Community Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India (JS Thakur MD); Smt. N.H.L. Municipal Medical College, Ahmedabad, India (JK Sheth MD); Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada (Prof AB Nathens MD); National AIDS Control Organization, New Delhi, India (N Dhingra MD)

Correspondence to: Marvin Hsiao Centre for Global Health Research, Li Ka Shing Knowledge Institute, St Michael's Hospital, and Division of General Surgery, Department of Surgery, University of Toronto 30 Bond Street, Toronto, Ontario, Canada M5B 1W8 <u>marvin.my.hsiao@gmail.com</u> +1 416-864-6042 (phone) / +1 416-864-5256 (fax)

Keywords: Road traffic injury; verbal autopsy; India; low- and middle-income countries

Word count: Text: 3211

#### **ABSTRACT:**

**Objectives**: To quantify and describe the mechanism of road traffic injury (RTI) deaths in India. **Design**: We conducted a nationally representative mortality survey where at least two physicians coded each non-medical field staff's verbal autopsy reports. RTI mechanism data were extracted from the narrative section of these reports.

Setting: 1.1 million homes in India.

Participants: Over 122 000 deaths at all ages from 2001-2003.

**Primary and secondary outcome measures**: Age- and sex-specific mortality rates, place and timing of death, modes of transportation, and injuries sustained.

**Results**: The 2299 RTI deaths in the survey correspond to an estimated 183 600 RTI deaths or about 2% of all deaths in 2005 nationally, of which 65% occurred in males between the ages of 15-59 years. The age-adjusted mortality rate was greater in males than in females, in urban than in rural areas, and was notably higher than that estimated from national police records. Pedestrians (68 000), motorcyclists (36 000), and other vulnerable road users (20 000) constituted 68% of RTI deaths (124 000). The majority of all RTI deaths occurred at the scene of collision (1005/1733, 58%), within minutes of collision (883/1596, 55%), and/or involved a head injury (691/1124, 62%). Compared to non-pedestrian RTI deaths, about 55 000 (81%) of pedestrian deaths were associated with less education and living in poorer neighbourhoods. **Conclusions**: In India, RTI cause a substantial number of deaths, particularly among pedestrians and other vulnerable road users. Interventions to prevent collisions and reduce injuries might address over half of the RTI deaths. Improved pre-hospital transport and hospital trauma care might address just over a third of the RTI deaths.

# **ARTICLE SUMMARY**

# Article focus

 To directly estimate the age- and sex-specific mortality rates and describe the place and timing of death, modes of transportation, and injuries sustained for road traffic injury (RTI) deaths in India using a nationally representative mortality survey of 1.1 million homes.

# Key messages

- Road traffic injuries cause a substantial number of avertable deaths, particularly in males of productive working age and among pedestrians and other vulnerable road users.
- Preventative interventions should be emphasized as the majority of all RTI deaths occurred at the scene of collision, within minutes of collision, and/or involved a head injury.
- Properly designed mortality survey with verbal autopsy narratives can provide muchneeded data to assist RTI prevention efforts.

# Strengths and limitations of this study

- This study is the first nationally representative survey of the causes of death in India and overcomes limitations of existing data sources including regional injury surveys, hospital series, and national police reports.
- Limitations of the study include potential misclassification of deaths by physician coders, the use of layperson narratives with a potential for recall bias and inaccuracies, and limited ability to forward project study results given the rapid changes in motorization in India.

# INTRODUCTION

Road traffic injuries (RTI) are a large and growing public health burden, especially in low-and middle-income countries (LMIC) where 90% of the world's RTI deaths are estimated to occur.[1] There are few high-quality epidemiologic data on RTI to guide the development, implementation, and surveillance of evidence-based policy and programs in LMICs.[2-4]

The number of RTI deaths in India is projected to rise with increasing motorization.[1,5] Aside from a few regional injury surveys,[6-11] the current data on the numbers and mechanisms of RTI deaths in India rely on police or hospital records, both of which can substantially underestimate death rates in the poor, rural, and uneducated people who still constitute large proportions of the Indian population.[2-4,12,13]

The World Health Organization (WHO), using indirect modeling methods, estimated about 202 000 RTI deaths in India in 2004.[14,15] No study has validated this estimate with direct measurement nor documented detailed RTI mechanism for India nationally. Here, we estimate the regional, age- and sex-specific mortality rate and risk of RTI death in India using data from the Million Death Study (MDS). We also report the modes of transportation, place and timing of death, and injuries sustained in RTI deaths.

**BMJ Open** 

# METHODS

Study Design: The MDS is an on-going nationally representative survey designed to determine the causes and risk factors of death in India, organized by the Registrar General of India (RGI). The design, methodology, and preliminary findings of the MDS have been described elsewhere.[16-19] In brief, the MDS used an enhanced version of verbal autopsy (known as the routine, reliable, representative, re-sampled household investigation of mortality with medical evaluation or RHIME) to monitor a nationally representative sample of 1.1 million households in the Sample Registration System (SRS). Within six months of every death occurring in these households from 2001-3, a trained, nonmedical RGI surveyor interviewed a relative or closeacquaintance of the deceased to obtain the symptoms and events around the death using structured questions and a local language narrative guided by a specific symptom list. These records were converted into electronic records and emailed to two of 140 trained physicians who, independently and anonymously, assigned an underlying cause of death (with allocation determined randomly based only on the physician's ability to read the local language), using guidelines for the major causes of death.[20] Records were assigned cause of death in threedigit International Classification of Diseases and Related Health Problems, 10th revision (ICD-10).[21] Records where coders disagreed on the cause of death underwent anonymous reconciliation. Continuing disagreements were adjudicated by a third senior physician. Five percent of households were randomly resurveyed and the results were consistent within families of ICD-10 codes.[16] Participation in the SRS is on a voluntary basis and oral consent was obtained under the confidentiality and consent procedures of the Registration of Births and Deaths Act, 1969.

**Road Traffic Injury Deaths:** The RTI deaths in this study were of people who died between 2001 and 2003 with a final assigned ICD-10 code within V01-V89. We translated the open-ended narratives into English from 14 local languages, and systematically extracted the modes

#### **BMJ Open**

of transportation, place and timing of death, and injuries sustained from the narratives. For these four data elements, there were substantial inter-rater agreement (kappa statistic > 0.69) between two investigators and two research assistants who were trained and independently extracted data from the narratives of a random 10% of RTI deaths (data not shown). The two research assistants then independently extracted data from all narratives. Adjudication was done by an investigator (M.H) for discrepancies in extracted data.

**Analysis:** The age and sex-specific proportion of RTI deaths within the 2001-2003 survey was applied to the 2005 United Nations (UN) estimates of the number of deaths from all causes in India, after weighting for sampling probability.[22] The 2005 UN death estimates were used so as to correct for the slight undercounts reported in the total death rates in the SRS[23,24] and to account for the 12% of enumerated deaths without completed field visits (mostly due to outmigration of the family or from incomplete field records). The proportion of these missed deaths was similarly dispersed across sex, age, and states. Use of 2003 or 2004 UN death totals yielded nearly identical results (data not shown). The 99% confidence intervals (99%CI) for mortality rate were calculated based on the weighted number of study deaths. State- and rural/urban-specific estimates of the number, mortality rate, and lifetime risk of RTI death were calculated by partitioning the UN national death totals according to relative SRS death rates as previously described.[18,25,26] Urban and rural status was defined according to the Census of India. Logistic regression was used to compare the socio-demographic traits of pedestrian and non-pedestrian RTI deaths. Household fuel type was used as a measure of community wealth: high asset neighbourhoods had >50% of households that used gas, electricity, or kerosene; low asset or poor neighbourhoods used primarily coal, firewood, or other. Attributable proportion was calculated for traits of pedestrian deaths compared to non-pedestrian RTI deaths.

#### **BMJ Open**

The MDS received ethics approval from the review boards of the Post-Graduate Institute of Medical Education and Research in Chandigarh, India; St Michael's Hospital in Toronto, Canada; and the Indian Council of Medical Research's Health Ministry's Screening Committee.

## RESULTS

The 2299 RTI deaths in the 2001-2003 survey correspond to an estimated 183 600 (99%CI 173 800-193 400) RTI deaths in India in 2005. The majority of these RTI deaths occurred in males (152 100 deaths, 82.8%; table 1). The age-standardized RTI mortality rate for males (26.2 per 100 000, 24.6-27.7) was higher than for females (5.7 per 100 000, 5.0-6.4). While the RTI mortality rate increased with age in both genders, the largest number of RTI deaths occurred in males between 15-59 years of age (118 900, 64.8%).

At these death rates and in the theoretical absence of other causes of death, males in India had a 2.1% (2.0-2.3) risk of dying from RTI before age 70, with the highest risks at ages 30-59 years; females had a 0.5% (0.4-0.5) risk of dying from RTI before age 70. Males in Haryana, Punjab, Tamil Nadu, and Uttar Pradesh had significantly higher risks (3.0-4.1%) than the national risk (figure 1). In contrast, males in Bihar, Jharkhand, Andhra Pradesh, Orissa, Gujarat, and West Bengal had significantly lower risks (1.3-1.6%) than the national risk of RTI deaths. Males living in urban areas had slightly higher age-standardized mortality rates and risks of RTI deaths (27.6 per 100 000; 2.4%, 2.1-2.6) compared to males living in rural areas (24.9 per 100 000; 2.0%, 1.8-2.1). By contrast, female RTI mortality rates and risks before age 70 varied much less across states and were similar in rural and urban areas (data not shown).

|                                                                    |               | Study death | s, 2001-2003 | BMJ Open    |                         | All India, 2  | 005              | Page 8 of 26 |  |
|--------------------------------------------------------------------|---------------|-------------|--------------|-------------|-------------------------|---------------|------------------|--------------|--|
|                                                                    | Number of RTI | Proportion  | Rural (%**)  | Two coders  | All deaths / population | Estimated RTI | RTI death rateΨ  | Period risk  |  |
| A                                                                  | deaths / all  | RTI*        |              | immediately | (millions, 2005 UN      | deaths§,      | per 100 000      | for RTI      |  |
| 1                                                                  | coded deaths  |             |              | agree       | estimates)              | thousands     | (99% CI)         | death†       |  |
| <sup>2</sup> Male - age in years                                   |               |             |              |             |                         |               |                  |              |  |
| 0-4                                                                | 44 / 11719    | 0.4%        | 37 (76.7)    | 44          | 1.2 / 67                | 4.9           | 7.4 (6.5-8.4)¶   | 0.04%        |  |
| 4 5-14                                                             | 97 / 1926     | 5.2%        | 86 (84.1)    | 87          | 0.2 / 129               | 8.5           | 6.6 (4.9-8.3)    | 0.1%         |  |
| 5 15-29                                                            | 605 / 4727    | 13.0%       | 462 (68.9)   | 558         | 0.4 / 163               | 47.1          | 28.9 (25.9-31.9) | 0.4%         |  |
| $   \begin{array}{c}     6 \\     \hline     30-44   \end{array} $ | 529 / 6817    | 7.7%        | 385 (67.0)   | 477         | 0.6 / 115               | 43.8          | 37.9 (33.7-42.1) | 0.6%         |  |
| 7 45-59                                                            | 356 / 11731   | 3.0%        | 249 (60.9)   | 312         | 0.9 / 73                | 28.0          | 38.4 (33.2-43.6) | 0.6%         |  |
| 8 60-69                                                            | 149 / 12120   | 1.2%        | 117 (71.8)   | 133         | 0.9 / 24                | 10.6          | 44.0 (34.6-53.4) | 0.5%         |  |
| 9 >70                                                              | 123 / 18732   | 0.6%        | 106 (81.2)   | 98          | 1.3 / 14                | 9.1           | 64.5 (49.1-80.0) |              |  |
| 10 All ages                                                        | 1903 / 67772  | 2.8%        | 1442 (68.9)  | 1709        | 5.3 / 585               | 152.1         | 26.2             | 2.1%†        |  |
| 11 $(\% \text{ or } 99\% \text{ CI})$                              |               |             |              | (89.8%)     |                         | (143.2-161.0) | (24.6-27.7)      | (2.0-2.3)    |  |
| 12 ` ´                                                             |               |             |              | × /         |                         |               | × ,              | ,            |  |
| <sup>13</sup> Female - age in years                                |               |             |              |             |                         |               |                  |              |  |
| 14 0-4                                                             | 50 / 11492    | 0.4%        | 46 (93.4)    | 45          | 1.2 / 61                | 5.0           | 8.1 (7.1-9.1)¶   | 0.04%        |  |
| 15 <sub>5-14</sub>                                                 | 44 / 1955     | 2.3%        | 38 (80.1)    | 43          | 0.2 / 118               | 3.8           | 3.2 (2.0-4.4)    | 0.03%        |  |
| 16 <sub>15-29</sub>                                                | 72 / 4394     | 1.5%        | 53 (60.5)    | 63          | 0.3 / 150               | 5.3           | 3.5 (2.4-4.6)    | 0.1%         |  |
| 17 <sub>30-44</sub>                                                | 59 / 4055     | 1.4%        | 39 (59.0)    | 50          | 0.3 / 106               | 4.4           | 4.1 (2.7-5.5)    | 0.1%         |  |
| 18 45-59                                                           | 70 / 6402     | 1.1%        | 55 (70.9)    | 61          | 0.5 / 69                | 6.0           | 8.6 (5.9-11.3)   | 0.1%         |  |
| 19 <sub>60-69</sub>                                                | 54 / 9016     | 0.6%        | 42 (68.6)    | 52          | 0.6 / 25                | 3.7           | 14.8 (9.8-19.9)  | 0.2%         |  |
| 20 >70                                                             | 47 / 17343    | 0.3%        | 33 (61.8)    | 35          | 1.3 / 16                | 3.5           | 21.6 (13.4-29.9) |              |  |
| 21 All ages                                                        | 396 / 54657   | 0.7%        | 306 (69.8)   | 349         | 4.5 / 546               | 31.5          | 5.7              | 0.5%†        |  |
| 22 (% or 99% CI)                                                   |               |             |              | (88.1%)     |                         | (27.5-35.6)   | (5.0-6.4)        | (0.4-0.5)    |  |
| 23                                                                 |               |             |              |             |                         | (             | ()               | (**)         |  |
| 24 Total male and female, <70 years                                | 2129 / 86354  | 2.4%        | 1609 (68.5)  | 1925        | 7.2 / 1100              | 171.0         | 15.5             | 1.3%†        |  |
| 25 (% or 99% CI)                                                   |               |             |              | (90.4%)     |                         | (161.5-180.4) | (14.7-16.4)      | (1.3-1.4)    |  |
| 26 Total male and female, all ages                                 | 2299 / 122429 | 1.8%        | 1748 (69.0)  | 2058        | 9.8 / 1131              | 183.6         | 16.2             | 1.3%†        |  |
| 27 (% or 99% CI)                                                   |               |             |              | (89.5%)     |                         | (173.8-193.4) | (15.4-17.1)      | (1.3-1.4)    |  |
| 28                                                                 |               |             |              |             |                         | (,            |                  |              |  |

<sup>30</sup> **Table 1: Road traffic injury deaths in the present study and estimated national totals for 2005, by age and gender.** \*Proportion of RTI deaths <sup>31</sup> compared to all deaths, weighted by state and residence (rural/urban). \*\*Percentage rural is weighted by state and residence (rural/urban). §Obtained by <sup>32</sup> multiplying the United Nations estimated total deaths in 2005 by the weighted proportions. ΨAge standardized to the 2005 United Nations estimated <sup>34</sup> Indian population; 99% CI shown are calculated based on weighted number of study deaths, which result in wider CI than those based on physician <sup>35</sup> agreement. †Annual RTI death rate multiplied by the duration of age range, except for the lifetime risk which is calculated between 0-69 years by <sup>36</sup> summation of the age specific period risks. ¶Crude death rate.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

47 48

46

40 70

#### **BMJ Open**

Vulnerable road users are those without a rigid barrier protecting against traumatic forces and include pedestrians, motorcyclists, bicyclists, and three-wheelers. They constituted a majority (68%; n=124 000, 99%Cl 115 000-131 000) of RTI deaths, led by pedestrians (37%; n=68 000, 62 000-73 000) and motorcyclists (20%; n=36 000, 31 000-40 000) (figure 2). Drivers and passengers of motorized four-wheelers comprised 16% (n=31 000, 27 000-35 000) of RTI deaths. By contrast, the 2005 police reports, which use a different but compatible classification system to ICD-10, recorded only 33 000 vulnerable road user deaths and only 9000 pedestrian deaths. The most common types of vehicle to collide into the decedents were heavy transport vehicles and buses (37%; n=68 000, 61 000-74 000), followed by cars and vans (15%; n=28 000, 24 000-32 000). Single-vehicle incidents comprised 9% of deaths (n=17 000, 14 000-20 000). The most frequent combinations, resulting in 23% (n=42 000, 37 000-47 000) of RTI deaths, were collisions of heavy transport vehicles or buses with pedestrians and motorcyclists (data not shown).

The place and timing of death were described in the narratives of 1733 (75%) and 1596 (69%) of the RTI deaths respectively (figure 2; see supplementary table 1 for a summary of missing data from the narratives with respect to deceased characteristics). For these narratives, only the study proportion and not national estimates were made. Most RTI deaths occurred at the scene of collision (58%, 1005/1733) or instantly, defined as within 5 minutes (55%, 883/1596). Only 3% (45/1733) were labeled as potentially avertable with better pre-hospital transport as they occurred on scene but not instantly. Another 35% of deaths occurred en route (7%, 124/1733) or in hospital (28%, 481/1733).

Injuries sustained by the deceased were reported from 1124 narratives (49%). Head injuries were the most commonly reported (62%, 691/1124), of which 76% (524/691) were reported as isolated head injuries (figure 3). A greater percentage of motorcyclists (78%, 188/241) had head

#### BMJ Open

injuries reported compared to non-motorcyclists (57%, 457/807). After adjusting for age, sex, rural/urban, neighbourhood asset, and education, bicyclists and motorcyclists were more likely to have head injuries reported compared to non-vulnerable road users (adjusted OR 1.7, 1.2-2.5) (supplementary table 2).

Compared to non-pedestrian RTI deaths, pedestrian deaths occurred to those who had less education (or in the case of children age <15 years, have less educated parents) (adjusted OR 2.9, 99%CI 2.0-4.2), lived in poorer neighbourhoods (1.7, 1.1-2.5), were children or elderly adults (<15 years: 2.9, 1.8-4.5; >59 years: 1.7, 1.2-2.4), were female (1.5, 1.2-2.2), and lived in urban areas (1.5, 1.1-2.2) (table 2). If pedestrian deaths had the same proportion of secondary or higher education as non-pedestrian RTI deaths, there would be 406/825 (49%) fewer pedestrian deaths, corresponding to approximately 33 000 deaths nationally in 2005. The corresponding attributable proportion for living in richer versus poorer neighbourhoods would be 265/825 (32%) or approximately 22 000 deaths nationally. Within the narratives we could code, there were no differences between pedestrians and non-pedestrian RTI deaths in timing of death, place of death, reported injuries, or reported routine use of alcohol or smoking (data not shown).

|                                          | Pedestrian /<br>Non-Pedestrian<br>Total=825/1280 | Adjusted OR^<br>(99% CI) | Attributable<br>Pedestrian Deaths<br>(% of all 825<br>pedestrian deaths) |
|------------------------------------------|--------------------------------------------------|--------------------------|--------------------------------------------------------------------------|
| Education*                               |                                                  |                          |                                                                          |
| Secondary or higher                      | 112/382                                          | ref                      |                                                                          |
| Primary or middle                        | 248/450                                          | 1.8 (1.3-2.6)            | 110 ] 406 (49%                                                           |
| Below primary                            | 451/423                                          | 2.9 (2.0-4.2)            | 296 -                                                                    |
| Unknown                                  | 14/25                                            | 1.6 (0.6-4.2)            | N/A                                                                      |
| Neighbourhood Asset                      |                                                  |                          |                                                                          |
| High                                     | 137/320                                          | ref                      |                                                                          |
| Low                                      | 643/895                                          | 1.7 (1.1-2.5)            | 265 (32%)                                                                |
| Unknown                                  | 45/65                                            | 1.5 (0.8-2.8)            | N/A                                                                      |
| Age in years                             |                                                  |                          |                                                                          |
| 15-59 (driving ages)                     | 497/1046                                         | ref                      |                                                                          |
| <15 (children)                           | 144/74                                           | 2.9 (1.8-4.5)            | 94 ] 170 (21%                                                            |
| >59 (elderly adults)                     | 184/160                                          | 1.7 (1.2-2.4)            | $\frac{94}{76}$ ] 170 (21%)                                              |
| Sex                                      |                                                  | , , ,                    |                                                                          |
| Male                                     | 621/1121                                         | ref                      |                                                                          |
| Female                                   | 204/159                                          | 1.5 (1.1-2.2)            | 68 (8%)                                                                  |
| Location                                 |                                                  |                          |                                                                          |
| Rural                                    | 643/962                                          | ref                      |                                                                          |
| Urban                                    | 182/318                                          | 1.5 (1.1-2.2)            | 61 (7%)                                                                  |
| Occupation                               |                                                  |                          |                                                                          |
| Salaried / Wage Earner / Professional    | 229/517                                          | ref                      |                                                                          |
| Cultivator / Agricultural labour / Other | 162/300                                          | 0.9 (0.6-1.3)            | N/A                                                                      |
| Non-worker / Children <15 years          | 433/463                                          | 1.2 (0.9-1.6)            | N/A                                                                      |
| Unknown                                  | 1/0                                              | N/A                      | N/A                                                                      |
| Routine Alcohol Use**                    |                                                  |                          |                                                                          |
| No                                       | 494/877                                          | ref                      |                                                                          |
| Yes                                      | 145/260                                          | 1.1 (0.7-1.5)            | N/A                                                                      |
| Unknown                                  | 42/69                                            | 1.0 (0.5-1.9)            | N/A                                                                      |

**Table 2: Characteristics of pedestrian RTI deaths and attributable proportions.** \*Education of deceased adults or, in cases of deceased children <15 years, education of respondent. \*\*Excludes 218 children. ^Odds ratios are adjusted for all other variables in this table except for alcohol use; the odds ratios for alcohol use are adjusted for all other variables in this table.

# DISCUSSION

RTI is an important cause of death in India, causing 183 600 deaths in 2005, or about 2% of all

deaths. Much of the deceased were men between ages 15-59 years. Males had a four-fold

higher cumulative risk of RTI death compared to females before the age of 70. Among the major

states, there was approximately 3-fold variation in the age-standardized RTI death rate and cumulative risk for males.

Our estimated number of RTI deaths is more than 50% greater than the 118 265 deaths reported in the official police statistics of the National Crime Records Bureau (NCRB) in 2005.[27] Compared to our estimates, the extent of under-reporting of the crude death rate in major states by NCRB ranged from <1% to about 80% (supplementary table 3). Existing regional population-based injury surveys in India support our findings and also report higher crude RTI death rates than NCRB statistics.[8,11] Under-reporting of RTI deaths in police statistics has been reported in India and other LMIC.[28-30] A study in urban India comparing both hospital- and community-based RTI data to police records identified factors contributing to under-reporting that included the deceased believed to be at fault, collision resulting from hit-and-runs, limited police resources, and the lack of a standard police reporting protocol by hospitals.[28] The factors contributing to police under-reporting, especially in rural India, require further examination. Our estimated number of RTI deaths in 2005 was consistent with the WHO estimate for 2004.[14] However, we observed a slightly higher male proportion (83% MDS vs. 77% WHO, all ages) and a higher proportion of male deaths between 15-59 years (65% MDS vs. 61% WHO).

Almost three-quarters of all RTI deaths in India were of pedestrians and other vulnerable road users. In contrast, a much lower proportion (27%) was reported by the NCRB (figure 2). This difference equated to 59 000 pedestrian and 32 000 other vulnerable road user deaths that were not included in the 2005 NCRB records. Existing RTI studies based on regional surveys and hospital series also reported a high proportion (>60%) of vulnerable road user deaths similar to our findings.[11,12,30-32] Since the majority of vulnerable road users were pedestrians, our findings suggested that RTI deaths in individuals who were less educated, poor, female or live in

Page 13 of 26

#### **BMJ Open**

urban areas may have been disproportionally excluded from the NCRB records. While poverty and education are not likely to be in the direct causal pathway of pedestrian deaths, they nonetheless point to other associated risk factors. Indeed, 55 000 pedestrian deaths in 2005 (81%) was associated with lower education or living in poorer neighbourhoods compared to nonpedestrian RTI deaths. While the less educated and the poor likely travelled more often by foot, they might also be exposed to undetermined environmental (neighbourhoods with unsafe roads), biological (poor vision or decreased mobility due to poor health), and behavioral (alcohol or other substance use) risk factors for pedestrian death.[12,33,34] Further studies are needed to better understand pedestrian deaths in LMIC.

Over half of RTI deaths occurred instantly at the scene of collision and/or had head injury reported. Thus, investments in primary and secondary prevention could potentially avert the greatest proportion of RTI deaths. To address the high proportion of instant deaths and head injuries among RTI deaths in India, specific interventions that are effective and based on studies in LMIC should be emphasized; these may include speed bumps, motorcycle helmets, and increasing fines and license suspensions for rule infractions.[33] In contrast, improving pre-hospital transport and hospital trauma care, could only potentially affect the 38% who died on scene with delayed hospital transport (3%), en route to hospital (7%), or in hospital (28%).

Our study is the first nationally representative survey of the causes of death in India. The simple descriptive statistics provide clear evidence on the large and avertable burden from RTI, particularly among productive age adults and pedestrians. To the best of our knowledge, only one recent study in Vietnam has used similar methods to analyze RTI deaths and policy implications on a national scale.[35]

#### **BMJ Open**

Our study faced certain limitations. First, we might have misclassified certain causes of death including suicide as RTI deaths. However, the extent of misclassification should be minimal since the RHIME verbal autopsy method was shown to be robust in discerning between types of injury deaths[36] and since the immediate two-physician agreement was high for RTI deaths (89.5%, table 1). Furthermore, suicides cause about 200 000 deaths in India annually but few are due to RTI.[19] Second, since the modes of transportation, place and timing of death, and injuries sustained were extracted from layperson open-ended narratives, the data accuracy may be in guestion. For example with the deceased mode of transportation, the extent of misclassification (by our study) or misreporting (by NCRB) that contributed to the differences between the two sources is uncertain. With reported injuries, our findings from these narratives most likely undercounted less visible injuries (chest, abdomen, and spine) compared to highly visible injuries such as bleeding and deformity for head and extremity injuries. Nevertheless, our findings are consistent with available Indian regional surveys and hospital series on the mode of transportation[11,12,30-32] place and timing of death,[1,37-39] and injuries sustained.[12,40,41] Third, since the narrative was not designed specifically to capture RTI death characteristics, over 25% of deaths had missing data for mode of transportation, place of death, timing of death, or reported injuries (supplementary table 1). Thus, our findings for these elements extracted from the narratives may be less representative of the decedents who lived in rural or poor areas. Finally, reliable forward projection of the number of RTI deaths beyond 2005 was not possible since the increase in the NCRB reported number of RTI deaths of 140% from 2005 to 2011 appeared to outpace the rate of population growth.[42] As the proportion of vulnerable road user deaths remained stable during this period in the NCRB reports, we postulated that this increase represented an actual increase in RTI death totals rather than more accurate reporting. Furthermore, given the rapid economic expansion and concurrent changes in motorization including the types of vehicle sharing the road and road infrastructure, [43,44] our results on deceased mode of transportation, place and timing of death, and injuries sustained may not

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

#### **BMJ Open**

reflect the current Indian scenario. An analysis of the trend from 2001-2014 is planned pending ongoing data collection in the MDS.

In India, RTI is a significant cause of preventable death, particularly in males of productive working age and among pedestrians, bicyclists, and motorcyclist. We have shown that properly designed simple verbal autopsy narratives can document the much needed surveillance data on the numbers, rates, risks, and basic RTI mechanism such as modes of transportation, timing of death, place of death, and injuries sustained. Our findings suggested that investment in primary and secondary prevention could address a large proportion of avoidable RTI deaths.

### ACKNOWLEDGEMENTS

We thank the Office of the RGI for the ongoing productive collaboration on the MDS, C Ramasundarahettige for technical assistance, M Puri and S Levitt for data extraction. The opinions expressed in this article are those of the authors and do not necessarily represent those of the Government of India or the RGI.

# **COMPETING INTERESTS**

We declare that we have no competing interests.

# FUNDING

This study is supported by grants from the John E Fogarty International Center of the National Institutes of Health (R01-TW05991–01 and TW07939-01) and University of Toronto (to PJ); the Canada Research Chair Programme (to PJ and ABN); and the Canadian Institutes of Health Research Doctoral Award (to MH). The funding sources had no role in the study design; data collection, analysis, interpretation; writing of the manuscript; or decision to submit for publication. The senior author had full access to all the data in the study and had final responsibility for the decision to submit this study for publication.

#### **AUTHOR'S CONTRIBUTION**

PJ and the MDS Collaborators (appendix) designed, planned, the executed the MDS in close collaboration with the Office of the Registrar General of India (RGI). MH and PJ performed the data analysis. All authors contributed to data interpretation, revisions of the manuscript, and provided final approval. PJ is the guarantor for this report.

#### DATA SHARING STATEMENT

Data used in this study is the property of the Registrar General of India. Application for data access can be made to the Office of the Registrar General of India.



# REFERENCES

- 1 Peden M, Scurfield R, Sleet D, Mohan D, Hyder A, Jarawan E, *et al.* World report on road traffic injury prevention: World Health Organization. 2004.
- 2 Chisholm D, Naci H, Hyder AA, Tran NT, Peden M. Cost effectiveness of strategies to combat road traffic injuries in sub-Saharan Africa and South East Asia: mathematical modelling study. *BMJ* 2012;**344**:e612.
- 3 The PLoS Medicine Editors. Preventing Road Deaths—Time for Data. *PLoS Med* 2010;**7**:e1000257.
- 4 Barffour M, Gupta S, Gururaj G, Hyder AA. Evidence-based road safety practice in India: assessment of the adequacy of publicly available data in meeting requirements for comprehensive road safety data systems. *Traffic Inj Prev* 2012;**13 Suppl 1**:17–23.
- 5 Kopits E, Cropper ML. *Traffic fatalities and economic growth*. World Bank Development Research Group Environment and Infrastructure 2003.
- 6 Sathiyasekaran BW. Population-based cohort study of injuries. *Injury* 1996;27:695–8.
- 7 Varghese M, Mohan D. Transportation injuries in rural Haryana, North India. *In: Proceedings of the international conference on traffic safety* 2003;:326–9.
- 8 WHO. Injury Prevention and Control: An epidemiological study of injuries in the area of Municipal Corporation of Delhi. *Regional Office for South-East Asia* 2003;:1–18.
- 9 Gururaj G, Suryanarayana SP. Burden and impact of injuries: Results of population-based survey. *Proceedings of the 7th world conference on injury prevention* 2004;:275–6.
- 10 Dandona R. Patterns of road traffic injuries in a vulnerable population in Hyderabad, India.

Injury Prevention 2006;**12**:183–8.

- 11 Dandona R, Kumar GA, Ameer MA, Ahmed GM, Dandona L. Incidence and burden of road traffic injuries in urban India. *Inj Prev* 2008;**14**:354–9.
- 12 Gururaj G. Road traffic deaths, injuries and disabilities in India: current scenario. *Natl Med J India* 2008;**21**:14–20.
- 13 Garg N, Hyder A. Road traffic injuries in India: A review of the literature. *Scand J of Public Health* 2006;**34**:100–9.
- 14 World Health Organization. *The Global Burden of Disease: 2004 Update*. World Health Organization 2008.
- 15 Mathers CD, Bernard C, Moesgaard Iburg K, Inoue M, Ma Fat D, Shibuya K, et al. Global Burden of Disease in 2002: data sources, methods, and results. Global Programme on Evidence for Health Policy Discussion Paper No. 54. World Health Organization. 2003.http://www.who.int/healthinfo/paper54.pdf (accessed Jan2013).
- 16 Jha P, Gajalakshmi V, Gupta PC, Kumar R, Mony P, Dhingra N, *et al.* Prospective Study of One Million Deaths in India: Rationale, Design, and Validation Results. *PLoS Med* 2006;**3**:e18.
- 17 Million Death Study Collaborators, Bassani DG, Kumar R, Awasthi S, Morris SK, Paul VK, et al. Causes of neonatal and child mortality in India: a nationally representative mortality survey. *Lancet* 2010;**376**:1853–60.
- Dikshit R, Gupta PC, Ramasundarahettige C, Gajalakshmi V, Aleksandrowicz L, Badwe R, *et al.* Cancer mortality in India: a nationally representative survey. *Lancet* 2012;**379**:1807–16.

# **BMJ Open**

| 1<br>2                     |    |                                                                                                                     |
|----------------------------|----|---------------------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4                | 19 | Patel V, Ramasundarahettige C, Vijayakumar L, Thakur JS, Gajalakshmi V, Gururaj G, <i>et</i>                        |
| 5<br>6<br>7                |    | <i>al.</i> Suicide mortality in India: a nationally representative survey. <i>Lancet</i> 2012; <b>379</b> :2343–51. |
| 8<br>9                     | 20 | Sinha DN, Dikshit R, Kumar R, Gajalakshmi V, Dhingra N, Shet J, et al. Prospective Study                            |
| 10<br>11<br>12             |    | of Million Deaths in India: Technical document no VII: Health care professional's manual for                        |
| 12<br>13<br>14             |    | assigning causes of death based on RHIME household reports. RGI-CGHR, University of                                 |
| 15<br>16                   |    | Toronto. http://www.cghr.org/mds (accessed Aug2012).                                                                |
| 17<br>18<br>19             | 21 | WHO. International Statistical Classification of Diseases and Related Health Problems,                              |
| 20<br>21<br>22             |    | ICD-10: Three Volume Set. World Health Organization 2010.                                                           |
| 23<br>24                   | 22 | United Nations Population Division. World population prospects (2008 revision).                                     |
| 25<br>26<br>27             |    | 2009.http://www.un.org/esa/population/publications/wpp2008/                                                         |
| 28<br>29<br>30             | 23 | Mari Bhat PN. Completeness of India's sample registration system: an assessment using                               |
| 31<br>32                   |    | the general growth balance method. <i>Popul Stud</i> 2002; <b>56</b> :119–34.                                       |
| 33<br>34<br>35             | 24 | Sivanandan V. An assessment of the completeness of death registration in India over the                             |
| 36<br>37                   |    | periods 1975-1978 and 1996-1999 under the generalized population model: an analysis                                 |
| 38<br>39<br>40             |    | based on SRS data. Mumbai: International Institute for Population Sciences 2004.                                    |
| 41<br>42<br>42             | 25 | Jha P, Kumar R, Khera A, Bhattacharya M, Arora P, Gajalakshmi V, et al. HIV mortality and                           |
| 43<br>44<br>45             |    | infection in India: estimates from nationally representative mortality survey of 1.1 million                        |
| 46<br>47                   |    | homes. <i>BMJ</i> 2010; <b>340</b> :c621.                                                                           |
| 48<br>49<br>50             | 26 | Dhingra N, Jha P, Sharma VP, Cohen AA, Jotkar RM, Rodriguez PS, et al. Adult and child                              |
| 51<br>52                   |    | malaria mortality in India: a nationally representative mortality survey. Lancet                                    |
| 53<br>54<br>55             |    | 2010; <b>376</b> :1768–74.                                                                                          |
| 56<br>57<br>58<br>59<br>60 | 27 | National Crime Records Bureau. Accidental Deaths and Suicides in India, 2005. Ministry of                           |

Home Affairs, Government of India 2005.

- 28 Dandona R, Kumar GA, Ameer MA, Reddy GB, Dandona L. Under-reporting of road traffic injuries to the police: results from two data sources in urban India. *Inj Prev* 2008;**14**:360–5.
- 29 Alcorn T. Uncertainty clouds China's road-traffic fatality data. *Lancet* 2011;**378**:305–6.
- 30 Naci H, Chisholm D, Baker TD. Distribution of road traffic deaths by road user group: a global comparison. *Inj Prev* 2009;**15**:55–9.
- 31 Mohan D. *The road ahead: Traffic injuries and fatalities in India*. Transportation research and injury prevention programme, Indian Institute of Technology, Delhi 2004.
- 32 Mohan D. Traffic safety and health in Indian cities. *Journal of Transport and Infrastructure* 2002;**9**:79–94.
- 33 Norton R, Hyder A, Bishai D, Peden M. Unintentional Injuries. In: *Disease Control Priorities in Developing Countries*. Oxford University Press, USA 2006.
- Grimm M, Treibich C. Determinants of road traffic crash fatalities across Indian states.
   *Health Econ* Published Online First: 30 August 2012. doi:10.1002/hec.2870
- 35 Ngo AD, Rao C, Phuong Hoa N, Hoy DG, Thi Quynh Trang K, Hill PS. Road traffic related mortality in Vietnam: Evidence for policy from a national sample mortality surveillance system. *BMC Public Health* 2012;**12**:561.
- 36 Hsiao M, Morris SK, Bassani DG, Montgomery AL, Thakur JS, Jha P. Factors Associated with Physician Agreement on Verbal Autopsy of over 11500 Injury Deaths in India. *PLoS ONE* 2012;**7**:e30336.
- 37 Dandona R, Mishra A. Deaths due to road traffic crashed in Hyderabad city in India: need

# **BMJ Open**

| 1        |    |                                                                                              |
|----------|----|----------------------------------------------------------------------------------------------|
| 2        |    |                                                                                              |
| 3<br>4   |    | for strengthening surveillance. <i>Natl Med J India</i> 2004; <b>17</b> :74–9.               |
| 5        |    |                                                                                              |
| 6<br>7   | 38 | Sahdev P, Lacqua MJ, Singh B, Dogra TD. Road traffic fatalities in Delhi: causes, injury     |
| 8<br>9   |    | patterns, and incidence of preventable deaths. Accident Analysis & Prevention                |
| 10       |    | 1994; <b>26</b> :377–84.                                                                     |
| 11<br>12 |    | 1994, <b>20</b> .377–04.                                                                     |
| 13       |    |                                                                                              |
| 14       | 39 | Bhattacharjee J, Bora D, Sharma RS, Verghese T. Unnatural deaths in Delhi during 1991.       |
| 15<br>16 |    |                                                                                              |
| 17       |    | <i>Med Sci Law</i> 1996; <b>36</b> :194–8.                                                   |
| 18       |    |                                                                                              |
| 19       | 40 | Gururaj G, Shastry KVR, Chandramouli AB, Subbakrishna DK, Kraus JF. Traumatic brain          |
| 20<br>21 |    |                                                                                              |
| 22       |    | injury. Bangalore: : National Institute of Mental Health and Neuro Sciences. 2005.           |
| 23       |    |                                                                                              |
| 24       | 41 | Colohan AR, Alves WM, Gross CR, Torner JC, Mehta VS, Tandon PN, et al. Head injury           |
| 25<br>26 | 41 | Colonali AR, Alves WM, Gloss CR, Tomer JC, Menta VS, Tandolf PN, et al. Head injury          |
| 27       |    | mortality in two centers with different emergency medical services and intensive care. J     |
| 28       |    |                                                                                              |
| 29       |    | Neurosurg Pediatrics 1989; <b>71</b> :202–7.                                                 |
| 30<br>31 |    |                                                                                              |
| 32       | 42 | National Crime Records Bureau. Accidental Deaths and Suicides in India, 2011. Ministry of    |
| 33       | 74 | National Onine Records Baread. Recidental Beating and Guidlacs in mala, 2011. Withstry of    |
| 34<br>35 |    | Home Affairs, Government of India 2011.                                                      |
| 36       |    |                                                                                              |
| 37       | 40 | Transmert Deservesh Winer, Minister of Dead Transmert & Likeburger, Deals Dead Otatistics of |
| 38       | 43 | Transport Research Wing, Ministry of Road Transport & Highways. Basic Road Statistics of     |
| 39<br>40 |    | India. Government of India. 2012;:1–109.                                                     |
| 41       |    |                                                                                              |
| 42       |    |                                                                                              |
| 43       | 44 | Transport Research Wing, Ministry of Road Transport & Highways. Road Transport Year          |
| 44<br>45 |    | Rock (2000 10 & 2010 11) Covernment of India 2012:11 151                                     |
| 46       |    | Book (2009-10 & 2010-11). Government of India. 2012;:1–154.                                  |
| 47       |    |                                                                                              |
| 48<br>49 |    |                                                                                              |
| 49<br>50 |    |                                                                                              |
| 51       |    |                                                                                              |
| 52       |    |                                                                                              |
| 53<br>54 |    |                                                                                              |
| 55       |    |                                                                                              |
| 56       |    |                                                                                              |
| 57<br>58 |    |                                                                                              |
| 56<br>59 |    |                                                                                              |
| 60       |    |                                                                                              |

## FIGURE LEGENDS

# Figure 1: Road traffic injury deaths, age-standardized death rate, and cumulative risk (age 0-69 years) across states and regions of India, by gender.

Death rates are standardized to the 2005 United Nations estimated Indian population. Symbol size is proportional to sample size. Northeast states include Sikkim, Arunachal Pradesh, Nagaland, Manipur, Mizoram, Tripura, and Meghalaya. Total estimates include the 80 male and 19 female deaths from Pondicherry, Chandigarh, Uttarakhand, Dadra & Nagar Haveli, A&N Islands, Daman & Diu, Lakshadweep, and Goa. CHT=Chhatisgarh.

### Figure 2: Deceased mode of transportation, place of death, and timing of death.

(A) Deceased mode of transportation in present study compared to National Crime Records Bureau 2005 Report. Shaded line represents vulnerable road users (defined as road users without a rigid barrier protecting against traumatic forces, i.e. pedestrian, bicyclist, motorcyclist, and three wheelers). Percentages from present study are weighted by state and rural/urban residence. T=estimated/reported number of deaths in 2005 (in thousands). (B) Place of death and (C) timing of death based on verbal autopsy narratives. Shaded lines represent deaths that are reported as occurring at the scene of collision or occurring instantly (defined as within 5 minutes).

# Figure 3: Reported injuries from 1124 verbal autopsy narratives (49% of all 2299 RTI deaths).

Percentages refer to those in each row with given injury (columns). \*Values in bold denote two by two chi square tests with p<0.05 (excluding unknowns). Abdominal and spinal injuries were also reported but not shown due to small numbers (61 and 25 cases, respectively).

| Page 23 of 26 Narrative section |                     |           |             | Timing of Death BMJ Open |            |             | Per of Death |                          | Deceased    | Mode of Transp | ortation  | Injury Reported |       |             |             |       |
|---------------------------------|---------------------|-----------|-------------|--------------------------|------------|-------------|--------------|--------------------------|-------------|----------------|-----------|-----------------|-------|-------------|-------------|-------|
|                                 |                     | Missing   | Not missing |                          | Missing    | Not missing |              | Missing                  | Not missing |                | Missing   | Not missing     |       | Missing     | Not missing |       |
| _                               |                     | n (%)     | n (%)       | р                        | n (%)      | n (%)       | р            | n (%)                    | n (%)       | р              | n (%)     | n (%)           | р     | n (%)       | n (%)       | р     |
| 1                               | all RTI (n=2299)    | 142 (6.2) | 2157 (93.8) |                          | 703 (30.6) | 1596 (69.4) |              | 566 (24.6)               | 1733 (75.4) |                | 194 (8.4) | 2105 (91.6)     |       | 1175 (51.1) | 1124 (48.9) |       |
|                                 | age                 |           |             |                          |            |             |              |                          |             |                |           |                 |       |             |             |       |
| 2                               | <20 years           | 12 (2.9)  | 402 (97.1)  | 0.002                    | 106 (25.6) | 308 (74.4)  | 0.015        | 90 (21.7)                | 324 (78.0)  | 0.133          | 37 (8.9)  | 377 (91.1)      | 0.687 | 199 (48.1)  | 215 (51.9)  | 0.172 |
| 3                               | ≥20 years           | 130 (6.9) | 1755 (93.1) |                          | 597 (31.7) | 1288 (68.3) |              | 476 (25.3)               | 1409 (75.0) |                | 157 (8.3) | 1728 (91.7)     |       | 976 (51.8)  | 909 (48.2)  |       |
| 4                               | sex                 |           |             |                          |            |             |              |                          |             |                |           |                 |       |             |             |       |
| 5                               | male                | 118 (6.2) | 1785 (93.8) | 0.916                    | 582 (30.6) | 1321 (69.4) | 0.991        | 461 (24.2)               | 1442 (75.8) | 0.336          | 161 (8.5) | 1742 (91.5)     | 0.934 | 972 (51.1)  | 931 (48.9)  | 0.946 |
|                                 | female              | 24 (6.1)  | 372 (93.9)  |                          | 121 (30.6) | 275 (69.4)  |              | 105 (26.5)               | 291 (73.5)  |                | 33 (8.3)  | 363 (91.7)      |       | 203 (51.3)  | 193 (48.7)  |       |
| 6                               | location            |           |             |                          |            |             |              |                          |             |                |           |                 |       |             |             |       |
| 1                               | rural               | 125 (7.2) | 1623 (92.9) | 0.001                    | 559 (32.0) | 1189 (68.0) | 0.009        | 456 (26.1)               | 1292 (73.9) | 0.004          | 143 (8.2) | 1605 (91.8)     | 0.429 | 896 (51.3)  | 852 (48.7)  | 0.799 |
| 8                               | urban               | 17 (3.1)  | 534 (96.9)  |                          | 144 (26.1) | 407 (73.9)  |              | 110 (20.0)               | 441 (80.0)  |                | 51 (9.3)  | 500 (90.7)      |       | 279 (50.6)  | 272 (49.4)  |       |
| 9                               | neighbourhood asset |           |             |                          |            |             |              |                          |             |                |           |                 |       |             |             |       |
| 10                              | low                 | 126 (7.5) | 1548 (92.5) | 0.001                    | 552 (33.0) | 1122 (67.0) | 0.000        | 451 (26.9)               | 1223 (73.1) | 0.001          | 136 (8.1) | 1538 (91.9)     | 0.468 | 883 (52.8)  | 791 (47.3)  | 0.057 |
|                                 |                     | 16 (3.2)  | 487 (96.8)  |                          | 121 (24.1) | 382 (75.9)  |              | 97 (19.3)                | 406 (80.7)  |                | 46 (9.2)  | 457 (90.9)      |       | 241 (47.9)  | 262 (52.1)  |       |
| 11                              | missing             | 0 (0.0)   | 122 (100.0) |                          | 30 (24.6)  | 92 (75.4)   |              | 18 (14.8)                | 104 (85.3)  |                | 12 (9.8)  | 110 (90.2)      |       | 51 (41.8)   | 71 (58.2)   |       |
| 12                              | education           | 28 (4.0)  | 01((0())    | 0.000                    | 200 (20.2) | ((5)(0)7)   | 0.004        | 220 (24.1)               | 724 (75.0)  | 0.710          | 00 (0 4)  | 974 (01 ()      | 0 757 | 4(0 (40 1)  | 40( (50 0)  | 0.004 |
| 13                              | below primary       | 38 (4.0)  | 916 (96)    | 0.000                    | 289 (30.3) | 665 (69.7)  | 0.894        | 230 (24.1)               | 724 (75.9)  | 0.719          | 80 (8.4)  | 874 (91.6)      | 0.757 | 468 (49.1)  | 486 (50.9)  | 0.094 |
| 14                              | primary and above   | 100(7.7)  | 1196 (92.3) |                          | 396 (30.6) | 900 (69.4)  |              | 321 (24.8)               | 975 (75.2)  |                | 104 (8.0) | 1192 (92.0)     |       | 682 (52.6)  | 614 (47.4)  |       |
|                                 | 8                   | 4 (8.2)   | 45 (91.8)   |                          | 18 (36.7)  | 31 (63.3)   |              | 15 (30.6)                | 34 (69.4)   |                | 10 (20.4) | 39 (79.6)       |       | 25 (51.0)   | 24 (49.0)   |       |
|                                 | occupation          | 60 (8.1)  | 679 (91.9)  | 0.006                    | 243 (32.9) | 496 (67.1)  | 0.094        | 205 (27.7)               | 534 (72.3)  | 0.016          | 60 (8.1)  | 679 (91.9)      | 0.701 | 381 (51.6)  | 358 (48.4)  | 0.757 |
| 16                              | non-worker          | 81 (5.2)  | 1478 (94.8) | 0.000                    | 459 (29.4) | 1100 (70.6) | 0.094        | 203 (27.7)<br>360 (23.1) | 1199 (76.9) | 0.010          | 134 (8.6) | 1425 (91.4)     | 0.701 | 793 (50.9)  | 766 (49.1)  | 0.737 |
| 17                              | , worker<br>missing | 1(100.0)  | 0 (0.0)     |                          | 1 (100.0)  | 0 (0.0)     |              | 1(100.0)                 | 0 (0.0)     |                | 0(0.0)    | 1423 (91.4)     |       | 1 (100.0)   | 0 (0.0)     |       |
| 18                              |                     | 1 (100.0) | 0 (0.0)     |                          | 1 (100.0)  | 0 (0.0)     |              | 1 (100.0)                | 0 (0.0)     |                | 0 (0.0)   | 1 (100.0)       |       | 1 (100.0)   | 0 (0.0)     |       |
|                                 | •                   |           |             |                          |            |             |              |                          |             |                |           |                 |       |             |             |       |

<sup>19</sup> Supplementary Table 1: Summary of missing data. There are no missing values for age, sex, and location in the study population. The chi square test was used to determine the p values and excluded deaths with missing neighbourhood asset, education, or occupation. asset, euucu... 

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

|                                 | Timing of  | Death wa | s Instant | Place of Da | en<br>eath was P | rehospital | Head Injury was Reported |      |          |  |
|---------------------------------|------------|----------|-----------|-------------|------------------|------------|--------------------------|------|----------|--|
|                                 |            |          |           | Adjusted    |                  | Adjusted   |                          |      |          |  |
| Deceased Mode of Transportation | n (%)      | OR       | 99% CI    | n (%)       | OR               | 99% CI     | n (%)                    | OR   | 99% CI   |  |
| non-vulnerable road users       | 170 (58.6) | ref      |           | 223 (69.5)  | ref              |            | 125 (31.5)               | ref  |          |  |
| vulnerable road users:          |            |          |           |             |                  |            |                          |      |          |  |
| pedestrian                      | 338 (58.5) | 1.1      | 0.7-1.7   | 425 (69.1)  | 1.1              | 0.7-1.7    | 192 (24.9)               | 0.8  | 0.5-1.1  |  |
| bicyclist & motorcyclist        | 245 (52.0) | 0.8      | 0.5-1.1   | 306 (59.2)  | 0.6              | 0.4-1.0    | 256 (43.5)               | 1.7* | 1.2-2.5* |  |
| three wheelers & animal riders  | 93 (56.4)  | 0.9      | 0.5-1.6   | 117 (67.6)  | 0.9              | 0.5-1.7    | 72 (33.0)                | 1.2  | 0.7-1.9  |  |
| unknown                         | 37 (40.2)  | 0.5      | 0.3-1.0   | 55 (51.4)   | 0.5              | 0.3-1.0    | 46 (25.1)                | 0.8  | 0.5-1.4  |  |

Supplementary Table 2: Association between deceased mode of transportation and the timing of death, place of death, and head injuries reported. Odds ratios 10 are adjusted for deceased's age, sex, rural/urban, neighbourhood asset, and education. \*Value in bold denote statistically significant difference between comparison 11 groups.

\_ . . . .

Page 24 of 26

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| 13211<br>26455<br>122181<br>186591<br>11120<br>14121<br>29150<br>86499 | MDS<br>3610<br>7380<br>13172<br>33287<br>2335<br>4037<br>3277<br>9363 | NCRB<br>724<br>1622<br>3430<br>9860<br>857<br>1589<br>1456       | MDS<br>27.3<br>27.9<br>10.8<br>17.8<br>21.0<br>28.6<br>11.2                                   | 0,000)*<br><u>NCRB</u><br>5.5<br>6.1<br>2.8<br>5.3<br>7.7<br>11.3                                                         | Rate<br>79.9<br>78.0<br>74.0<br>70.4<br>63.3<br>60.6                                                                                                 |
|------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26455<br>122181<br>186591<br>11120<br>14121<br>29150<br>86499          | 7380<br>13172<br>33287<br>2335<br>4037<br>3277                        | 1622<br>3430<br>9860<br>857<br>1589<br>1456                      | 27.9<br>10.8<br>17.8<br>21.0<br>28.6                                                          | 6.1<br>2.8<br>5.3<br>7.7<br>11.3                                                                                          | 78.0<br>74.0<br>70.4<br>63.3                                                                                                                         |
| 122181<br>186591<br>11120<br>14121<br>29150<br>86499                   | 13172<br>33287<br>2335<br>4037<br>3277                                | 3430<br>9860<br>857<br>1589<br>1456                              | 10.8<br>17.8<br>21.0<br>28.6                                                                  | 2.8<br>5.3<br>7.7<br>11.3                                                                                                 | 74.0<br>70.4<br>63.3                                                                                                                                 |
| 186591<br>11120<br>14121<br>29150<br>86499                             | 33287<br>2335<br>4037<br>3277                                         | 9860<br>857<br>1589<br>1456                                      | 17.8<br>21.0<br>28.6                                                                          | 5.3<br>7.7<br>11.3                                                                                                        | 70.4<br>63.3                                                                                                                                         |
| 11120<br>14121<br>29150<br>86499                                       | 2335<br>4037<br>3277                                                  | 857<br>1589<br>1456                                              | 21.0<br>28.6                                                                                  | 7.7<br>11.3                                                                                                               | 63.3                                                                                                                                                 |
| 14121<br>29150<br>86499                                                | 4037<br>3277                                                          | 1589<br>1456                                                     | 28.6                                                                                          | 11.3                                                                                                                      |                                                                                                                                                      |
| 29150<br>86499                                                         | 3277                                                                  | 1456                                                             |                                                                                               |                                                                                                                           | 60.6                                                                                                                                                 |
| 86499                                                                  |                                                                       |                                                                  | 11.2                                                                                          |                                                                                                                           |                                                                                                                                                      |
|                                                                        | 9363                                                                  |                                                                  | 11.4                                                                                          | 5.0                                                                                                                       | 55.6                                                                                                                                                 |
| 005(9                                                                  |                                                                       | 4364                                                             | 10.8                                                                                          | 5.0                                                                                                                       | 53.4                                                                                                                                                 |
| 90568                                                                  | 15726                                                                 | 7686                                                             | 17.4                                                                                          | 8.5                                                                                                                       | 51.1                                                                                                                                                 |
| 23688                                                                  | 6128                                                                  | 3282                                                             | 25.9                                                                                          | 13.9                                                                                                                      | 46.4                                                                                                                                                 |
| 39485                                                                  | 5083                                                                  | 2895                                                             | 12.9                                                                                          | 7.3                                                                                                                       | 43.0                                                                                                                                                 |
| 33785                                                                  | 5051                                                                  | 3161                                                             | 15.0                                                                                          | 9.4                                                                                                                       | 37.4                                                                                                                                                 |
| 106386                                                                 | 16638                                                                 | 10613                                                            | 15.6                                                                                          | 10.0                                                                                                                      | 36.2                                                                                                                                                 |
| 63375                                                                  | 9237                                                                  | 6793                                                             | 14.6                                                                                          | 10.7                                                                                                                      | 26.5                                                                                                                                                 |
| 55926                                                                  | 6987                                                                  | 5264                                                             | 12.5                                                                                          | 9.4                                                                                                                       | 24.7                                                                                                                                                 |
| 6559                                                                   | 1077                                                                  | 854                                                              | 16.4                                                                                          | 13.0                                                                                                                      | 20.7                                                                                                                                                 |
| 57141                                                                  | 8172                                                                  | 6876                                                             | 14.3                                                                                          | 12.0                                                                                                                      | 15.9                                                                                                                                                 |
| 16289                                                                  | 2161                                                                  | 2023                                                             | 13.3                                                                                          | 12.4                                                                                                                      | 6.4                                                                                                                                                  |
| 66154                                                                  | 14808                                                                 | 13961                                                            | 22.4                                                                                          | 21.1                                                                                                                      | 5.7                                                                                                                                                  |
| 81934                                                                  | 10991                                                                 | 10944                                                            | 13.4                                                                                          | 13.4                                                                                                                      | 0.4                                                                                                                                                  |
| 1130618                                                                | 178520                                                                | 98254                                                            | 15.8                                                                                          | 8.7                                                                                                                       | 45.0                                                                                                                                                 |
|                                                                        | 63375<br>55926<br>6559<br>57141<br>16289<br>66154<br>81934            | 6337592375592669876559107757141817216289216166154148088193410991 | 633759237679355926698752646559107785457141817268761628921612023661541480813961819341099110944 | 633759237679314.6559266987526412.56559107785416.4571418172687614.3162892161202313.366154148081396122.481934109911094413.4 | 633759237679314.610.7559266987526412.59.46559107785416.413.0571418172687614.312.0162892161202313.312.466154148081396122.421.181934109911094413.413.4 |

Supplementary Table 3: Comparison between present study (MDS) estimates and National Crime Records Bureau (NCRB) police reports of the number of RTI deaths and crude death rate, by state. \*Excludes railroad deaths since NCRB does not publish state-level railroad death figures. Northeast States include Sikkim, Arunachal Pradesh, Nagaland, Manipur, Mizoram, Tripura, and Meghalaya. Other States include Pondicherry, Chandigarh, Uttaranchal, Dadra & Nagar Haveli, A & N Islands, Daman & Diu, Lakshadweep, and Goa. CDH = Chhatisgarh. % under reporting = (MDS death rate - NCRB death rate) / MDS death rate \*100%.

# <sup>2</sup>MILLION DEATH STUDY COLLOBORATORS

# 4

1

# 5Indian Academic Partners (in alphabetical order):

- 61. Department of Community Medicine Gujarat Medical College, Ahmedabad: DV Bala, P Seth, KN Trivedi
- Department of Community Medicine Kolkatta Medical College, Kolkatta: SK Roy 72.
- 83. Department of Community Medicine Regional Institute of Medical Sciences, Imphal: L Usharani
- 94 Department of Community Medicine S.C.B. Medical College Cuttack, Orissa: Dr. B Mohapatra
- 1Q Department of Community Medicine SMS Medical College Jaipur: AK Bharadwaj, R Gupta
- 1027330405 Epidemiological Research Center, Chennai: V Gajalakshmi, CV Kanimozhi
- Gandhi Medical College, Bhopal: RP Dikshit, S Sorangi
- Healis-Seskarhia Institute of Public Health, Navi Mumbai: PC Gupta, MS Pednekar, S Sreevidya
- Apollo Institute of Medical Sciences & Research, Hyderabad: P Bhatia
- 160. St. John's Academy of Health Sciences, Bangalore: A Kurpad, P Mony, M Vaz, S Srinivasan, A Shet, AS Shet, D Xavier.
- S Rathi, V Habbare 17
- 181. King George Medical College, Lucknow: S Awasthi
- 192. Najafgarh Rural Health Training Centre, Ministry of Health Government of India, New Delhi: N Dhingra, J Sudhir, I 20 Rawat (until 2007)
- 213. Regional Medical Research Center, ICMR Institute, Bhubaneshwar: AS Karketta, SK Dar
- 224. School of Preventative Oncology, Patna: DN Sinha
- <sup>235</sup>. School of Public Health Post Graduate Institute of Medical Education and Research, Chandigarh: N Kaur, R Kumar, JS 24 Thakur
- 256. Tata Memorial Cancer Hospital, Mumbai: RA Badwe, RP Dikshit, M Mallath, K Panse, A Budukh

# 27 28 Lead Partners:

24. Office of the Registrar-General India, RK Puram, New Delhi India: C Chandramouli (Registrar General of India [RGI]), 3 RC Sethi, B Mishra (until 2012), S Jain (until 2008), DK Dey, AK Saxena, MS Thapa, N Kumar; JK Banthia and DK Sikri 3(former RGIs)

32

33. Million Death Study Coordinating Centre for Global Health Research (CGHR) Li Ka Shing Knowledge Institute, St. 34 Ichael's Hospital, Dalla Lana School of Public Health, University of Toronto, Canada: P Jha (Principal Investigator), R <sup>3</sup> Kamadod, S Rathi, S Rao-Seshadri, P Rodriguez, P Sati, J Sudhir, C Ramasundarahettige, W Suraweera 36

# <sup>37</sup>Affiliated Partners:

- Зâ Indian Council of Medical Research, New Delhi India: VM Katoch (Director General or DG from 2008), NK Ganguly 39
- (DG to 2008), L Kant, B Bhattacharya, B Shah, DK Shukla 40
- World Health Organisation, Geneva and SEARO Office, New Delhi: T Boerma, A Fric, S Habayeb (former WHO 4<del>1</del>
- Representative-India), S Khanum, CD Mathers, DN Sinha, N Singh, P Singh (Deputy Regional Director) 42
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), University of Oxford, England: N Bhala, J 4**3**.
- Boreham, R Peto, G Whitlock 44
- 45
- 46
- 47
- 48 49
- 50
- 51
- 52
- 53 54
- 55
- 56
- 57
- 58
- 59 60



# Road traffic injury mortality and its mechanisms in India: nationally representative mortality survey of 1.1 million homes

| Journal:                                                            | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Manuscript ID:                                                      | bmjopen-2013-002621.R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Article Type:                                                       | Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Date Submitted by the Author:                                       | 15-May-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Complete List of Authors:                                           | Hsiao, Marvin; University of Toronto, Centre for Global Health Research;<br>University of Toronto, Department of Surgery<br>Malhotra, Ajai; VCU Medical Center, Virginia Commonwealth University,<br>Department of Surgery<br>Thakur, JS; Post Graduate Institute of Medical Education and Research,<br>Department of Community Medicine<br>Sheth, Jay; Smt. N.H.L. Municipal Medical College,<br>Nathens, Avery; University of Toronto, Department of Surgery;<br>Sunnybrook Health Sciences Centre, Sunnybrook Research Institute<br>Dhingra, Neeraj; National AIDS Control Organization,<br>Jha, Prabhat; University of Toronto, Centre for Global Health Research |  |  |  |  |
| <b>Primary Subject<br/>Heading</b> :                                | Epidemiology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Secondary Subject Heading:                                          | Global health, Public health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Keywords:                                                           | road traffic injury, verbal autopsy, India, low- and middle-income countries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Note: The following files were su<br>PDF. You must view these files | ibmitted by the author for peer review, but cannot be converted to (e.g. movies) online.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| STROBE_checklist_BMJ-Open_cross-sectional-studies.doc               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |

SCHOLARONE<sup>™</sup> Manuscripts

# Road traffic injury mortality and its mechanisms in India: nationally representative mortality survey of 1.1 million homes

Marvin Hsiao, Ajai Malhotra, JS Thakur, Jay K Sheth, Avery B Nathens, Neeraj Dhingra, Prabhat Jha, for the Million Death Study Collaborators.

Centre for Global Health Research, Li Ka Shing Knowledge Institute, St Michael's Hospital, University of Toronto, Toronto, Canada (M Hsiao MD, Prof P Jha DPhil); Division of General Surgery, Department of Surgery, University of Toronto, Toronto, Canada (M Hsiao MD, Prof AB Nathens MD); Department of Surgery, VCU Medical Center, Virginia Commonwealth University, Richmond, USA (Prof A Malhotra MD); Department of Community Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India (JS Thakur MD); Smt. N.H.L. Municipal Medical College, Ahmedabad, India (JK Sheth MD); Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada (Prof AB Nathens MD); National AIDS Control Organization, New Delhi, India (N Dhingra MD)

Correspondence to: Marvin Hsiao Centre for Global Health Research, Li Ka Shing Knowledge Institute, St Michael's Hospital, and Division of General Surgery, Department of Surgery, University of Toronto 30 Bond Street, Toronto, Ontario, Canada M5B 1W8 <u>marvin.my.hsiao@gmail.com</u> +1 416-864-6042 (phone) / +1 416-864-5256 (fax)

Keywords: Road traffic injury; verbal autopsy; India; low- and middle-income countries

Word count: Text:3440

#### **ABSTRACT:**

**Objectives**: To quantify and describe the mechanism of road traffic injury (RTI) deaths in India. **Design**: We conducted a nationally representative mortality survey where at least two physicians coded each non-medical field staff's verbal autopsy reports.RTI mechanism data were extracted from the narrative section of these reports.

Setting:1.1 million homes in India.

Participants: Over 122 000 deaths at all ages from 2001-2003.

**Primary and secondary outcome measures**: Age- and sex-specific mortality rates, place and timing of death, modes of transportation, and injuries sustained.

**Results**: The 2299 RTI deaths in the survey correspond to an estimated 183 600 RTI deaths or about 2% of all deaths in 2005 nationally, of which 65% occurred in males between the ages of 15-59 years. The age-adjusted mortality rate was greater in males than in females, in urban than in rural areas, and was notably higher than that estimated from national police records. Pedestrians (68 000), motorcyclists (36 000), and other vulnerable road users (20 000) constituted 68% of RTI deaths (124 000) nationally. Among the study sample, the majority of all RTI deaths occurred at the scene of collision (1005/1733, 58%), within minutes of collision (883/1596, 55%), and/or involved a head injury (691/1124, 62%). Compared to non-pedestrian RTI deaths, about 55 000 (81%) of pedestrian deaths were associated with less education and living in poorer neighbourhoods.

**Conclusions**: In India, RTI cause a substantial number of deaths, particularly among pedestrians and other vulnerable road users. Interventions to prevent collisions and reduce injuries might address over half of the RTI deaths. Improved pre-hospital transport and hospital trauma care might address just over a third of the RTI deaths.

# **ARTICLE SUMMARY**

# Article focus

 To directly estimate the age- and sex-specific mortality rates and describe the place and timing of death, modes of transportation, and injuries sustained for road traffic injury (RTI) deaths in India using a nationally representative mortality survey of 1.1 million homes.

# Key messages

- Road traffic injuries cause a substantial number of avertable deaths, particularly in males of productive working age and among pedestrians and other vulnerable road users.
- Preventative interventions should be emphasized as the majority of all RTI deaths occurred at the scene of collision, within minutes of collision, and/or involved a head injury.
- Properly designed mortality survey with verbal autopsy narratives can provide muchneeded data to assist RTI prevention efforts.

# Strengths and limitations of this study

- This study is the first nationally representative survey of the causes of death in India and overcomes limitations of existing data sources including regional injury surveys, hospital series, and national police reports.
- Limitations of the study include potential misclassification of deaths by physician coders, the use of layperson narratives with a potential for recall bias and inaccuracies, and limited ability to forward project study results given the rapid changes in motorization in India.

# INTRODUCTION

Road traffic injuries (RTI) area large and growing public health burden, especially in low-and middle-income countries (LMIC) where 90% of the world's deaths due to RTI are estimated to occur.[1] There are few high-quality epidemiologic data on RTI to guide the development, implementation, and surveillance of evidence-based policy and programs in LMICs.[2-4]

The number of deaths due to RTI in India is projected to rise with increasing motorization.[1,5]Aside from a few regional injury surveys,[6-11] the current data on the numbers and mechanisms of RTI deaths in India rely on police or hospital records, both of which can substantially underestimate death rates in the poor, rural, and uneducated people who still constitute large proportions of the Indian population.[2-4,12,13]

The World Health Organization (WHO), using indirect modeling methods, estimated about 202 000 RTI deaths in India in 2004.[14,15] No study has validated this estimate with direct measurement nor documented detailed RTI mechanism for India nationally. Here, we estimate the regional, age- and sex-specific mortality rate and risk of RTI death in India using data from the Million Death Study (MDS). We also report the modes of transportation, place and timing of death, and injuries sustained in RTI deaths.

**BMJ Open** 

#### METHODS

Study Design: The MDS is an on-going nationally representative survey designed to determine the causes and risk factors of death in India, organized by the Registrar General of India (RGI). The design, methodology, and preliminary findings of the MDS have been described elsewhere.[16-19]In brief, the MDS used an enhanced version of verbal autopsy (known as the routine, reliable, representative, re-sampled household investigation of mortality with medical evaluation or RHIME) to monitor a nationally representative sample of 1.1 million households in the Sample Registration System (SRS). Within six months of every death occurring in these households from 2001-3, a trained, nonmedical RGI surveyor interviewed a relative or closeacquaintance of the deceased to obtain the symptoms and events around the death using structured questions and a local language narrative guided by a specific symptom list. These records were converted into electronic records and emailed to two of 140 trained physicians who, independently and anonymously, assigned an underlying cause of death (with allocation determined randomly based only on the physician's ability to read the local language), using guidelines for the major causes of death.[20]Records were assigned cause of death in threedigit International Statistical Classification of Diseases and Related Health Problems, 10th revision (ICD-10).[21] Records where coders disagreed on the cause of death underwent anonymous reconciliation. Continuing disagreements were adjudicated by a third senior physician. Five percent of households were randomly resurveyed and the results were consistent within families of ICD-10 codes.[16] Participation in the SRS is on a voluntary basis and oral consent was obtained under the confidentiality and consent procedures of the Registration of Births and Deaths Act, 1969.

**Road Traffic Injury Deaths:** The RTI deaths in this study were of people who died between 2001 and 2003 with a final assigned ICD-10 code within V01-V89. We translated the open-ended narratives into English from 14 local languages, and systematically extracted the modes

#### **BMJ Open**

of transportation, place and timing of death, and injuries sustained from 2157 of the 2299 RTI deaths using a standardized data extraction tool and procedure (the remaining 142 deaths, 6%, had missing or illegible narratives). For these four data elements, there were substantial interrater agreement between two investigators and two research assistants who were trained and independently extracted data from the narratives of a random 10% of RTI deaths (lowest kappa statistic was greater than 0.69 for all pair-wise comparisons between the four data extractors; data not shown). The two research assistants then independently extracted data from all narratives. Adjudication was done by an investigator (MH) for discrepancies in extracted data.

**Analysis:** The age and sex-specific proportion of RTI deaths within the 2001-2003 survey was applied to the 2005 United Nations (UN) estimates of the number of deaths from all causes in India, after weighting for sampling probability.[22] The 2005 UN death estimates were used so as to correct for the slight undercounts reported in the total death rates in the SRS[23.24] and to account for the 12% of enumerated deaths without completed field visits (mostly due to outmigration of the family or from incomplete field records). The proportion of these missed deaths was similarly dispersed across sex, age, and states. Use of 2003 or 2004 UN death totals yielded nearly identical results (data not shown). The 99% confidence intervals (99%CI) for mortality rate were calculated based on the weighted number of study deaths. State- and rural/urban-specific estimates of the number, mortality rate, and lifetime risk of RTI death were calculated by partitioning the UN national death totals according to relative SRS death rates as previously described.[18,25,26]Urban and rural status was defined according to the Census of India. Logistic regression was used to compare the socio-demographic traits of pedestrian and non-pedestrian RTI deaths. Household fuel type was used as a measure of community wealth, based on earlier principal component analyses [18]: high asset neighbourhoods had >50% of households that used gas, electricity, or kerosene; low asset or poor neighbourhoods used

#### **BMJ Open**

primarily coal, firewood, or other. Attributable proportion was calculated for traits of pedestrian deaths compared to non-pedestrian RTI deaths.

The MDS received ethics approval from the review boards of the Post-Graduate Institute of Medical Education and Research in Chandigarh, India; St Michael's Hospital in Toronto, Canada; and the Indian Council of Medical Research's Health Ministry's Screening Committee.

### RESULTS

The 2299 RTI deaths in the 2001-2003 survey correspond to an estimated 183 600 (99%CI 173 800-193 400) RTI deaths in India in 2005. The majority of these RTI deaths occurred in males (152 100 deaths, 82.8%; table 1). The age-standardized RTI mortality rate for males (26.2 per 100 000, 24.6-27.7) was higher than for females (5.7 per 100 000, 5.0-6.4). While the RTI mortality rate increased with age in both genders, the largest number of RTI deaths occurred in males between 15-59 years of age (118 900, 64.8%).

At these death rates and in the theoretical absence of other causes of death, males in India had a 2.1% (2.0-2.3) risk of dying from RTI before age 70, with the highest risks at ages 30-59 years; females had a 0.5% (0.4-0.5) risk of dying from RTI before age 70. Males in Haryana, Punjab, Tamil Nadu, and Uttar Pradesh had significantly higher risks (3.0-4.1%) than the national risk (figure 1). In contrast, males in Bihar, Jharkhand, Andhra Pradesh, Orissa, Gujarat, and West Bengal had significantly lower risks (1.3-1.6%) than the national risk of RTI deaths. Males living in urban areas had slightly higher age-standardized mortality rates and risks of RTI deaths (27.6 per 100 000; 2.4%, 2.1-2.6) compared to males living in rural areas (24.9 per 100 000; 2.0%, 1.8-2.1). By contrast, female RTI mortality rates and risks before age 70 varied much less across states and were similar in rural and urban areas (data not shown).

| Page 9 of 55                          |                                               | Study deaths       | s, 2001-2003 | BMJ Open                           |                                                             | All India, 2                           | 005                                        |                                              |
|---------------------------------------|-----------------------------------------------|--------------------|--------------|------------------------------------|-------------------------------------------------------------|----------------------------------------|--------------------------------------------|----------------------------------------------|
| 1                                     | Number of RTI<br>deaths / all<br>coded deaths | Proportion<br>RTI* | Rural (%**)  | Two coders<br>immediately<br>agree | All deaths / population<br>(millions, 2005 UN<br>estimates) | Estimated RTI<br>deaths§,<br>thousands | RTI death rateΨ<br>per 100 000<br>(99% CI) | Period risk<br>for RTI<br>death <sup>†</sup> |
| <sup>2</sup> Male - age in years      |                                               |                    |              |                                    |                                                             |                                        |                                            |                                              |
| 3 0-4                                 | 44 / 11719                                    | 0.4%               | 37 (76.7)    | 44                                 | 1.2 / 67                                                    | 4.9                                    | 7.4 (6.5-8.4)¶                             | 0.04%                                        |
| 4 5-14                                | 97 / 1926                                     | 5.2%               | 86 (84.1)    | 87                                 | 0.2 / 129                                                   | 8.5                                    | 6.6 (4.9-8.3)                              | 0.1%                                         |
| 5 15-29                               | 605 / 4727                                    | 13.0%              | 462 (68.9)   | 558                                | 0.4 / 163                                                   | 47.1                                   | 28.9 (25.9-31.9)                           | 0.4%                                         |
| $\frac{6}{30-44}$                     | 529 / 6817                                    | 7.7%               | 385 (67.0)   | 477                                | 0.6 / 115                                                   | 43.8                                   | 37.9 (33.7-42.1)                           | 0.6%                                         |
| 7 45-59                               | 356 / 11731                                   | 3.0%               | 249 (60.9)   | 312                                | 0.9 / 73                                                    | 28.0                                   | 38.4 (33.2-43.6)                           | 0.6%                                         |
| 8 60-69                               | 149 / 12120                                   | 1.2%               | 117 (71.8)   | 133                                | 0.9 / 24                                                    | 10.6                                   | 44.0 (34.6-53.4)                           | 0.5%                                         |
| 9 <sub>&gt;70</sub>                   | 123 / 18732                                   | 0.6%               | 106 (81.2)   | 98                                 | 1.3 / 14                                                    | 9.1                                    | 64.5 (49.1-80.0)                           |                                              |
| 10 All ages                           | 1903 / 67772                                  | 2.8%               | 1442 (68.9)  | 1709                               | 5.3 / 585                                                   | 152.1                                  | 26.2                                       | 2.1%†                                        |
| 11 $(\% \text{ or } 99\% \text{ CI})$ |                                               |                    | ~ /          | (89.8%)                            |                                                             | (143.2 - 161.0)                        | (24.6 - 27.7)                              | (2.0-2.3)                                    |
| 12 (10 01 )) 10 01)                   |                                               |                    |              | ( )                                |                                                             | ( )                                    |                                            |                                              |
| <sup>13</sup> Female - age in years   |                                               |                    |              |                                    |                                                             |                                        |                                            |                                              |
| 14 0-4                                | 50 / 11492                                    | 0.4%               | 46 (93.4)    | 45                                 | 1.2 / 61                                                    | 5.0                                    | 8.1 (7.1-9.1)¶                             | 0.04%                                        |
| 15 <sub>5-14</sub>                    | 44 / 1955                                     | 2.3%               | 38 (80.1)    | 43                                 | 0.2 / 118                                                   | 3.8                                    | 3.2 (2.0-4.4)                              | 0.03%                                        |
| 16 <sub>15-29</sub>                   | 72 / 4394                                     | 1.5%               | 53 (60.5)    | 63                                 | 0.3 / 150                                                   | 5.3                                    | 3.5 (2.4-4.6)                              | 0.1%                                         |
| 17 <sub>30-44</sub>                   | 59 / 4055                                     | 1.4%               | 39 (59.0)    | 50                                 | 0.3 / 106                                                   | 4.4                                    | 4.1 (2.7-5.5)                              | 0.1%                                         |
| 18 45-59                              | 70 / 6402                                     | 1.1%               | 55 (70.9)    | 61                                 | 0.5 / 69                                                    | 6.0                                    | 8.6 (5.9-11.3)                             | 0.1%                                         |
| 19 <sub>60-69</sub>                   | 54 / 9016                                     | 0.6%               | 42 (68.6)    | 52                                 | 0.6 / 25                                                    | 3.7                                    | 14.8 (9.8-19.9)                            | 0.2%                                         |
| 20>70                                 | 47 / 17343                                    | 0.3%               | 33 (61.8)    | 35                                 | 1.3 / 16                                                    | 3.5                                    | 21.6 (13.4-29.9)                           |                                              |
| 21 All ages                           | 396 / 54657                                   | 0.7%               | 306 (69.8)   | 349                                | 4.5 / 546                                                   | 31.5                                   | 5.7                                        | 0.5%†                                        |
| 22 (% or 99% CI)                      |                                               |                    |              | (88.1%)                            |                                                             | (27.5-35.6)                            | (5.0-6.4)                                  | (0.4-0.5)                                    |
| 23                                    |                                               |                    |              |                                    |                                                             | · · · ·                                | ( )                                        |                                              |
| 24 Total male and female, <70 years   | 2129 / 86354                                  | 2.4%               | 1609 (68.5)  | 1925                               | 7.2 / 1100                                                  | 171.0                                  | 15.5                                       | 1.3%†                                        |
| 25 (% or 99% CI)                      | -                                             |                    |              | (90.4%)                            |                                                             | (161.5-180.4)                          | (14.7-16.4)                                | (1.3-1.4)                                    |
| 26 Total male and female, all ages    | 2299 / 122429                                 | 1.8%               | 1748 (69.0)  | 2058                               | 9.8 / 1131                                                  | 183.6                                  | 16.2                                       | 1.3%†                                        |
| 27 (% or 99% CI)                      |                                               |                    | · · · ·      | (89.5%)                            |                                                             | (173.8-193.4)                          | (15.4-17.1)                                | (1.3-1.4)                                    |

<sup>30</sup> Table 1: Road traffic injury deaths in the present study and estimated national totals for 2005, by age and gender. \*Proportion of RTI deaths compared to all deaths, weighted by state and residence (rural/urban). \*\*Percentage rural is weighted by state and residence (rural/urban). §Obtained by  $^{32}_{33}$  multiplying the United Nations estimated total deaths in 2005 by the weighted proportions.  $\Psi$ Age standardized to the 2005 United Nations estimated <sup>33</sup><sub>34</sub> Indian population; 99% CI shown are calculated based on weighted number of study deaths, which result in wider CI than those based on physician 35 agreement. †Annual RTI death rate multiplied by the duration of age range, except for the lifetime risk which is calculated between 0-69 years by 36 summation of the age specific period risks. ¶Crude death rate.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

## **BMJ Open**

The deceased mode of transportation was described in the narratives of 2105 (92%) of the RTI deaths. National estimates for the deceased mode of transportation were calculated, as those with unknown and known modes of transportation did not appear to differ with respect to the major socio-demographic traits (Supplementary Table 1). Vulnerable road users are those without a rigid barrier protecting against traumatic forces and include pedestrians, motorcyclists, bicyclists, and three-wheelers. They constituted a majority (68%; n=124 000, 99%CI 115 000-131 000) of RTI deaths, led by pedestrians (37%; n=68 000, 62 000-73 000) and motorcyclists (20%; n=36 000, 31 000-40 000) (figure 2). Drivers and passengers of motorized four-wheelers comprised 16% (n=31 000, 27 000-35 000) of RTI deaths. By contrast, the 2005 police reports, which use a different but compatible classification system to ICD-10, recorded only 33000 vulnerable road user deaths and only9000 pedestrian deaths.[27] The most common types of vehicle to collide into the decedents were heavy transport vehicles and buses (37%; n=68 000, 61 000-74 000), followed by cars and vans (15%; n=28 000, 24 000-32 000). Single-vehicle incidents comprised 9% of deaths (n=17 000, 14 000-20 000). The most frequent combinations, resulting in 23% (n=42 000, 37 000-47 000) of RTI deaths, were collisions of heavy transport vehicles or buses with pedestrians and motorcyclists (data not shown).

The place and timing of death were described in the narratives of 1733 (75%) and 1596 (69%) of the RTI deaths respectively (figure 2; see supplementary table 1 for a summary of missing data from the narratives with respect to deceased characteristics).For these narratives, only the study proportion and not national estimates were made. Most RTI deaths occurred at the scene of collision (58%, 1005/1733) or instantly, defined as within 5 minutes (55%, 883/1596). Only 3% (45/1733) were labeled as potentially avertable with better pre-hospital transport as they occurred on scene but not instantly. Another 35% of deaths occurred en route (7%, 124/1733) or in hospital (28%, 481/1733).

Page 11 of 55

## **BMJ Open**

Injuries sustained by the deceased were reported from1124 narratives (49%). Head injuries were the most commonly reported (62%, 691/1124), of which 76% (524/691) were reported as isolated head injuries (figure 3). A greater percentage of motorcyclists (78%, 188/241) had head injuries reported compared to non-motorcyclists (57%, 457/807). After adjusting for age, sex, rural/urban, neighbourhood asset, and education, bicyclists and motorcyclists were more likely to have head injuries reported compared to non-vulnerable road users (adjusted OR 1.7, 1.2-2.5) (supplementary table 2).

Compared to non-pedestrian RTI deaths, pedestrian deaths occurred to those who had less education (or in the case of children age <15 years, have less educated parents) (adjusted OR 2.9, 99%CI 2.0-4.2), lived in poorer neighbourhoods (1.7, 1.1-2.5),were children or elderly adults (<15 years: 2.9, 1.8-4.5; >59 years: 1.7, 1.2-2.4), were female (1.5, 1.2-2.2), and lived in urban areas (1.5, 1.1-2.2) (table 2). If pedestrian deaths had the same proportion of secondary or higher education as non-pedestrian RTI deaths, there would be 406/825 (49%) fewer pedestrian deaths, corresponding to approximately 33 000 deaths nationally in 2005. The corresponding attributable proportion for living in richer versus poorer neighbourhoods would be 265/825 (32%) or approximately 22 000 deaths nationally. Within the narratives we could code, there were no differences between pedestrians and non-pedestrian RTI deaths in timing of death, place of death, reported injuries, or reported routine use of alcohol or smoking (data not shown).

|                                          | Pedestrian /<br>Non-Pedestrian<br>Total=825/1280 | Adjusted OR^<br>(99% CI) | Attributable<br>Pedestrian Deaths<br>(% of all 825<br>pedestrian deaths) |
|------------------------------------------|--------------------------------------------------|--------------------------|--------------------------------------------------------------------------|
| Education*                               |                                                  |                          |                                                                          |
| Secondary or higher                      | 112/382                                          | ref                      |                                                                          |
| Primary or middle                        | 248/450                                          | 1.8 (1.3-2.6)            | 110 ] 406 (49%)                                                          |
| Below primary                            | 451/423                                          | 2.9 (2.0-4.2)            | 296 -                                                                    |
| Unknown                                  | 14/25                                            | 1.6 (0.6-4.2)            | N/A                                                                      |
| Neighbourhood Asset                      |                                                  |                          |                                                                          |
| High                                     | 137/320                                          | ref                      |                                                                          |
| Low                                      | 643/895                                          | 1.7 (1.1-2.5)            | 265 (32%)                                                                |
| Unknown                                  | 45/65                                            | 1.5 (0.8-2.8)            | N/A                                                                      |
| Age in years                             |                                                  |                          |                                                                          |
| 15-59 (driving ages)                     | 497/1046                                         | ref                      |                                                                          |
| <15 (children)                           | 144/74                                           | 2.9 (1.8-4.5)            | 94 ] 170 (21%                                                            |
| >59 (elderly adults)                     | 184/160                                          | 1.7 (1.2-2.4)            | $\frac{94}{76}$ ] 170 (21%)                                              |
| Sex                                      |                                                  |                          |                                                                          |
| Male                                     | 621/1121                                         | ref                      |                                                                          |
| Female                                   | 204/159                                          | 1.5 (1.1-2.2)            | 68 (8%)                                                                  |
| Location                                 |                                                  |                          | ( )                                                                      |
| Rural                                    | 643/962                                          | ref                      |                                                                          |
| Urban                                    | 182/318                                          | 1.5 (1.1-2.2)            | 61 (7%)                                                                  |
| Occupation                               |                                                  |                          |                                                                          |
| Salaried / Wage Earner / Professional    | 229/517                                          | ref                      |                                                                          |
| Cultivator / Agricultural labour / Other | 162/300                                          | 0.9 (0.6-1.3)            | N/A                                                                      |
| Non-worker / Children <15 years          | 433/463                                          | 1.2 (0.9-1.6)            | N/A                                                                      |
| Unknown                                  | 1/0                                              | N/A                      | N/A                                                                      |
| Routine Alcohol Use**                    |                                                  |                          |                                                                          |
| No                                       | 494/877                                          | ref                      |                                                                          |
| Yes                                      | 145/260                                          | 1.1 (0.7-1.5)            | N/A                                                                      |
| Unknown                                  | 42/69                                            | 1.0 (0.5-1.9)            | N/A                                                                      |

Table 2: Characteristics of pedestrian RTI deaths and attributable proportions. \*Education of deceased adults or, in cases of deceased children <15 years, education of respondent. \*\*Excludes 218 children. ^Odds ratios are adjusted for all other variables in this table except for alcohol use; the odds ratios for alcohol use are adjusted for all other variables in this table.

## DISCUSSION

 RTI is an important cause of death in India, causing 183 600 deaths in 2005, or about 2% of all

deaths.[22] Much of the deceased were men between ages 15-59 years. Males had a four-fold

higher cumulative risk of RTI death compared to females before the age of 70. Among the major

## **BMJ Open**

states, there was approximately 3-fold variation in the age-standardized RTI death rate and cumulative risk for males.

Our estimated number of RTI deaths is more than 50% greater than the 118 265 deaths reported in the official police statistics of the National Crime Records Bureau (NCRB) in 2005.[27] Compared to our estimates, the extent of under-reporting of the crude death rate in major states by NCRB ranged from <1% to about 80% (supplementary table 3). Existing regional population-based injury surveys in India support our findings and also report higher crude RTI death rates than NCRB statistics.[8,11]Under-reporting of RTI deaths in police statistics has been reported in India and other LMIC.[28-30]A study in urban India comparing both hospital- and community-based RTI data to police records identified factors contributing to under-reporting that included the deceased believed to be at fault, collision resulting from hit-and-runs, limited police resources, and the lack of a standard police reporting protocol by hospitals.[28] The factors contributing to police under-reporting, especially in rural India, require further examination. Our estimated number of RTI deaths in 2005 was consistent with the WHO estimate for 2004.[14] However, we observed a slightly higher male proportion (83% MDS vs. 77% WHO, all ages) and a higher proportion of male deaths between 15-59 years (65% MDS vs. 61% WHO).

Almost three-quarters of all RTI deaths in India were of pedestrians and other vulnerable road users. In contrast, a much lower proportion (27%) was reported by the NCRB (figure 2). This difference equated to 59 000 pedestrian and 32 000 other vulnerable road user deaths that were not included in the 2005 NCRB records. Existing RTI studies based on regional surveys and hospital series also reported a high proportion (>60%) of vulnerable road user deaths similar to our findings.[11,12,30-32]Since the majority of vulnerable road users were pedestrians, our findings suggested that RTI deaths in individuals who were less educated, poor, female or live in

## **BMJ Open**

urban areas may have been disproportionally excluded from the NCRB records. While poverty and education are not likely to be in the direct causal pathway of pedestrian deaths, they nonetheless point to other associated risk factors. Indeed, 55 000 pedestrian deaths in 2005 (81%) was associated with lower education or living in poorer neighbourhoods compared to nonpedestrian RTI deaths. While the less educated and the poor likely travelled more often by foot, they might also be exposed to undetermined environmental (neighbourhoods with unsafe roads), biological (poor vision or decreased mobility due to poor health), and behavioral (alcohol or other substance use) risk factors for pedestrian death.[12, 33, 34]Further studies are needed to better understand pedestrian deaths in LMIC.

Over half of RTI deaths occurred instantly at the scene of collision and/or had head injury reported. These findings, together with existing RTI hospital series and regional surveys in India, make a strong argument that investments in primary and secondary prevention could potentially avert the greatest proportion of RTI deaths. To address the high proportion of instant deaths and head injuries among RTI deaths in India, specific interventions that are effective and based on studies in LMIC should be emphasized; these may include speed bumps, motorcycle helmets, and increasing fines and license suspensions for rule infractions.[33]In contrast, improving pre-hospital transport and hospital trauma care, could only potentially affect the 38%who died on scene with delayed hospital transport (3%), en route to hospital (7%), or in hospital (28%).

Our study is the first nationally representative survey of the causes of death in India. The simple descriptive statistics provide clear evidence on the large and avertable burden from RTI, particularly among productive age adults and pedestrians. To the best of our knowledge, only one recent study in Vietnam has used similar methods to analyze RTI deaths and policy implications on a national scale.[35]

Page 15 of 55

## **BMJ Open**

Our study faced certain limitations. First, we might have misclassified certain causes of death including suicide as RTI deaths. However, the extent of misclassification should be minimal since the RHIME verbal autopsy method was shown to be robust in discerning between types of injury deaths[36]and since the immediate two-physician agreement was high for RTI deaths(89.5%, table 1). Furthermore, suicides cause about 200 000 deaths in India annually but few are due to RTI.[19] Second, since the modes of transportation, place and timing of death, and injuries sustained were extracted from layperson open-ended narratives, the data accuracy may be in question. For example with the deceased mode of transportation, the extent of misclassification (by our study) or misreporting (by NCRB) that contributed to the differences between the two sources is uncertain. With reported injuries, our findings from these narratives most likely undercounted less visible injuries (chest, abdomen, and spine) compared to highly visible injuries such as bleeding and deformity for head and extremity injuries. Nevertheless, our findings are consistent with available Indian regional surveys and hospital series on the mode of transportation[11,12,30-32,37] place and timing of death,[1,37-41] and injuries sustained.[12,37,42,43]Third, since the narrative was not designed specifically to capture RTI death characteristics, over 25% of deaths had missing data for mode of transportation, place of death, timing of death, or reported injuries(supplementary table 1). Thus, our findings for these elements extracted from the narratives may be less representative of the decedents who lived in rural or poor areas. Finally, reliable forward projection of the number of RTI deaths beyond 2005 was not possible since the increase in the NCRB reported number of RTI deaths of 140% from 2005 to 2011 appeared to outpace the rate of population growth. [44] As the proportion of vulnerable road user deaths remained stable during this period in the NCRB reports, we postulated that this increase represented an actual increase in RTI death totals rather than more accurate reporting. Furthermore, given the rapid economic expansion and concurrent changes in motorization including the types of vehicle sharing the road and road infrastructure, [45,46]our results on deceased mode of transportation, place and timing of death, and injuries sustained

may not reflect the current Indian scenario. An analysis of the trend from 2001-2014 is planned pending ongoing data collection in the MDS.

In India, RTI is a significant cause of preventable death, particularly in males of productive working age and among pedestrians, bicyclists, and motorcyclist. We have shown that properly designed simple verbal autopsy narratives can document the much needed surveillance data on the numbers, rates, risks, and basic RTI mechanism such as modes of transportation, timing of death, place of death, and injuries sustained. Our findings suggested that investment in primary and secondary prevention could address a large proportion of avoidable RTI deaths.

## ACKNOWLEDGEMENTS

We thank the Office of the RGI for the ongoing productive collaboration on the MDS, C Ramasundarahettige for technical assistance, M Puri and S Levitt for data extraction. The opinions expressed in this article are those of the authors and do not necessarily represent those of the Government of India or the RGI.

## **COMPETING INTERESTS**

We declare that we have no competing interests.

## FUNDING

This study is supported by grants from the John E Fogarty International Center of the National Institutes of Health (R01-TW05991–01 and TW07939-01), the Bill & Melinda Gates Foundation through the Disease Control Priorities Network Project, and the University of Toronto (to PJ); the Canada Research Chair Programme (to PJ and ABN); and the Canadian Institutes of Health Research Doctoral Award (to MH). The funding sources had no role in the study design; data collection, analysis, interpretation; writing of the manuscript; or decision to submit for publication.

The senior author had full access to all the data in the study and had final responsibility for the decision to submit this study for publication.

## **AUTHOR'S CONTRIBUTION**

PJ and the MDS Collaborators (appendix) designed, planned, the executed the MDS in close collaboration with the Office of the Registrar General of India (RGI). MH and PJ performed the data analysis. All authors contributed to data interpretation, revisions of the manuscript, and provided final approval. PJ is the guarantor for this report.

## DATA SHARING STATEMENT

Data used in this study are the property of the Registrar General of India and the overall mortality results have been published in 2009.[47] This specific analyses is produced under an agreement with CGHR.

## REFERENCES

- Peden M, Scurfield R, Sleet D, *et al.* World report on road traffic injury prevention: World Health Organization 2004;1–244.
- 2 Chisholm D, Naci H, Hyder AA, *et al.* Cost effectiveness of strategies to combat road traffic injuries in sub-Saharan Africa and South East Asia: mathematical modelling study. *BMJ* 2012;**344**:e612.
- 3 The PLoS Medicine Editors. Preventing Road Deaths—Time for Data. *PLoS Med* 2010;**7**:e1000257.
- Barffour M, Gupta S, Gururaj G, *et al.* Evidence-based road safety practice in India: assessment of the adequacy of publicly available data in meeting requirements for comprehensive road safety data systems. *Traffic Inj Prev* 2012;**13 Suppl 1**:17–23.
- 5 Kopits E, Cropper ML. *Traffic fatalities and economic growth*. World Bank Development Research Group Environment and Infrastructure, 2003.
- 6 Sathiyasekaran BW. Population-based cohort study of injuries. *Injury* 1996;27:695–8.
- 7 Varghese M, Mohan D. Transportation injuries in rural Haryana, North India. *In: Proceedings of the international conference on traffic safety* 2003;326–9.
- 8 WHO. Injury Prevention and Control: An epidemiological study of injuries in the area of Municipal Corporation of Delhi. *Regional Office for South-East Asia* 2003;1–18.
- 9 Gururaj G, Suryanarayana SP. Burden and impact of injuries: Results of population-based survey. *Proceedings of the 7th world conference on injury prevention* 2004;275–6.
- 10 Dandona R. Patterns of road traffic injuries in a vulnerable population in Hyderabad, India.

Injury Prevention 2006;**12**:183–8.

- 11 Dandona R, Kumar GA, Ameer MA, *et al.* Incidence and burden of road traffic injuries in urban India. *Inj Prev* 2008;**14**:354–9.
- 12 Gururaj G. Road traffic deaths, injuries and disabilities in India: current scenario. *Natl Med J India* 2008;**21**:14–20.
- 13 Garg N, Hyder A. Road traffic injuries in India: A review of the literature. *Scand J of Public Health* 2006;**34**:100–9.
- 14 World Health Organization. *The Global Burden of Disease: 2004 Update*. World Health Organization 2008.
- 15 Mathers CD, Bernard C, Moesgaard Iburg K, *et al.* Global Burden of Disease in 2002: data sources, methods, and results. Global Programme on Evidence for Health Policy Discussion Paper No. 54. World Health Organization 2003.
- Jha P, Gajalakshmi V, Gupta PC, *et al.* Prospective Study of One Million Deaths in India: Rationale, Design, and Validation Results. *PLoS Med* 2006;**3**:e18.
- 17 Million Death Study Collaborators,. Causes of neonatal and child mortality in India: a nationally representative mortality survey. *Lancet* 2010;**376**:1853–60.
- 18 Dikshit R, Gupta PC, Ramasundarahettige C, *et al.* Cancer mortality in India: a nationally representative survey. *Lancet* 2012;**379**:1807–16.
- 19 Patel V, Ramasundarahettige C, Vijayakumar L, *et al.* Suicide mortality in India: a nationally representative survey. *Lancet* 2012;**379**:2343–51.
- 20 Sinha DN, Dikshit R, Kumar R, et al. Prospective Study of Million Deaths in India: Technical

document no VIII: Health care professional's manual for assigning causes of death based on RHIME household reports. RGI-CGHR, University of Toronto. 2011.http://www.cghr.org/mds (accessed 1 Aug2012).

- 21 WHO. International Statistical Classification of Diseases and Related Health Problems, ICD-10: Three Volume Set. World Health Organization 2010.
- 22 United Nations Populations Division. World population prospects (2008 revision). 2009.http://www.un.org/esa/population/publications/wpp2008/ (accessed 2 July 2011).
- 23 Mari Bhat PN. Completeness of India's sample registration system: an assessment using the general growth balance method. *Popul Stud* 2002;**56**:119–34.
- 24 Sivanandan V. An assessment of the completeness of death registration in India over the periods 1975-1978 and 1996-1999 under the generalized population model: an analysis based on SRS data. Mumbai: International Institute for Population Sciences2004.
- 25 Jha P, Kumar R, Khera A, *et al.* HIV mortality and infection in India: estimates from nationally representative mortality survey of 1.1 million homes. *BMJ* 2010;**340**:c621.
- 26 Dhingra N, Jha P, Sharma VP, *et al.* Adult and child malaria mortality in India: a nationally representative mortality survey. *Lancet* 2010;**376**:1768–74.
- 27 National Crime Records Bureau. Accidental Deaths and Suicides in India, 2005. Ministry of Home Affairs, Government of India2005.
- 28 Dandona R, Kumar GA, Ameer MA, *et al.* Under-reporting of road traffic injuries to the police: results from two data sources in urban India. *Inj Prev* 2008;**14**:360–5.
- 29 Alcorn T. Uncertainty clouds China's road-traffic fatality data. *Lancet* 2011;378:305–6.

## **BMJ Open**

| 2<br>3               | ~~  |                                                                                                 |
|----------------------|-----|-------------------------------------------------------------------------------------------------|
| 4                    | 30  | Naci H, Chisholm D, Baker TD. Distribution of road traffic deaths by road user group: a         |
| 5<br>6               |     | global comparison. <i>Inj Prev</i> 2009; <b>15</b> :55–9.                                       |
| 7<br>8               | 0.4 |                                                                                                 |
| 9<br>10              | 31  | Mohan D. The road ahead: Traffic injuries and fatalities in India. Transportation research      |
| 11<br>12             |     | and injury prevention programme, Indian Institute of Technology, Delhi2004.                     |
| 13<br>14<br>15       | 32  | Mohan D. Traffic safety and health in Indian cities. Journal of Transport and Infrastructure    |
| 16<br>17<br>18       |     | 2002; <b>9</b> :79–94.                                                                          |
| 19<br>20             | 33  | Norton R, Hyder A, Bishai D, et al. Unintentional Injuries. In: Disease Control Priorities in   |
| 21<br>22<br>23       |     | Developing Countries. Oxford University Press, USA2006.                                         |
| 24<br>25             | 34  | Grimm M, Treibich C. Determinants of road traffic crash fatalities across Indian states.        |
| 26<br>27<br>28<br>29 |     | Health Econ Published Online First: 30 August 2012. doi:10.1002/hec.2870                        |
| 30<br>31             | 35  | Ngo AD, Rao C, Phuong Hoa N, et al. Road traffic related mortality in Vietnam: Evidence         |
| 32<br>33             |     | for policy from a national sample mortality surveillance system. BMC Public Health              |
| 34<br>35<br>36       |     | 2012; <b>12</b> :561.                                                                           |
| 37<br>38             | 36  | Hsiao M, Morris SK, Bassani DG, et al. Factors Associated with Physician Agreement on           |
| 39<br>40<br>41       |     | Verbal Autopsy of over 11500 Injury Deaths in India. PLoS ONE 2012;7:e30336.                    |
| 42<br>43             | 37  | Singh H, Dhattarwal SK. Pattern and distribution of injuries in fatal road traffic accidents in |
| 44<br>45<br>46<br>47 |     | Rohtak (Haryana). Journal of Indian Academy of Forensic Medicine 2004;26:20–3.                  |
| 48<br>49             | 38  | Dandona R, Mishra A. Deaths due to road traffic crashed in Hyderabad city in India: need        |
| 50<br>51<br>52       |     | for strengthening surveillance. Natl Med J India 2004;17:74–9.                                  |
| 53<br>54<br>55       | 39  | Sahdev P, Lacqua MJ, Singh B, et al. Road traffic fatalities in Delhi: causes, injury patterns, |
| 56<br>57<br>58       |     | and incidence of preventable deaths. Accident Analysis & Prevention 1994;26:377-84.             |
| 59<br>60             |     |                                                                                                 |

- 40 Bhattacharjee J, Bora D, Sharma RS, *et al.* Unnatural deaths in Delhi during 1991. *Med Sci Law* 1996;**36**:194–8.
- 41 Jain A, Menezes RG, Kanchan T, *et al.* Two wheeler accidents on Indian roads--a study from Mangalore, India. *J Forensic Leg Med* 2009;**16**:130–3.
- 42 Gururaj G, Shastry KVR, Chandramouli AB, *et al.Traumatic brain injury*. Bangalore: National Institute of Mental Health and Neuro Sciences, 2005.
- 43 Colohan AR, Alves WM, Gross CR, *et al.* Head injury mortality in two centers with different emergency medical services and intensive care. *J Neurosurg Pediatrics* 1989;**71**:202–7.
- 44 National Crime Records Bureau. *Accidental Deaths and Suicides in India, 2011*. Ministry of Home Affairs, Government of India2011.
- 45 Transport Research Wing, Ministry of Road Transport & Highways. Basic Road Statistics of India. Government of India 2012.
- 46 Transport Research Wing, Ministry of Road Transport & Highways. Road Transport Year Book (2009-10 & 2010-11). Government of India 2012.
- 47 Registrar General of India and Centre for Global Health Research. *Causes of Death in India, 2001-2003: Sample Registration System.* Government of India 2009.

**BMJ Open** 

## **FIGURE LEGENDS**

# Figure 1: Road traffic injury deaths, age-standardized death rate, and cumulative risk (age 0-69 years) across states and regions of India, by gender.

Death rates are standardized to the 2005 United Nations estimated Indian population. Symbol size is proportional to sample size. Northeast states include Sikkim, Arunachal Pradesh, Nagaland, Manipur, Mizoram, Tripura, and Meghalaya. Total estimates include the 80 male and 19 female deaths from Pondicherry, Chandigarh, Uttarakhand, Dadra & Nagar Haveli, A&N Islands, Daman & Diu, Lakshadweep, and Goa. CHT=Chhatisgarh.

## Figure 2: Deceased mode of transportation, place of death, and timing of death.

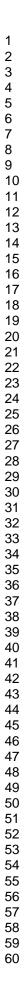
(A) Deceased mode of transportation in present study compared to National Crime Records Bureau 2005 Report. Shaded line represents vulnerable road users (defined as road users without a rigid barrier protecting against traumatic forces, i.e. pedestrian, bicyclist, motorcyclist, and three wheelers). Percentages from present study are weighted by state and rural/urban residence. T=estimated/reported number of deaths in 2005 (in thousands). (B) Place of death and (C) timing of death based on verbal autopsy narratives. Shaded lines represent deaths that are reported as occurring at the scene of collision or occurring instantly (defined as within 5 minutes).

# Figure 3: Reported injuries from 1124 verbal autopsy narratives (49% of all 2299 RTI deaths).

Percentages refer to those in each row with given injury (columns). \*Values in bold denote two by two chi square tests with p<0.05 (excluding unknowns). Abdominal and spinal injuries were also reported but not shown due to small numbers (61 and 25 cases, respectively).

## LIST OF ACRONYMS

| erval |
|-------|
| erva  |


- ICD-10 International Statistical Classification of Diseases and Related Health Problems, 10<sup>th</sup> Revision
- LMIC Low- and middle-income countries
- MDS Million Death Study
- NCRB National Crime Records Bureau
- RGI Registrar General of India
- RTI Road traffic injury
- SRS Sample registration system
- UN United Nations
- WHO World Health Organization

| State or Region      | Study RTI<br>deaths<br>Male / Female | Estimated RTI<br>Deaths 2005<br>('000)<br>Male / Female | Age standardized<br>RTI Death Rate<br>(per 100 000)<br>Male / Female | r             | - Cumulative Risk (age 0-69 years) for Males (99% Cl) |
|----------------------|--------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------|---------------|-------------------------------------------------------|
| Haryana              | 137 / 20                             | 5.4 / 1.0                                               | 43.2 / 8.7                                                           | 4.1 (2.9-5.2) | ∎→                                                    |
| Punjab               | 104 / 17                             | 6.3 / 1.2                                               | 42.8 / 7.7                                                           | 4.0 (2.8-5.1) | ∎→                                                    |
| Tamil Nadu           | 133 / 29                             | 12.4 / 2.4                                              | 32.6 / 7.0                                                           | 3.0 (2.3-3.6) | <b>_</b>                                              |
| Uttar Pradesh        | 226 / 52                             | 27.8 / 6.4                                              | 31.0 / 7.1                                                           | 2.5 (2.1-2.8) | ·                                                     |
| Jammu & Kashmir      | 56 / 13                              | 1.9 / 0.5                                               | 31.6 / 9.4                                                           | 2.4 (1.1-3.7) |                                                       |
| Kerala               | 109 / 16                             | 4.4 / 0.7                                               | 22.6 / 3.4                                                           | 2.2 (1.5-2.9) |                                                       |
| Himachal Pradesh     | 32 / 6                               | 0.9 / 0.2                                               | 25.5 / 4.2                                                           | 2.2 (0.5-3.9) |                                                       |
| Maharashtra          | 106 / 20                             | 15.6 / 2.6                                              | 26.9 / 4.5                                                           | 2.1 (1.7-2.5) | ·                                                     |
| Rajasthan            | 107 / 17                             | 7.7 / 1.8                                               | 25.5 / 5.0                                                           | 2.0 (1.5-2.5) | <b>_</b>                                              |
| Madhya Pradesh + CHT | 129 / 24                             | 13.6 / 2.4                                              | 27.9 / 6.2                                                           | 2.0 (1.6-2.4) | — <b>—</b> —                                          |
| Northeast States     | 81 / 32                              | 2.8 / 0.9                                               | 22.0 / 12.3                                                          | 1.9 (0.4-3.5) | <b>_</b>                                              |
| Karnataka            | 92 / 20                              | 6.9 / 1.6                                               | 21.8 / 5.4                                                           | 1.8 (1.3-2.4) | <b></b>                                               |
| Delhi                | 32 / 5                               | 2.0/0.3                                                 | 22.9/3.1                                                             | 1.7 (0.8-2.6) | <b>_</b>                                              |
| Assam                | 54 / 8                               | 2.9 / 0.5                                               | 19.1 / 3.6                                                           | 1.6 (0.9-2.3) | <b>_</b>                                              |
| Bihar + Jharkhand    | 118 / 23                             | 12.1 / 1.9                                              | 20.7 / 3.7                                                           | 1.6 (1.3-2.0) | <b>B</b>                                              |
| Andhra Pradesh       | 82 / 12                              | 9.6 / 1.6                                               | 21.5 / 3.8                                                           | 1.6 (1.2-2.0) | <b>_</b>                                              |
| Orissa               | 71 / 19                              | 4.0 / 1.1                                               | 19.6 / 5.4                                                           | 1.5 (0.9-2.1) | <b>_</b>                                              |
| Gujarat              | 62 / 20                              | 5.1/2.0                                                 | 16.9 / 7.2                                                           | 1.4 (1.0-1.9) | <b>_</b>                                              |
| West Bengal          | 92 / 24                              | 7.5 / 2.1                                               | 16.0 / 4.9                                                           | 1.3 (1.0-1.7) | _ <b>_</b>                                            |
| Rural                | 1442 / 306                           | 103.0 / 22.5                                            | 24.9 / 5.4                                                           | 2.0 (1.8-2.1) |                                                       |
| Urban                | 461 / 90                             | 49.1 / 9.1                                              | 27.6 / 6.1                                                           | 2.4 (2.1-2.6) | -                                                     |
| Total Male           | 1903                                 | 152.1                                                   | 27.1                                                                 | 2.1 (2.0-2.3) | $\diamond$                                            |
| Total Female         | 396                                  | 31.5                                                    | 5.8                                                                  | 0.5 (0.4-0.5) | •                                                     |
|                      |                                      |                                                         |                                                                      | 0             |                                                       |

Figure 1: Road traffic injury deaths, age-standardized death rate, and cumulative risk (age 0-69 years) across states and regions of India, by gender.

Death rates are standardized to the 2005 United Nations estimated Indian population. Symbol size is proportional to sample size. Northeast states include Sikkim, Arunachal Pradesh, Nagaland, Manipur, Mizoram, Tripura, and Meghalaya. Total estimates include the 80 male and 19 female deaths from Pondicherry, Chandigarh, Uttarakhand, Dadra & Nagar Haveli, A&N Islands, Daman & Diu, Lakshadweep, and Goa. CHT=Chhatisgarh.

160x111mm (300 x 300 DPI)



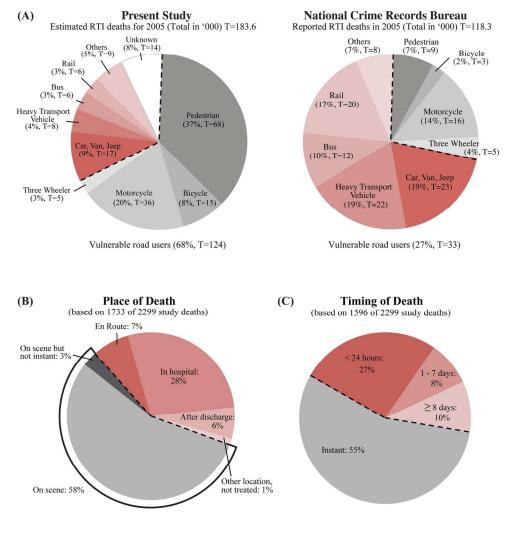



Figure 2: Deceased mode of transportation, place of death, and timing of death.
(A) Deceased mode of transportation in present study compared to National Crime Records Bureau 2005 Report. Shaded line represents vulnerable road users (defined as road users without a rigid barrier protecting against traumatic forces, i.e. pedestrian, bicyclist, motorcyclist, and three wheelers). Percentages from present study are weighted by state and rural/urban residence. T=estimated/reported number of deaths in 2005 (in thousands). (B) Place of death and (C) timing of death based on verbal autopsy narratives. Shaded lines represent deaths that are reported as occurring at the scene of collision or occurring instantly (defined as within 5 minutes).

178x182mm (300 x 300 DPI)

| Percent of 1124 RTI deaths with<br>injuries reported | 60% -<br>50% -<br>40% - |           | Part of mu<br>Isolated in | ltiple injuri<br>jury |
|------------------------------------------------------|-------------------------|-----------|---------------------------|-----------------------|
| 124 F<br>ies re                                      | 30% -                   |           |                           |                       |
| ent of 1<br>injur                                    | 20% -                   |           |                           |                       |
| Perc                                                 | 10%                     |           |                           |                       |
|                                                      | 0%                      | Head      | Extremity                 | Chest                 |
|                                                      |                         | n (%)     | n (%)                     | n (%)                 |
| RTI deaths with reported injuries (N=1124)           |                         | 691 (62)  | 235 (21)                  | 120 (11)              |
| Sex                                                  |                         | . ,       |                           |                       |
| Male (N=931)                                         |                         | 584 (63)  | 194 (21)                  | 105 (11)              |
| Female (N=193)                                       |                         | 107 (55)  | 41 (21)                   | 15 (8)                |
| Place of Death                                       |                         |           |                           |                       |
| Pre-hospital (N=492)                                 |                         | 322 (65)  | 56 (11)*                  | 44 (9)                |
| Hospital or other (N=457)                            |                         | 291 (64)  | 142 (31)*                 | 58 (13)               |
| Unknown (N=175)                                      |                         | 78 (45)   | 37 (21)                   | 18 (10)               |
| Timing of Death                                      |                         |           |                           |                       |
| Instant (N=347)                                      |                         | 216 (62)  | 28 (8)*                   | 29 (8)                |
| Later (N=521)                                        |                         | 344 (66)  | 145 (28)*                 | 62 (12)               |
| Unknown (N=256)                                      |                         | 131 (51)  | 62 (24)                   | 29 (11)               |
| Mode of Transportation                               |                         |           |                           |                       |
| Motorcycle (N=241)                                   |                         | 188 (78)* | 51 (21)                   | 18 (7)                |
| Non-motorcycle (N=807)                               |                         | 457 (57)* | 160 (20)                  | 95 (12)               |
| Unknown (N=76)                                       |                         | 46 (61)   | 24 (32)                   | 7 (9)                 |

Figure 3: Reported injuries from 1124 verbal autopsy narratives (49% of all 2299 RTI deaths). Percentages refer to those in each row with given injury (columns). \*Values in bold denote two by two chi square tests with p<0.05 (excluding unknowns). Abdominal and spinal injuries were also reported but not shown due to small numbers (61 and 25 cases, respectively). 141x191mm (300 x 300 DPI)

|                                             | Na        | rrative section |       | Tin        | ning of Death |       | BMJ Q      | Report Death |       | Deceased  | Mode of Transp | ortation | In          | jury Reporteag | e 28 of 55 |
|---------------------------------------------|-----------|-----------------|-------|------------|---------------|-------|------------|--------------|-------|-----------|----------------|----------|-------------|----------------|------------|
|                                             | Missing   | Not missing     |       | Missing    | Not missing   |       | Missing    | Not missing  |       | Missing   | Not missing    |          | Missing     | Not missing    |            |
|                                             | n (%)     | n (%)           | р     | n (%)      | n (%)         | р     | n (%)      | n (%)        | р     | n (%)     | n (%)          | р        | n (%)       | n (%)          | р          |
| 1 all RTI (n=2299)                          | 142 (6.2) | 2157 (93.8)     |       | 703 (30.6) | 1596 (69.4)   |       | 566 (24.6) | 1733 (75.4)  |       | 194 (8.4) | 2105 (91.6)    |          | 1175 (51.1) | 1124 (48.9)    |            |
| age                                         |           |                 |       |            |               |       |            |              |       |           |                |          |             |                |            |
| 2 $\overset{\text{uge}}{<20 \text{ years}}$ | 12 (2.9)  | 402 (97.1)      | 0.002 | 106 (25.6) | 308 (74.4)    | 0.015 | 90 (21.7)  | 324 (78.0)   | 0.133 | 37 (8.9)  | 377 (91.1)     | 0.687    | 199 (48.1)  | 215 (51.9)     | 0.172      |
| $3 \geq 20$ years                           | 130 (6.9) | 1755 (93.1)     |       | 597 (31.7) | 1288 (68.3)   |       | 476 (25.3) | 1409 (75.0)  |       | 157 (8.3) | 1728 (91.7)    |          | 976 (51.8)  | 909 (48.2)     |            |
| 4 sex                                       |           |                 |       |            |               |       |            |              |       |           |                |          |             |                |            |
| 5 <sup>male</sup>                           | 118 (6.2) | 1785 (93.8)     | 0.916 | 582 (30.6) | 1321 (69.4)   | 0.991 | 461 (24.2) | 1442 (75.8)  | 0.336 | 161 (8.5) | 1742 (91.5)    | 0.934    | 972 (51.1)  | 931 (48.9)     | 0.946      |
| 5 female                                    | 24 (6.1)  | 372 (93.9)      |       | 121 (30.6) | 275 (69.4)    |       | 105 (26.5) | 291 (73.5)   |       | 33 (8.3)  | 363 (91.7)     |          | 203 (51.3)  | 193 (48.7)     |            |
| 6 location                                  |           |                 |       |            |               |       |            |              |       |           |                |          |             |                |            |
| 7 rural                                     | 125 (7.2) | 1623 (92.9)     | 0.001 | 559 (32.0) | 1189 (68.0)   | 0.009 | 456 (26.1) | 1292 (73.9)  | 0.004 | 143 (8.2) | 1605 (91.8)    | 0.429    | 896 (51.3)  | 852 (48.7)     | 0.799      |
| <b>8</b> urban                              | 17 (3.1)  | 534 (96.9)      |       | 144 (26.1) | 407 (73.9)    |       | 110 (20.0) | 441 (80.0)   |       | 51 (9.3)  | 500 (90.7)     |          | 279 (50.6)  | 272 (49.4)     |            |
| o neighbourhood asset                       |           |                 |       |            |               |       |            |              |       |           |                |          |             |                |            |
| 9 low                                       | 126 (7.5) | 1548 (92.5)     | 0.001 | 552 (33.0) | 1122 (67.0)   | 0.000 | 451 (26.9) | 1223 (73.1)  | 0.001 | 136 (8.1) | 1538 (91.9)    | 0.468    | 883 (52.8)  | 791 (47.3)     | 0.057      |
| 10 <sub>high</sub>                          | 16 (3.2)  | 487 (96.8)      |       | 121 (24.1) | 382 (75.9)    |       | 97 (19.3)  | 406 (80.7)   |       | 46 (9.2)  | 457 (90.9)     |          | 241 (47.9)  | 262 (52.1)     |            |
| 11 missing                                  | 0 (0.0)   | 122 (100.0)     |       | 30 (24.6)  | 92 (75.4)     |       | 18 (14.8)  | 104 (85.3)   |       | 12 (9.8)  | 110 (90.2)     |          | 51 (41.8)   | 71 (58.2)      |            |
| 12 education                                |           |                 |       |            |               |       |            |              |       |           |                |          |             |                |            |
| below primary                               | 38 (4.0)  | 916 (96)        | 0.000 | 289 (30.3) | 665 (69.7)    | 0.894 | 230 (24.1) | 724 (75.9)   | 0.719 | 80 (8.4)  | 874 (91.6)     | 0.757    | 468 (49.1)  | 486 (50.9)     | 0.094      |
| primary and above                           | 100 (7.7) | 1196 (92.3)     |       | 396 (30.6) | 900 (69.4)    |       | 321 (24.8) | 975 (75.2)   |       | 104 (8.0) | 1192 (92.0)    |          | 682 (52.6)  | 614 (47.4)     |            |
| 14 missing                                  | 4 (8.2)   | 45 (91.8)       |       | 18 (36.7)  | 31 (63.3)     |       | 15 (30.6)  | 34 (69.4)    |       | 10 (20.4) | 39 (79.6)      |          | 25 (51.0)   | 24 (49.0)      |            |
| 15 occupation                               |           |                 |       |            |               |       |            |              |       |           |                |          |             |                |            |
| 16 <sup>non-worker</sup>                    | 60 (8.1)  | 679 (91.9)      | 0.006 | 243 (32.9) | 496 (67.1)    | 0.094 | 205 (27.7) | 534 (72.3)   | 0.016 | 60 (8.1)  | 679 (91.9)     | 0.701    | 381 (51.6)  | 358 (48.4)     | 0.757      |
| 17 worker                                   | 81 (5.2)  | 1478 (94.8)     |       | 459 (29.4) | 1100 (70.6)   |       | 360 (23.1) | 1199 (76.9)  |       | 134 (8.6) | 1425 (91.4)    |          | 793 (50.9)  | 766 (49.1)     |            |
| 17 missing                                  | 1 (100.0) | 0 (0.0)         |       | 1 (100.0)  | 0 (0.0)       |       | 1 (100.0)  | 0 (0.0)      |       | 0 (0.0)   | 1 (100.0)      |          | 1 (100.0)   | 0 (0.0)        |            |
| 18                                          |           |                 |       |            |               |       |            |              |       |           |                |          |             |                |            |

<sup>19</sup> Supplementary Table 1: Summary of missing data. There are no missing values for age, sex, and location in the study population. The chi square test was used to determine the p values and excluded deaths with missing neighbourhood asset, education, or occupation. asset, euuc.... 

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| Page 29 of 55                          | Timing o   | f Death was | s Instant | Place of D | eath was P | rehospital | Head Inj   | ury was R | eported  |
|----------------------------------------|------------|-------------|-----------|------------|------------|------------|------------|-----------|----------|
|                                        |            | Adjusted    |           |            | Adjusted   |            |            | Adjusted  |          |
| <b>Deceased Mode of Transportation</b> | n (%)      | ÔR          | 99% CI    | n (%)      | ŌR         | 99% CI     | n (%)      | ÔR        | 99% CI   |
| non-vulnerable road users              | 170 (58.6) | ref         |           | 223 (69.5) | ref        |            | 125 (31.5) | ref       |          |
| <sup>2</sup> vulnerable road users:    |            |             |           |            |            |            |            |           |          |
| <sup>3</sup> pedestrian                | 338 (58.5) | 1.1         | 0.7-1.7   | 425 (69.1) | 1.1        | 0.7-1.7    | 192 (24.9) | 0.8       | 0.5-1.1  |
| <sup>4</sup> bicyclist & motorcyclist  | 245 (52.0) | 0.8         | 0.5-1.1   | 306 (59.2) | 0.6        | 0.4-1.0    | 256 (43.5) | 1.7*      | 1.2-2.5* |
| 5 three wheelers & animal riders       | 93 (56.4)  | 0.9         | 0.5-1.6   | 117 (67.6) | 0.9        | 0.5-1.7    | 72 (33.0)  | 1.2       | 0.7-1.9  |
| <sup>6</sup> unknown                   | 37 (40.2)  | 0.5         | 0.3-1.0   | 55 (51.4)  | 0.5        | 0.3-1.0    | 46 (25.1)  | 0.8       | 0.5-1.4  |
| /                                      |            |             |           | · · ·      |            |            | • • • •    |           |          |

Supplementary Table 2: Association between deceased mode of transportation and the timing of death, place of death, and head injuries reported. Odds ratios 10 are adjusted for deceased's age, sex, rural/urban, neighbourhood asset, and education. \*Value in bold denote statistically significant difference between comparison 11 groups.

|                      | 2005 UN             | Number |       |          | <b>PPE</b> Death | % Under-reporting o |
|----------------------|---------------------|--------|-------|----------|------------------|---------------------|
|                      | population          |        |       |          | n 2005           | Crude RTI Death     |
|                      | estimates (in '000) |        | NGDD  | <u>u</u> | 0,000)*          | Rate                |
|                      |                     | MDS    | NCRB  | MDS      | NCRB             |                     |
| Northeast States     | 13211               | 3610   | 724   | 27.3     | 5.5              | 79.9                |
| Punjab               | 26455               | 7380   | 1622  | 27.9     | 6.1              | 78.0                |
| Bihar + Jharkhand    | 122181              | 13172  | 3430  | 10.8     | 2.8              | 74.0                |
| Uttar Pradesh        | 186591              | 33287  | 9860  | 17.8     | 5.3              | 70.4                |
| Jammu & Kashmir      | 11120               | 2335   | 857   | 21.0     | 7.7              | 63.3                |
| Other States         | 14121               | 4037   | 1589  | 28.6     | 11.3             | 60.6                |
| Assam                | 29150               | 3277   | 1456  | 11.2     | 5.0              | 55.6                |
| West Bengal          | 86499               | 9363   | 4364  | 10.8     | 5.0              | 53.4                |
| Madhya Pradesh + CDH | 90568               | 15726  | 7686  | 17.4     | 8.5              | 51.1                |
| Haryana              | 23688               | 6128   | 3282  | 25.9     | 13.9             | 46.4                |
| Orissa               | 39485               | 5083   | 2895  | 12.9     | 7.3              | 43.0                |
| Kerala               | 33785               | 5051   | 3161  | 15.0     | 9.4              | 37.4                |
| Maharashtra          | 106386              | 16638  | 10613 | 15.6     | 10.0             | 36.2                |
| Rajasthan            | 63375               | 9237   | 6793  | 14.6     | 10.7             | 26.5                |
| Gujarat              | 55926               | 6987   | 5264  | 12.5     | 9.4              | 24.7                |
| Himachal Pradesh     | 6559                | 1077   | 854   | 16.4     | 13.0             | 20.7                |
| Karnataka            | 57141               | 8172   | 6876  | 14.3     | 12.0             | 15.9                |
| Delhi                | 16289               | 2161   | 2023  | 13.3     | 12.4             | 6.4                 |
| Tamil Nadu           | 66154               | 14808  | 13961 | 22.4     | 21.1             | 5.7                 |
| Andhra Pradesh       | 81934               | 10991  | 10944 | 13.4     | 13.4             | 0.4                 |
| Total                | 1130618             | 178520 | 98254 | 15.8     | 8.7              | 45.0                |

 Supplementary Table 3: Comparison between present study (MDS) estimates and National Crime Records Bureau (NCRB) police reports of the number of RTI deaths and crude death rate, by state. \*Excludes railroad deaths since NCRB does not publish state-level railroad death figures. Northeast States include Sikkim, Arunachal Pradesh, Nagaland, Manipur, Mizoram, Tripura, and Meghalaya. Other States include Pondicherry, Chandigarh, Uttaranchal, Dadra & Nagar Haveli, A & N Islands, Daman & Diu, Lakshadweep, and Goa. CDH = Chhatisgarh. % under reporting = (MDS death rate - NCRB death rate) / MDS death rate \*100%.

----

## <sup>5</sup>MILLION DEATH STUDY COLLOBORATORS

## 4

1

## 5Indian Academic Partners (in alphabetical order):

- 61. Department of Community Medicine Gujarat Medical College, Ahmedabad: DV Bala, P Seth, KN Trivedi
- Department of Community Medicine Kolkatta Medical College, Kolkatta: SK Roy 72.
- 83. Department of Community Medicine Regional Institute of Medical Sciences, Imphal: L Usharani
- 94 Department of Community Medicine S.C.B. Medical College Cuttack, Orissa: Dr. B Mohapatra
- 1Q Department of Community Medicine SMS Medical College Jaipur: AK Bharadwaj, R Gupta
- 162-38405-1102-38405-1102-38405-1102-38405-Epidemiological Research Center, Chennai: V Gajalakshmi, CV Kanimozhi
- Gandhi Medical College, Bhopal: RP Dikshit, S Sorangi
- Healis-Seskarhia Institute of Public Health, Navi Mumbai: PC Gupta, MS Pednekar, S Sreevidya
- Apollo Institute of Medical Sciences & Research, Hyderabad: P Bhatia
- 160. St. John's Academy of Health Sciences, Bangalore: A Kurpad, P Mony, M Vaz, S Srinivasan, A Shet, AS Shet, D Xavier.
- S Rathi, V Habbare 17
- 181. King George Medical College, Lucknow: S Awasthi
- 192. Najafgarh Rural Health Training Centre, Ministry of Health Government of India, New Delhi: N Dhingra, J Sudhir, I 20 Rawat (until 2007)
- 213. Regional Medical Research Center, ICMR Institute, Bhubaneshwar: AS Karketta, SK Dar
- 224. School of Preventative Oncology, Patna: DN Sinha
- <sup>235</sup>. School of Public Health Post Graduate Institute of Medical Education and Research, Chandigarh: N Kaur, R Kumar, JS 24 Thakur
- 256. Tata Memorial Cancer Hospital, Mumbai: RA Badwe, RP Dikshit, M Mallath, K Panse, A Budukh

## 27 28 Partners:

24. Office of the Registrar-General India, RK Puram, New Delhi India: C Chandramouli (Registrar General of India [RGI]), 3 C Sethi, B Mishra (until 2012), S Jain (until 2008), DK Dey, AK Saxena, MS Thapa, N Kumar; JK Banthia and DK Sikri 3(former RGIs)

32

33. Million Death Study Coordinating Centre for Global Health Research (CGHR) Li Ka Shing Knowledge Institute, St. 34 Ichael's Hospital, Dalla Lana School of Public Health, University of Toronto, Canada: P Jha (Principal Investigator), R <sup>3</sup> Kamadod, S Rathi, S Rao-Seshadri, P Rodriguez, P Sati, J Sudhir, C Ramasundarahettige, W Suraweera 36

## <sup>37</sup>Affiliated Partners:

- Зâ 39<sup>.</sup> Indian Council of Medical Research, New Delhi India: VM Katoch (Director General or DG from 2008), NK Ganguly
- (DG to 2008), L Kant, B Bhattacharya, B Shah, DK Shukla 40
- World Health Organisation, Geneva and SEARO Office, New Delhi: T Boerma, A Fric, S Habayeb (former WHO 4<del>1</del>
- Representative-India), S Khanum, CD Mathers, DN Sinha, N Singh, P Singh (Deputy Regional Director) 42
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), University of Oxford, England: N Bhala, J 4**3**.
- Boreham, R Peto, G Whitlock 44
- 45
- 46
- 47
- 48
- 49
- 50 51
- 52
- 53 54
- 55
- 56 57
- 58
- 59 60

# Road traffic injury mortality and its mechanisms in India: nationally representative mortality survey of 1.1 million homes

Marvin Hsiao, Ajai Malhotra, JS Thakur, Jay K Sheth, Avery B Nathens, Neeraj Dhingra, Prabhat Jha, for the Million Death Study Collaborators.

Centre for Global Health Research, Li Ka Shing Knowledge Institute, St Michael's Hospital, University of Toronto, Toronto, Canada (M Hsiao MD, Prof P Jha DPhil); Division of General Surgery, Department of Surgery, University of Toronto, Toronto, Canada (M Hsiao MD, Prof AB Nathens MD); Department of Surgery, VCU Medical Center, Virginia Commonwealth University, Richmond, USA (Prof A Malhotra MD); Department of Community Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India (JS Thakur MD); Smt. N.H.L. Municipal Medical College, Ahmedabad, India (JK Sheth MD); Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada (Prof AB Nathens MD); National AIDS Control Organization, New Delhi, India (N Dhingra MD)

Correspondence to: Marvin Hsiao Centre for Global Health Research, Li Ka Shing Knowledge Institute, St Michael's Hospital, and Division of General Surgery, Department of Surgery, University of Toronto 30 Bond Street, Toronto, Ontario, Canada M5B 1W8 marvin.my.hsiao@gmail.com +1 416-864-6042 (phone) / +1 416-864-5256 (fax)

Keywords: Road traffic injury; verbal autopsy; India; low- and middle-income countries

Word count: Text: 32113440

| 2                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------|
| 3                                                                                                                                        |
| 4                                                                                                                                        |
| 5                                                                                                                                        |
| 5                                                                                                                                        |
| 6                                                                                                                                        |
| 7                                                                                                                                        |
| 8                                                                                                                                        |
| 9                                                                                                                                        |
| 10                                                                                                                                       |
| 11                                                                                                                                       |
| 10                                                                                                                                       |
| 12                                                                                                                                       |
| 13                                                                                                                                       |
| 14                                                                                                                                       |
| 15                                                                                                                                       |
| 16                                                                                                                                       |
| 17                                                                                                                                       |
| 10                                                                                                                                       |
| 10                                                                                                                                       |
| 3 4 5 6 7 8 9 10 11 21 31 41 51 61 71 81 92 01 22 32 42 52 62 72 82 90 11 22 33 43 53 63 73 83 90 10 10 10 10 10 10 10 10 10 10 10 10 10 |
| 20                                                                                                                                       |
| 21                                                                                                                                       |
| 22                                                                                                                                       |
| 23                                                                                                                                       |
| 20                                                                                                                                       |
| 24                                                                                                                                       |
| 25                                                                                                                                       |
| 26                                                                                                                                       |
| 27                                                                                                                                       |
| 28                                                                                                                                       |
| 20                                                                                                                                       |
| 29                                                                                                                                       |
| 30                                                                                                                                       |
| 31                                                                                                                                       |
| 32                                                                                                                                       |
| 33                                                                                                                                       |
| 22                                                                                                                                       |
| 34                                                                                                                                       |
| 35                                                                                                                                       |
| 36                                                                                                                                       |
| 37                                                                                                                                       |
| 38                                                                                                                                       |
| 20                                                                                                                                       |
| 39                                                                                                                                       |
| 40                                                                                                                                       |
| 41                                                                                                                                       |
| 42                                                                                                                                       |
| 43                                                                                                                                       |
| 44                                                                                                                                       |
|                                                                                                                                          |
| 45                                                                                                                                       |
| 46                                                                                                                                       |
| 47                                                                                                                                       |
| 48                                                                                                                                       |
| 49                                                                                                                                       |
| 49<br>50                                                                                                                                 |
| 50                                                                                                                                       |
| 51                                                                                                                                       |
| 52                                                                                                                                       |
| 53                                                                                                                                       |
| 54                                                                                                                                       |
| 55                                                                                                                                       |
| 00                                                                                                                                       |
| 56                                                                                                                                       |
| 57                                                                                                                                       |
| 58                                                                                                                                       |
| 59                                                                                                                                       |
| 60                                                                                                                                       |
|                                                                                                                                          |

#### ABSTRACT:

**Objectives**: To quantify and describe the mechanism of road traffic injury (RTI) deaths in India. **Design**: We conducted a nationally representative mortality survey where at least two physicians coded each non-medical field staff's verbal autopsy reports.RTI mechanism data were extracted from the narrative section of these reports.

Setting:1.1 million homes in India.

Participants: Over 122 000 deaths at all ages from 2001-2003.

**Primary and secondary outcome measures**: Age- and sex-specific mortality rates, place and timing of death, modes of transportation, and injuries sustained.

**Results**: The 2299 RTI deaths in the survey correspond to an estimated 183 600 RTI deaths or about 2% of all deaths in 2005 nationally, of which 65% occurred in males between the ages of 15-59 years. The age-adjusted mortality rate was greater in males than in females, in urban than in rural areas, and was notably higher than that estimated from national police records. Pedestrians (68 000), motorcyclists (36 000), and other vulnerable road users (20 000) constituted 68% of RTI deaths (124 000) <u>nationally</u>. Among the study sample, tThe majority of all RTI deaths occurred at the scene of collision (1005/1733, 58%), within minutes of collision (883/1596, 55%), and/or involved a head injury (691/1124, 62%). Compared to non-pedestrian RTI deaths, about 55 000 (81%) of pedestrian deaths were associated with less education and living in poorer neighbourhoods.

**Conclusions**: In India, RTI cause a substantial number of deaths, particularly among pedestrians and other vulnerable road users. Interventions to prevent collisions and reduce injuries might address over half of the RTI deaths. Improved pre-hospital transport and hospital trauma care might address just over a third of the RTI deaths.

## ARTICLE SUMMARY

## Article focus

 To directly estimate the age- and sex-specific mortality rates and describe the place and timing of death, modes of transportation, and injuries sustained for road traffic injury (RTI) deaths in India using a nationally representative mortality survey of 1.1 million homes.

## Key messages

- Road traffic injuries cause a substantial number of avertable deaths, particularly in males of productive working age and among pedestrians and other vulnerable road users.
- Preventative interventions should be emphasized as the majority of all RTI deaths occurred at the scene of collision, within minutes of collision, and/or involved a head injury.
- Properly designed mortality survey with verbal autopsy narratives can provide muchneeded data to assist RTI prevention efforts.

## Strengths and limitations of this study

- This study is the first nationally representative survey of the causes of death in India and overcomes limitations of existing data sources including regional injury surveys, hospital series, and national police reports.
- Limitations of the study include potential misclassification of deaths by physician coders, the use of layperson narratives with a potential for recall bias and inaccuracies, and limited ability to forward project study results given the rapid changes in motorization in India.

## INTRODUCTION

Road traffic injuries (RTI) area large and growing public health burden, especially in low-and middle-income countries (LMIC) where 90% of the world's RTI-deaths <u>due to RTI</u> are estimated to occur.[1] There are few high-quality epidemiologic data on RTI to guide the development, implementation, and surveillance of evidence-based policy and programs in LMICs.[2-4]

The number of RTI-deaths <u>due to RTI</u> in India is projected to rise with increasing motorization.[1,5]Aside from a few regional injury surveys,[6-11] the current data on the numbers and mechanisms of RTI deaths in India rely on police or hospital records, both of which can substantially underestimate death rates in the poor, rural, and uneducated people who still constitute large proportions of the Indian population.[2-4,12,13]

The World Health Organization (WHO), using indirect modeling methods, estimated about 202 000 RTI deaths in India in 2004.[14,15] No study has validated this estimate with direct measurement nor documented detailed RTI mechanism for India nationally. Here, we estimate the regional, age- and sex-specific mortality rate and risk of RTI death in India using data from the Million Death Study (MDS). We also report the modes of transportation, place and timing of death, and injuries sustained in RTI\_deaths.

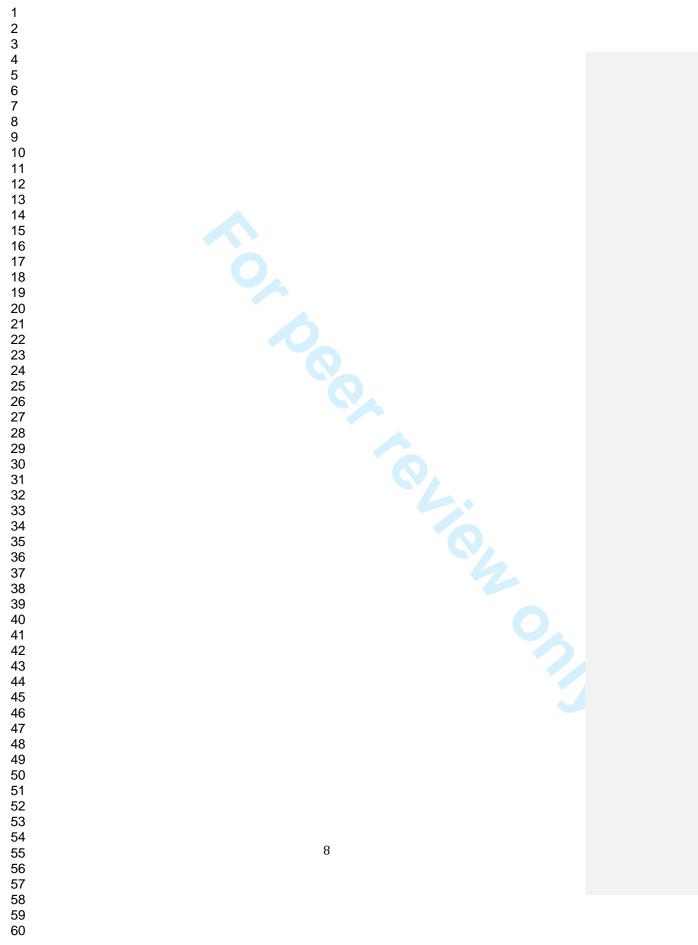
### METHODS

Study Design: The MDS is an on-going nationally representative survey designed to determine the causes and risk factors of death in India, organized by the Registrar General of India (RGI). The design, methodology, and preliminary findings of the MDS have been described elsewhere.[16-19]In brief, the MDS used an enhanced version of verbal autopsy (known as the routine, reliable, representative, re-sampled household investigation of mortality with medical evaluation or RHIME) to monitor a nationally representative sample of 1.1 million households in the Sample Registration System (SRS). Within six months of every death occurring in these households from 2001-3, a trained, nonmedical RGI surveyor interviewed a relative or closeacquaintance of the deceased to obtain the symptoms and events around the death using structured questions and a local language narrative guided by a specific symptom list. These records were converted into electronic records and emailed to two of 140 trained physicians who, independently and anonymously, assigned an underlying cause of death (with allocation determined randomly based only on the physician's ability to read the local language), using guidelines for the major causes of death.[20]Records were assigned cause of death in threedigit International Statistical Classification of Diseases and Related Health Problems, 10th revision (ICD-10).[21] Records where coders disagreed on the cause of death underwent anonymous reconciliation. Continuing disagreements were adjudicated by a third senior physician. Five percent of households were randomly resurveyed and the results were consistent within families of ICD-10 codes.[16] Participation in the SRS is on a voluntary basis and oral consent was obtained under the confidentiality and consent procedures of the Registration of Births and Deaths Act, 1969.

**Road Traffic Injury Deaths:** The RTI deaths in this study were of people who died between 2001 and 2003 with a final assigned ICD-10 code within V01-V89. We translated the open-ended narratives into English from 14 local languages, and systematically extracted the modes

of transportation, place and timing of death, and injuries sustained from the 2157 of the 2299 <u>RTI narrativesdeaths using a standardized data extraction tool and procedure (the remaining</u> 142 deaths, 6%, had missing or illegible narratives). For these four data elements, there were substantial inter-rater agreement (kappa statistic > 0.69) between two investigators and two research assistants who were trained and independentlyextracted independently extracted data from the narratives of a random 10% of RTI deaths (lowest kappa statistic was greater than 0.69 for all pair-wise comparisons between the fourdatafour data extractors; data not shown). The two research assistants then independently extracted data from all narratives. Adjudication was done by an investigator (M-H) for discrepancies in extracted data.

Analysis: The age and sex-specific proportion of RTI deaths within the 2001-2003 survey was applied to the 2005 United Nations (UN) estimates of the number of deaths from all causes in India, after weighting for sampling probability.[22] The 2005 UN death estimates were used so as to correct for the slight undercounts reported in the total death rates in the SRS[23,24] and to account for the 12% of enumerated deaths without completed field visits (mostly due to outmigration of the family or from incomplete field records). The proportion of these missed deaths was similarly dispersed across sex, age, and states. Use of 2003 or 2004 UN death totals yielded nearly identical results (data not shown). The 99% confidence intervals (99%CI) for mortality rate were calculated based on the weighted number of study deaths. State- and rural/urban-specific estimates of the number, mortality rate, and lifetime risk of RTI death were calculated by partitioning the UN national death totals according to relative SRS death rates as previously described.[18,25,26]Urban and rural status was defined according to the Census of India. Logistic regression was used to compare the socio-demographic traits of pedestrian and non-pedestrian RTI deaths. Household fuel type was used as a measure of community wealth, based on earlier principal component analyses [18]: high asset neighbourhoods had >50% of households that used gas, electricity, or kerosene; low asset or poor neighbourhoods used


primarily coal, firewood, or other. Attributable proportion was calculated for traits of pedestrian deaths compared to non-pedestrian RTI deaths.

The MDS received ethics approval from the review boards of the Post-Graduate Institute of Medical Education and Research in Chandigarh, India; St Michael's Hospital in Toronto, Canada; and the Indian Council of Medical Research's Health Ministry's Screening Committee.

#### RESULTS

The 2299 RTI deaths in the 2001-2003 survey correspond to an estimated 183 600 (99%CI 173 800-193 400) RTI deaths in India in 2005. The majority of these RTI deaths occurred in males (152 100 deaths, 82.8%; table 1). The age-standardized RTI mortality rate for males (26.2 per 100 000, 24.6-27.7) was higher than for females (5.7 per 100 000, 5.0-6.4). While the RTI mortality rate increased with age in both genders, the largest number of RTI deaths occurred in males between 15-59 years of age (118 900, 64.8%).

At these death rates and in the theoretical absence of other causes of death, males in India had a 2.1% (2.0-2.3) risk of dying from RTI before age 70, with the highest risks at ages 30-59 years; females had a 0.5% (0.4-0.5) risk of dying from RTI before age 70. Males in Haryana, Punjab, Tamil Nadu, and Uttar Pradesh had significantly higher risks (3.0-4.1%) than the national risk (figure 1). In contrast, males in Bihar, Jharkhand, Andhra Pradesh, Orissa, Gujarat, and West Bengal had significantly lower risks (1.3-1.6%) than the national risk of RTI deaths. Males living in urban areas had slightly higher age-standardized mortality rates and risks of RTI deaths (27.6 per 100 000; 2.4%, 2.1-2.6) compared to males living in rural areas (24.9 per 100 000; 2.0%, 1.8-2.1). By contrast, female RTI mortality rates and risks before age 70 varied much less across states and were similar in rural and urban areas (data not shown).



| 3                                                    |                                               | Study deaths       | s, 2001-2003 |                                    |                                                             | All India, 2                           | 005                                        |                                  |
|------------------------------------------------------|-----------------------------------------------|--------------------|--------------|------------------------------------|-------------------------------------------------------------|----------------------------------------|--------------------------------------------|----------------------------------|
| 4<br>5<br>6                                          | Number of RTI<br>deaths / all<br>coded deaths | Proportion<br>RTI* | Rural (%**)  | Two coders<br>immediately<br>agree | All deaths / population<br>(millions, 2005 UN<br>estimates) | Estimated RTI<br>deaths§,<br>thousands | RTI death rateΨ<br>per 100 000<br>(99% CI) | Period risk<br>for RTI<br>death† |
| 7 Male - age in years                                |                                               |                    |              |                                    |                                                             |                                        |                                            |                                  |
| 0-4                                                  | 44 / 11719                                    | 0.4%               | 37 (76.7)    | 44                                 | 1.2 / 67                                                    | 4.9                                    | 7.4 (6.5-8.4)¶                             | 0.04%                            |
| <b>3</b> 5-14                                        | 97 / 1926                                     | 5.2%               | 86 (84.1)    | 87                                 | 0.2 / 129                                                   | 8.5                                    | 6.6 (4.9-8.3)                              | 0.1%                             |
| 9 15-29                                              | 605 / 4727                                    | 13.0%              | 462 (68.9)   | 558                                | 0.4 / 163                                                   | 47.1                                   | 28.9 (25.9-31.9)                           | 0.4%                             |
| 10 <sup>30-44</sup>                                  | 529 / 6817                                    | 7.7%               | 385 (67.0)   | 477                                | 0.6 / 115                                                   | 43.8                                   | 37.9 (33.7-42.1)                           | 0.6%                             |
| 15-59                                                | 356 / 11731                                   | 3.0%               | 249 (60.9)   | 312                                | 0.9 / 73                                                    | 28.0                                   | 38.4 (33.2-43.6)                           | 0.6%                             |
| 11 60-69                                             | 149 / 12120                                   | 1.2%               | 117 (71.8)   | 133                                | 0.9 / 24                                                    | 10.6                                   | 44.0 (34.6-53.4)                           | 0.5%                             |
| <b>12</b> >70                                        | 123 / 18732                                   | 0.6%               | 106 (81.2)   | 98                                 | 1.3 / 14                                                    | 9.1                                    | 64.5 (49.1-80.0)                           |                                  |
| 3All ages                                            | 1903 / 67772                                  | 2.8%               | 1442 (68.9)  | 1709                               | 5.3 / 585                                                   | 152.1                                  | 26.2                                       | 2.1%†                            |
| 14 <sup>(% or 99% CI)</sup>                          |                                               |                    |              | (89.8%)                            |                                                             | (143.2-161.0)                          | (24.6-27.7)                                | (2.0-2.3)                        |
| 15 <sub>Female</sub> - age in years                  |                                               |                    |              |                                    |                                                             |                                        |                                            |                                  |
| 160-4                                                | 50 / 11492                                    | 0.4%               | 46 (93.4)    | 45                                 | 1.2 / 61                                                    | 5.0                                    | 8.1 (7.1-9.1)¶                             | 0.04%                            |
| <b>17</b> <sup>5-14</sup>                            | 44 / 1955                                     | 2.3%               | 38 (80.1)    | 43                                 | 0.2 / 118                                                   | 3.8                                    | 3.2 (2.0-4.4)                              | 0.03%                            |
| $18^{15-29}_{30-44}$                                 | 72 / 4394                                     | 1.5%               | 53 (60.5)    | 63                                 | 0.3 / 150                                                   | 5.3                                    | 3.5 (2.4-4.6)                              | 0.1%                             |
|                                                      | 59 / 4055                                     | 1.4%               | 39 (59.0)    | 50                                 | 0.3 / 106                                                   | 4.4                                    | 4.1 (2.7-5.5)                              | 0.1%                             |
| 1945-59                                              | 70 / 6402                                     | 1.1%               | 55 (70.9)    | 61                                 | 0.5 / 69                                                    | 6.0                                    | 8.6 (5.9-11.3)                             | 0.1%                             |
| <u>20</u> 60-69                                      | 54 / 9016                                     | 0.6%               | 42 (68.6)    | 52                                 | 0.6 / 25                                                    | 3.7                                    | 14.8 (9.8-19.9)                            | 0.2%                             |
| 21 <sup>&gt;70</sup>                                 | 47 / 17343                                    | 0.3%               | 33 (61.8)    | 35                                 | 1.3 / 16                                                    | 3.5                                    | 21.6 (13.4-29.9)                           |                                  |
|                                                      | 396 / 54657                                   | 0.7%               | 306 (69.8)   | 349                                | 4.5 / 546                                                   | 31.5                                   | 5.7                                        | 0.5%†                            |
| 22 (% or 99% CI)                                     |                                               |                    |              | (88.1%)                            |                                                             | (27.5-35.6)                            | (5.0-6.4)                                  | (0.4-0.5)                        |
| 23`                                                  |                                               |                    |              |                                    |                                                             |                                        |                                            |                                  |
| 24Total male and female, <70 years                   | 2129 / 86354                                  | 2.4%               | 1609 (68.5)  | 1925                               | 7.2 / 1100                                                  | 171.0                                  | 15.5                                       | 1.3%†                            |
| 241 otal male and female, 0 years<br 25(% or 99% CI) |                                               |                    |              | (90.4%)                            |                                                             | (161.5-180.4)                          | (14.7-16.4)                                | (1.3-1.4)                        |
|                                                      | 2299 / 122429                                 | 1.8%               | 1748 (69.0)  | 2058                               | 9.8 / 1131                                                  | 183.6                                  | 16.2                                       | 1.3%†                            |
| 26(% or 99% CI)                                      |                                               |                    |              | (89.5%)                            |                                                             | (173.8 - 193.4)                        | (15.4 - 17.1)                              | (1.3-1.4)                        |

<sup>2</sup>/<sub>29</sub>Table 1: Road traffic injury deaths in the present study and estimated national totals for 2005, by age and gender. \*Proportion of RTI deaths <sup>29</sup> Sompared to all deaths, weighted by state and residence (rural/urban). \*\*Percentage rural is weighted by state and residence (rural/urban). §Obtained by multiplying the United Nations estimated total deaths in 2005 by the weighted proportions. ΨAge standardized to the 2005 United Nations estimated <sup>31</sup>Indian population; 99% CI shown are calculated based on weighted number of study deaths, which result in wider CI than those based on physician 32agreement. †Annual RTI death rate multiplied by the duration of age range, except for the lifetime risk which is calculated between 0-69 years by 33summation of the age specific period risks. ¶Crude death rate.

The deceased mode of transportation was described in the narratives of 2105 (92%) of the RTI deaths. National estimates for the deceased mode of transportation were calculated, as those with unknown and known modes of transportation did not appear to differ with respect to the major socio-demographic traits (Supplementary Table 1). Vulnerable road users are those without a rigid barrier protecting against traumatic forces and include pedestrians, motorcyclists, bicyclists, and three-wheelers. They constituted a majority (68%; n=124 000, 99%CI 115 000-131 000) of RTI deaths, led by pedestrians (37%; n=68 000, 62 000-73 000) and motorcyclists (20%; n=36 000, 31 000-40 000) (figure 2). Drivers and passengers of motorized four-wheelers comprised 16% (n=31 000, 27 000-35 000) of RTI deaths. By contrast, the 2005 police reports, which use a different but compatible classification system to ICD-10, recorded only 33000 vulnerable road user deaths and only9000 pedestrian deaths.[27] The most common types of vehicle to collide into the decedents were heavy transport vehicles and buses (37%; n=68 000, 61 000-74 000), followed by cars and vans (15%; n=28 000, 24 000-32 000). Single-vehicle incidents comprised 9% of deaths (n=17 000, 14 000-20 000). The most frequent combinations, resulting in 23% (n=42 000, 37 000-47 000) of RTI deaths, were collisions of heavy transport vehicles or buses with pedestrians and motorcyclists (data not shown).

The place and timing of death were described in the narratives of 1733 (75%) and 1596 (69%) of the RTI deaths respectively (figure 2; see supplementary table 1 for a summary of missing data from the narratives with respect to deceased characteristics).For these narratives, only the study proportion and not national estimates were made. Most RTI deaths occurred at the scene of collision (58%, 1005/1733) or <u>instantly, defined</u> as within 5 minutes (55%, 883/1596). Only 3% (45/1733) were labeled as potentially avertable with better pre-hospital transport as they occurred on scene but not instantly. Another 35% of deaths occurred en route (7%, 124/1733) or in hospital (28%, 481/1733).

Injuries sustained by the deceased were reported from1124 narratives (49%). Head injuries were the most commonly reported (62%, 691/1124), of which 76% (524/691) were reported as isolated head injuries (figure 3). A greater percentage of motorcyclists (78%, 188/241) had head injuries reported compared to non-motorcyclists (57%, 457/807). After adjusting for age, sex, rural/urban, neighbourhood asset, and education, bicyclists and motorcyclists were more likely to have head injuries reported compared to non-vulnerable road users (adjusted OR 1.7, 1.2-2.5) (supplementary table 2).

Compared to non-pedestrian RTI deaths, pedestrian deaths occurred to those who had less education (or in the case of children age <15 years, have less educated parents) (adjusted OR 2.9, 99%CI 2.0-4.2), lived in poorer neighbourhoods (1.7, 1.1-2.5),were children or elderly adults (<15 years: 2.9, 1.8-4.5; >59 years: 1.7, 1.2-2.4), were female (1.5, 1.2-2.2), and lived in urban areas (1.5, 1.1-2.2) (table 2). If pedestrian deaths had the same proportion of secondary or higher education as non-pedestrian RTI deaths, there would be 406/825 (49%) fewer pedestrian deaths, corresponding to approximately 33 000 deaths nationally in 2005. The corresponding attributable proportion for living in richer versus poorer neighbourhoods would be 265/825 (32%) or approximately 22 000 deaths nationally. Within the narratives we could code, there were no differences between pedestrians and non-pedestrian RTI deaths in timing of death, place of death, reported injuries, or reported routine use of alcohol or smoking (data not shown).

|                                          | Pedestrian /<br>Non-Pedestrian<br>Total=825/1280 | Adjusted OR^<br>(99% CI) | Attributable<br>Pedestrian Deaths<br>(% of all 825<br>pedestrian deaths) |
|------------------------------------------|--------------------------------------------------|--------------------------|--------------------------------------------------------------------------|
| Education*                               |                                                  |                          |                                                                          |
| Secondary or higher                      | 112/382                                          | ref                      |                                                                          |
| Primary or middle                        | 248/450                                          | 1.8 (1.3-2.6)            | $\frac{110}{200}$ ] 406 (49%)                                            |
| Below primary                            | 451/423                                          | 2.9 (2.0-4.2)            | 296 -                                                                    |
| Unknown                                  | 14/25                                            | 1.6 (0.6-4.2)            | N/A                                                                      |
| Neighbourhood Asset                      |                                                  |                          |                                                                          |
| High                                     | 137/320                                          | ref                      |                                                                          |
| Low                                      | 643/895                                          | 1.7 (1.1-2.5)            | 265 (32%)                                                                |
| Unknown                                  | 45/65                                            | 1.5 (0.8-2.8)            | N/A                                                                      |
| Age in years                             |                                                  |                          |                                                                          |
| 15-59 (driving ages)                     | 497/1046                                         | ref                      |                                                                          |
| <15 (children)                           | 144/74                                           | 2.9 (1.8-4.5)            | 94 ] 170 (21%                                                            |
| >59 (elderly adults)                     | 184/160                                          | 1.7 (1.2-2.4)            | 76 ] 1/0 (21/0                                                           |
| Sex                                      |                                                  |                          |                                                                          |
| Male                                     | 621/1121                                         | ref                      |                                                                          |
| Female                                   | 204/159                                          | 1.5 (1.1-2.2)            | 68 (8%)                                                                  |
| Location                                 |                                                  |                          |                                                                          |
| Rural                                    | 643/962                                          | ref                      |                                                                          |
| Urban                                    | 182/318                                          | 1.5 (1.1-2.2)            | 61 (7%)                                                                  |
| Occupation                               |                                                  |                          |                                                                          |
| Salaried / Wage Earner / Professional    | 229/517                                          | ref                      |                                                                          |
| Cultivator / Agricultural labour / Other | 162/300                                          | 0.9 (0.6-1.3)            | N/A                                                                      |
| Non-worker / Children <15 years          | 433/463                                          | 1.2 (0.9-1.6)            | N/A                                                                      |
| Unknown                                  | 1/0                                              | N/A                      | N/A                                                                      |
| Routine Alcohol Use**                    |                                                  |                          |                                                                          |
| No                                       | 494/877                                          | ref                      |                                                                          |
| Yes                                      | 145/260                                          | 1.1 (0.7-1.5)            | N/A                                                                      |
| Unknown                                  | 42/69                                            | 1.0 (0.5-1.9)            | N/A                                                                      |

**Table 2: Characteristics of pedestrian RTI deaths and attributable proportions.** \*Education of deceased adults or, in cases of deceased children <15 years, education of respondent. \*\*Excludes 218 children. ^Odds ratios are adjusted for all other variables in this table except for alcohol use; the odds ratios for alcohol use are adjusted for all other variables in this table.

## DISCUSSION

RTI is an important cause of death in India, causing 183 600 deaths in 2005, or about 2% of all

deaths.[22] Much of the deceased were men between ages 15-59 years. Males had a four-fold

higher cumulative risk of RTI death compared to females before the age of 70. Among the major

states, there was approximately 3-fold variation in the age-standardized RTI death rate and cumulative risk for males.

Our estimated number of RTI deaths is more than 50% greater than the 118 265 deaths reported in the official police statistics of the National Crime Records Bureau (NCRB) in 2005.[27] Compared to our estimates, the extent of under-reporting of the crude death rate in major states by NCRB ranged from <1% to about 80% (supplementary table 3). Existing regional population-based injury surveys in India support our findings and also report higher crude RTI death rates than NCRB statistics.[8,11]Under-reporting of RTI deaths in police statistics has been reported in India and other LMIC.[28-30]A study in urban India comparing both hospital- and community-based RTI data to police records identified factors contributing to under-reporting that included the deceased believed to be at fault, collision resulting from hit-and-runs, limited police resources, and the lack of a standard police reporting protocol by hospitals.[28]] The factors contributing to police under-reporting, especially in rural India, require further examination. Our estimated number of RTI deaths in 2005 was consistent with the WHO estimate for 2004.[14] However, we observed a slightly higher male proportion (83% MDS vs. 77% WHO, all ages) and a higher proportion of male deaths between 15-59 years (65% MDS vs. 61% WHO).

Almost three-quarters of all RTI deaths in India were of pedestrians and other vulnerable road users. In contrast, a much lower proportion (27%) was reported by the NCRB (figure 2). This difference equated to 59 000 pedestrian and 32 000 other vulnerable road user deaths that were not included in the 2005 NCRB records. Existing RTI studies based on regional surveys and hospital series also reported a high proportion (>60%) of vulnerable road user deaths similar to our findings.[11,12,30-32]Since the majority of vulnerable road users were pedestrians, our findings suggested that RTI deaths in individuals who were less educated, poor, female or live in

#### **BMJ Open**

urban areas may have been disproportionally excluded from the NCRB records. While poverty and education are not likely to be in the direct causal pathway of pedestrian deaths, they nonetheless point to other associated risk factors. Indeed, 55 000 pedestrian deaths in 2005 (81%) was associated with lower education or living in poorer neighbourhoods compared to nonpedestrian RTI deaths. While the less educated and the poor likely travelled more often by foot, they might also be exposed to undetermined environmental (neighbourhoods with unsafe roads), biological (poor vision or decreased mobility due to poor health), and behavioral (alcohol or other substance use) risk factors for pedestrian death.[12, 33, 34]Further studies are needed to better understand pedestrian deaths in LMIC.

Over half of RTI deaths occurred instantly at the scene of collision and/or had head injury reported. Thus These findings, together with existing RTI hospital series and regional surveys in India, make a strong argument that, investments in primary and secondary prevention could potentially avert the greatest proportion of RTI deaths. To address the high proportion of instant deaths and head injuries among RTI deaths in India, specific interventions that are effective and based on studies in LMIC should be emphasized; these may include speed bumps, motorcycle helmets, and increasing fines and license suspensions for rule infractions.[33]In contrast, improving pre-hospital transport and hospital transport (3%), en route to hospital (7%), or in hospital (28%).

Our study is the first nationally representative survey of the causes of death in India. The simple descriptive statistics provide clear evidence on the large and avertable burden from RTI, particularly among productive age adults and pedestrians. To the best of our knowledge, only one recent study in Vietnam has used similar methods to analyze RTI deaths and policy implications on a national scale.[35]

Our study faced certain limitations. First, we might have misclassified certain causes of death including suicide as RTI deaths. However, the extent of misclassification should be minimal since the RHIME verbal autopsy method was shown to be robust in discerning between types of injury deaths[36]and since the immediate two-physician agreement was high for RTI deaths(89.5%, table 1). Furthermore, suicides cause about 200 000 deaths in India annually but few are due to RTI.[19] Second, since the modes of transportation, place and timing of death, and injuries sustained were extracted from layperson open-ended narratives, the data accuracy may be in question. For example with the deceased mode of transportation, the extent of misclassification (by our study) or misreporting (by NCRB) that contributed to the differences between the two sources is uncertain. With reported injuries, our findings from these narratives most likely undercounted less visible injuries (chest, abdomen, and spine) compared to highly visible injuries such as bleeding and deformity for head and extremity injuries. Nevertheless, our findings are consistent with available Indian regional surveys and hospital series on the mode of transportation[11,12,30-32,37][11,12,30-32] place and timing of death,[1,37-41][1,37-39] and injuries sustained.[12,37,42,43][12,40,41]Third, since the narrative was not designed specifically to capture RTI death characteristics, over 25% of deaths had missing data for mode of transportation, place of death, timing of death, or reported injuries(supplementary table 1). Thus, our findings for these elements extracted from the narratives may be less representative of the decedents who lived in rural or poor areas. Finally, reliable forward projection of the number of RTI deaths beyond 2005 was not possible since the increase in the NCRB reported number of RTI deaths of140% from 2005 to 2011 appeared to outpace the rate of population growth.[44] As the proportion of vulnerable road user deaths remained stable during this period in the NCRB reports, we postulated that this increase represented an actual increase in RTI death totals rather than more accurate reporting. Furthermore, given the rapid economic expansion and concurrent changes in motorization including the types of vehicle sharing the road and road

infrastructure, [45,46] our results on deceased mode of transportation, place and timing of death, and injuries sustained may not reflect the current Indian scenario. An analysis of the trend from 2001-2014 is planned pending ongoing data collection in the MDS.

In India, RTI is a significant cause of preventable death, particularly in males of productive working age and among pedestrians, bicyclists, and motorcyclist. We have shown that properly designed simple verbal autopsy narratives can document the much needed surveillance data on the numbers, rates, risks, and basic RTI mechanism such as modes of transportation, timing of death, place of death, and injuries sustained. Our findings suggested that investment in primary and secondary prevention could address a large proportion of avoidable RTI deaths.

#### ACKNOWLEDGEMENTS

We thank the Office of the RGI for the ongoing productive collaboration on the MDS, C Ramasundarahettige for technical assistance, M Puri and S Levitt for data extraction. The opinions expressed in this article are those of the authors and do not necessarily represent those of the Government of India or the RGI.

#### **COMPETING INTERESTS**

We declare that we have no competing interests.

#### FUNDING

This study is supported by grants from the John E Fogarty International Center of the National Institutes of Health (R01-TW05991–01 and TW07939-01), the Bill & Melinda Gates Foundation through the Disease Control Priorities Network Project, and the University of Toronto (to PJ); the Canada Research Chair Programme (to PJ and ABN); and the Canadian Institutes of Health Research Doctoral Award (to MH). The funding sources had no role in the study design; data **BMJ Open** 

collection, analysis, interpretation; writing of the manuscript; or decision to submit for publication. The senior author had full access to all the data in the study and had final responsibility for the decision to submit this study for publication.

#### AUTHOR'S CONTRIBUTION

PJ and the MDS Collaborators (appendix) designed, planned, the executed the MDS in close collaboration with the Office of the Registrar General of India (RGI). MH and PJ performed the data analysis. All authors contributed to data interpretation, revisions of the manuscript, and provided final approval. PJ is the guarantor for this report.

#### DATA SHARING STATEMENT

Data used in this study is <u>are</u> the property of the Registrar General of India <u>and the overall</u> mortality results have been published in 2009.[47] This specific analyses is produced under an agreement with CGHR. Application for data access can be made to the Office of the Registrar General of India.

| RE        | FERENCES                                                                                                                                                                       |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1         | Peden M, Scurfield R, Sleet D, et al. World report on road traffic injury prevention: World                                                                                    |
|           | Health Organization 2004;1–244.                                                                                                                                                |
| 2         | Chisholm D, Naci H, Hyder AA, et al. Cost effectiveness of strategies to combat road traffic Formatted: French (France)                                                        |
|           | injuries in sub-Saharan Africa and South East Asia: mathematical modelling study. BMJ                                                                                          |
|           | <u>2012;<b>344</b>:e612.</u>                                                                                                                                                   |
| 3         | The PLoS Medicine Editors. Preventing Road Deaths—Time for Data. PLoS Med                                                                                                      |
|           | <u>2010;7:e1000257.</u>                                                                                                                                                        |
|           |                                                                                                                                                                                |
| <u>4</u>  | Barffour M, Gupta S, Gururaj G, et al. Evidence-based road safety practice in India:<br>assessment of the adequacy of publicly available data in meeting requirements for      |
|           | comprehensive road safety data systems. Traffic Inj Prev 2012;13 Suppl 1:17–23.                                                                                                |
|           |                                                                                                                                                                                |
| <u>5</u>  | Kopits E, Cropper ML. Traffic fatalities and economic growth. World Bank Development                                                                                           |
|           | Research Group Environment and Infrastructure, 2003.                                                                                                                           |
| 6         | Sathiyasekaran BW. Population-based cohort study of injuries. Injury 1996;27:695–8.                                                                                            |
| 7         | Varghese M, Mohan D. Transportation injuries in rural Haryana, North India. In:                                                                                                |
|           | Proceedings of the international conference on traffic safety 2003;326–9.                                                                                                      |
| 0         |                                                                                                                                                                                |
| 8         | WHO. Injury Prevention and Control: An epidemiological study of injuries in the area of         Municipal Corporation of Delhi. Regional Office for South-East Asia 2003;1–18. |
|           |                                                                                                                                                                                |
| 9         | Gururaj G, Suryanarayana SP. Burden and impact of injuries: Results of population-based                                                                                        |
|           | survey. Proceedings of the 7th world conference on injury prevention 2004;275–6.                                                                                               |
| <u>10</u> | Dandona R. Patterns of road traffic injuries in a vulnerable population in Hyderabad, India.                                                                                   |

Injury Prevention 2006;12:183-8.

- <u>11</u> Dandona R, Kumar GA, Ameer MA, *et al.* Incidence and burden of road traffic injuries in urban India. *Inj Prev* 2008;**14**:354–9.
- 12
   Gururaj G. Road traffic deaths, injuries and disabilities in India: current scenario. Natl Med J

   India 2008;21:14–20.
- <u>13</u> Garg N, Hyder A. Road traffic injuries in India: A review of the literature. *Scand J of Public* <u>Health 2006;**34**:100–9.</u>
- 14
   World Health Organization. The Global Burden of Disease: 2004 Update. World Health

   Organization 2008.
   Organization 2008.
- 15 Mathers CD, Bernard C, Moesgaard Iburg K, et al. Global Burden of Disease in 2002: data sources, methods, and results. Global Programme on Evidence for Health Policy Discussion Paper No. 54. World Health Organization 2003.
- 16
   Jha P, Gajalakshmi V, Gupta PC, et al. Prospective Study of One Million Deaths in India:

   Rationale, Design, and Validation Results. PLoS Med 2006;3:e18.
- 17 Million Death Study Collaborators,. Causes of neonatal and child mortality in India: a nationally representative mortality survey. *Lancet* 2010;**376**:1853–60.
- <u>18</u> Dikshit R, Gupta PC, Ramasundarahettige C, *et al.* Cancer mortality in India: a nationally representative survey. *Lancet* 2012;**379**:1807–16.
- <u>19</u> Patel V, Ramasundarahettige C, Vijayakumar L, *et al.* Suicide mortality in India: a nationally representative survey. *Lancet* 2012;**379**:2343–51.
- 20 Sinha DN, Dikshit R, Kumar R, et al. Prospective Study of Million Deaths in India: Technical

|           | document no VIII: Health care professional's manual for assigning causes of death based                                                                                |                                   |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
|           | on RHIME household reports. RGI-CGHR, University of Toronto.                                                                                                           |                                   |
|           | 2011.http://www.cghr.org/mds (accessed 1 Aug2012).                                                                                                                     |                                   |
| <u>21</u> | WHO. International Statistical Classification of Diseases and Related Health Problems,                                                                                 |                                   |
|           | ICD-10: Three Volume Set. World Health Organization 2010.                                                                                                              |                                   |
| <u>22</u> | United Nations Populations Division. World population prospects (2008 revision).                                                                                       |                                   |
|           | 2009.http://www.un.org/esa/population/publications/wpp2008/ (accessed 2 July 2011).                                                                                    |                                   |
| 23        | Mari Bhat PN. Completeness of India's sample registration system: an assessment using                                                                                  |                                   |
|           | the general growth balance method. <i>Popul Stud</i> 2002; <b>56</b> :119–34.                                                                                          |                                   |
| 24        | Sivanandan V. An assessment of the completeness of death registration in India over the                                                                                |                                   |
| <u> </u>  | periods 1975-1978 and 1996-1999 under the generalized population model: an analysis                                                                                    |                                   |
|           | based on SRS data. Mumbai: International Institute for Population Sciences2004.                                                                                        | <b>Formatted:</b> French (France) |
| 25        | Jha P, Kumar R, Khera A, et al. HIV mortality and infection in India: estimates from                                                                                   |                                   |
| 20        | nationally representative mortality survey of 1.1 million homes. <i>BMJ</i> 2010; <b>340</b> :c621.                                                                    | <b>Formatted:</b> French (France) |
| ~~        |                                                                                                                                                                        |                                   |
| 26        | Dhingra N, Jha P, Sharma VP, et al. Adult and child malaria mortality in India: a nationally representative mortality survey. <i>Lancet</i> 2010; <b>376</b> :1768–74. |                                   |
|           | Tepresentative montainty survey. Lancer 2010, <b>310</b> . 1100–14.                                                                                                    |                                   |
| 27        | National Crime Records Bureau. Accidental Deaths and Suicides in India, 2005. Ministry of                                                                              |                                   |
|           | Home Affairs, Government of India2005.                                                                                                                                 |                                   |
| <u>28</u> | Dandona R, Kumar GA, Ameer MA, et al. Under-reporting of road traffic injuries to the                                                                                  | <b>Formatted:</b> French (France) |
|           | police: results from two data sources in urban India. Inj Prev 2008;14:360–5.                                                                                          |                                   |
| <u>29</u> | Alcorn T. Uncertainty clouds China's road-traffic fatality data. Lancet 2011;378:305-6.                                                                                |                                   |
|           |                                                                                                                                                                        |                                   |

| 2                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3                                                                                                                                                           |
| 4                                                                                                                                                           |
| 4                                                                                                                                                           |
| 2<br>3<br>4<br>5<br>6                                                                                                                                       |
| 6                                                                                                                                                           |
| 7<br>8<br>9<br>10                                                                                                                                           |
| o                                                                                                                                                           |
| 0                                                                                                                                                           |
| 9                                                                                                                                                           |
| 10                                                                                                                                                          |
| 11                                                                                                                                                          |
| 12                                                                                                                                                          |
| 12                                                                                                                                                          |
| 13                                                                                                                                                          |
| 14                                                                                                                                                          |
| 15                                                                                                                                                          |
| 16                                                                                                                                                          |
| 17                                                                                                                                                          |
| 17                                                                                                                                                          |
| 18                                                                                                                                                          |
| 19                                                                                                                                                          |
| 20                                                                                                                                                          |
| 21                                                                                                                                                          |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>32<br>4<br>25<br>26<br>27<br>28<br>9<br>30<br>31<br>23<br>34<br>35<br>36<br>37<br>8<br>39 |
| 22                                                                                                                                                          |
| 23                                                                                                                                                          |
| 24                                                                                                                                                          |
| 25                                                                                                                                                          |
| 26                                                                                                                                                          |
| 20                                                                                                                                                          |
| 27                                                                                                                                                          |
| 28                                                                                                                                                          |
| 29                                                                                                                                                          |
| 30                                                                                                                                                          |
| 30                                                                                                                                                          |
| 31                                                                                                                                                          |
| 32                                                                                                                                                          |
| 33                                                                                                                                                          |
| 34                                                                                                                                                          |
| 25                                                                                                                                                          |
| 30                                                                                                                                                          |
| 36                                                                                                                                                          |
| 37                                                                                                                                                          |
| 38                                                                                                                                                          |
| 20                                                                                                                                                          |
| 39                                                                                                                                                          |
| 40                                                                                                                                                          |
| 41                                                                                                                                                          |
| 42                                                                                                                                                          |
| 43                                                                                                                                                          |
| 44                                                                                                                                                          |
|                                                                                                                                                             |
| 45                                                                                                                                                          |
| 46                                                                                                                                                          |
| 47                                                                                                                                                          |
| 48                                                                                                                                                          |
| 49                                                                                                                                                          |
|                                                                                                                                                             |
| 50                                                                                                                                                          |
| 51                                                                                                                                                          |
| 52                                                                                                                                                          |
| 53                                                                                                                                                          |
| 53<br>54                                                                                                                                                    |
|                                                                                                                                                             |
| 55                                                                                                                                                          |
| 56                                                                                                                                                          |
| 57                                                                                                                                                          |
| 58                                                                                                                                                          |
| 00                                                                                                                                                          |
| 59                                                                                                                                                          |
| 60                                                                                                                                                          |

30 Naci H, Chisholm D, Baker TD. Distribution of road traffic deaths by road user group: a global comparison. *Inj Prev* 2009;**15**:55–9.

- 31 Mohan D. *The road ahead: Traffic injuries and fatalities in India*. Transportation research and injury prevention programme, Indian Institute of Technology, Delhi2004.
- <u>32</u> Mohan D. Traffic safety and health in Indian cities. *Journal of Transport and Infrastructure* 2002;**9**:79–94.
- <u>33</u> Norton R, Hyder A, Bishai D, *et al.* Unintentional Injuries. In: *Disease Control Priorities in* <u>Developing Countries</u>. Oxford University Press, USA2006.
- <u>34</u> Grimm M, Treibich C. Determinants of road traffic crash fatalities across Indian states. <u>Health Econ Published Online First: 30 August 2012. doi:10.1002/hec.2870</u>
- <u>35</u> Ngo AD, Rao C, Phuong Hoa N, *et al.* Road traffic related mortality in Vietnam: Evidence
   <u>for policy from a national sample mortality surveillance system. *BMC Public Health* <u>2012</u>;<u>12</u>:561.
  </u>
- <u>36 Hsiao M, Morris SK, Bassani DG, et al. Factors Associated with Physician Agreement on</u> <u>Verbal Autopsy of over 11500 Injury Deaths in India. *PLoS ONE* 2012;7:e30336.</u>
- 37 Singh H, Dhattarwal SK. Pattern and distribution of injuries in fatal road traffic accidents in Rohtak (Haryana). Journal of Indian Academy of Forensic Medicine 2004;**26**:20–3.
- 38 Dandona R, Mishra A. Deaths due to road traffic crashed in Hyderabad city in India: need for strengthening surveillance. *Natl Med J India* 2004;**17**:74–9.
- <u>39</u> Sahdev P, Lacqua MJ, Singh B, *et al.* Road traffic fatalities in Delhi: causes, injury patterns, and incidence of preventable deaths. *Accident Analysis & Prevention* 1994;**26**:377–84.

| 1                                      |  |
|----------------------------------------|--|
| 4                                      |  |
| 5                                      |  |
| 6                                      |  |
| 7                                      |  |
| 8                                      |  |
| 9                                      |  |
| 10                                     |  |
| 14                                     |  |
| 11                                     |  |
| 12                                     |  |
| 13                                     |  |
| 14                                     |  |
| 12<br>13<br>14<br>15<br>16<br>17<br>18 |  |
| 16                                     |  |
| 17                                     |  |
| 10                                     |  |
| 10                                     |  |
| 19                                     |  |
| 20                                     |  |
| 21                                     |  |
| 21<br>22                               |  |
| 23                                     |  |
| 24                                     |  |
|                                        |  |
| 25                                     |  |
| 26                                     |  |
| 27                                     |  |
| 28                                     |  |
| 29                                     |  |
| 30                                     |  |
| 31                                     |  |
| 22                                     |  |
| 32<br>33<br>34                         |  |
| 33                                     |  |
| 34                                     |  |
| 35<br>36                               |  |
| 36                                     |  |
| 37                                     |  |
| 38                                     |  |
| 39                                     |  |
|                                        |  |
| 40                                     |  |
| 41                                     |  |
| 42                                     |  |
| 43                                     |  |
| 44                                     |  |
| 45                                     |  |
| 46                                     |  |
|                                        |  |
| 47                                     |  |
| 48                                     |  |
| 49                                     |  |
| 50                                     |  |
| 51                                     |  |
| 52                                     |  |
| 53                                     |  |
| 53<br>54                               |  |
| 54                                     |  |
| 55                                     |  |
| 56                                     |  |
| 57                                     |  |
| 58                                     |  |
| 59                                     |  |
| 60                                     |  |
| 1111                                   |  |

### <u>40</u> Bhattacharjee J, Bora D, Sharma RS, *et al.* Unnatural deaths in Delhi during 1991. *Med Sci* <u>Law 1996;36:194–8.</u>

- <u>41</u> Jain A, Menezes RG, Kanchan T, *et al.* Two wheeler accidents on Indian roads--a study \_\_\_\_\_ Formatted: French (France) <u>from Mangalore, India. J Forensic Leg Med 2009;16:130–3.</u>
- 42 Gururaj G, Shastry KVR, Chandramouli AB, *et al. Traumatic brain injury*. Bangalore: National Institute of Mental Health and Neuro Sciences, 2005.
- 43 Colohan AR, Alves WM, Gross CR, *et al.* Head injury mortality in two centers with different emergency medical services and intensive care. *J Neurosurg Pediatrics* 1989;**71**:202–7.
- 44 National Crime Records Bureau. Accidental Deaths and Suicides in India, 2011. Ministry of Home Affairs, Government of India2011.
- 45 Transport Research Wing, Ministry of Road Transport & Highways. Basic Road Statistics of India. Government of India 2012.
- <u>46</u> Transport Research Wing, Ministry of Road Transport & Highways. Road Transport Year Book (2009-10 & 2010-11). Government of India 2012.
- 47 Registrar General of India and Centre for Global Health Research. *Causes of Death in* India, 2001-2003: Sample Registration System. Government of India 2009.

#### FIGURE LEGENDS

Figure 1: Road traffic injury deaths, age-standardized death rate, and cumulative risk (age 0-69 years) across states and regions of India, by gender.
Death rates are standardized to the 2005 United Nations estimated Indian population. Symbol size is proportional to sample size. Northeast states include Sikkim, Arunachal Pradesh, Nagaland, Manipur, Mizoram, Tripura, and Meghalaya. Total estimates include the 80 male and

19 female deaths from Pondicherry, Chandigarh, Uttarakhand, Dadra & Nagar Haveli, A&N Islands, Daman & Diu, Lakshadweep, and Goa. CHT=Chhatisgarh.

#### Figure 2: Deceased mode of transportation, place of death, and timing of death.

(A) Deceased mode of transportation in present study compared to National Crime Records Bureau 2005 Report. Shaded line represents vulnerable road users (defined as road users without a rigid barrier protecting against traumatic forces, i.e. pedestrian, bicyclist, motorcyclist, and three wheelers). Percentages from present study are weighted by state and rural/urban residence. T=estimated/reported number of deaths in 2005 (in thousands). (B) Place of death and (C) timing of death based on verbal autopsy narratives. Shaded lines represent deaths that are reported as occurring at the scene of collision or occurring instantly (defined as within 5 minutes).

### Figure 3: Reported injuries from 1124 verbal autopsy narratives (49% of all 2299 RTI deaths).

Percentages refer to those in each row with given injury (columns). \*Values in bold denote two by two chi square tests with p<0.05 (excluding unknowns). Abdominal and spinal injuries were also reported but not shown due to small numbers (61 and 25 cases, respectively).

### LIST OF ACRONYMS Confidence interval CI ICD-10 International Statistical Classification of Diseases and Related Health Problems, 10th Revision LMIC Low- and middle-income countries Million Death Study MDS NCRB National Crime Records Bureau RGI Registrar General of India RTI Road traffic injury SRS Sample registration system UN **United Nations** World Health Organization WHO



#### Road traffic injury mortality and its mechanisms in India: nationally representative mortality survey of 1.1 million homes

| Journal:                                              | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Manuscript ID:                                        | bmjopen-2013-002621.R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Article Type:                                         | Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Date Submitted by the Author:                         | 17-Jul-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| Complete List of Authors:                             | Hsiao, Marvin; University of Toronto, Centre for Global Health Research;<br>University of Toronto, Department of Surgery<br>Malhotra, Ajai; VCU Medical Center, Virginia Commonwealth University,<br>Department of Surgery<br>Thakur, JS; Post Graduate Institute of Medical Education and Research,<br>Department of Community Medicine<br>Sheth, Jay; Smt. N.H.L. Municipal Medical College,<br>Nathens, Avery; University of Toronto, Department of Surgery;<br>Sunnybrook Health Sciences Centre, Sunnybrook Research Institute<br>Dhingra, Neeraj; National AIDS Control Organization,<br>Jha, Prabhat; University of Toronto, Centre for Global Health Research |  |  |  |  |  |
| <b>Primary Subject<br/>Heading</b> :                  | Epidemiology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Secondary Subject Heading:                            | Global health, Public health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Keywords:                                             | road traffic injury, verbal autopsy, India, low- and middle-income countries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                       | Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| STROBE_checklist_BMJ-Open_cross-sectional-studies.doc |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |

SCHOLARONE<sup>™</sup> Manuscripts

### Road traffic injury mortality and its mechanisms in India: nationally representative mortality survey of 1.1 million homes

Marvin Hsiao, Ajai Malhotra, JS Thakur, Jay K Sheth, Avery B Nathens, Neeraj Dhingra, Prabhat Jha, for the Million Death Study Collaborators.

Centre for Global Health Research, Li Ka Shing Knowledge Institute, St Michael's Hospital, University of Toronto, Toronto, Canada (M Hsiao MD, Prof P Jha DPhil); Division of General Surgery, Department of Surgery, University of Toronto, Toronto, Canada (M Hsiao MD, Prof AB Nathens MD); Department of Surgery, VCU Medical Center, Virginia Commonwealth University, Richmond, USA (Prof A Malhotra MD); Department of Community Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India (JS Thakur MD); Smt. N.H.L. Municipal Medical College, Ahmedabad, India (JK Sheth MD); Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada (Prof AB Nathens MD); National AIDS Control Organization, New Delhi, India (N Dhingra MD)

Correspondence to: Marvin Hsiao Centre for Global Health Research, Li Ka Shing Knowledge Institute, St Michael's Hospital, and Division of General Surgery, Department of Surgery, University of Toronto 30 Bond Street, Toronto, Ontario, Canada M5B 1W8 <u>marvin.my.hsiao@gmail.com</u> +1 416-864-6042 (phone) / +1 416-864-5256 (fax)

Keywords: Road traffic injury; verbal autopsy; India; low- and middle-income countries

Word count: Text: 3361

#### **ABSTRACT:**

**Objectives**: To quantify and describe the mechanism of road traffic injury (RTI) deaths in India. **Design**: We conducted a nationally representative mortality survey where at least two physicians coded each non-medical field staff's verbal autopsy reports. RTI mechanism data were extracted from the narrative section of these reports.

Setting: 1.1 million homes in India.

Participants: Over 122 000 deaths at all ages from 2001-2003.

**Primary and secondary outcome measures**: Age- and sex-specific mortality rates, place and timing of death, modes of transportation, and injuries sustained.

**Results**: The 2299 RTI deaths in the survey correspond to an estimated 183 600 RTI deaths or about 2% of all deaths in 2005 nationally, of which 65% occurred in males between the ages of 15-59 years. The age-adjusted mortality rate was greater in males than in females, in urban than in rural areas, and was notably higher than that estimated from national police records. Pedestrians (68 000), motorcyclists (36 000), and other vulnerable road users (20 000) constituted 68% of RTI deaths (124 000) nationally. Among the study sample, the majority of all RTI deaths occurred at the scene of collision (1005/1733, 58%), within minutes of collision (883/1596, 55%), and/or involved a head injury (691/1124, 62%). Compared to non-pedestrian RTI deaths, about 55 000 (81%) of pedestrian deaths were associated with less education and living in poorer neighbourhoods.

**Conclusions**: In India, RTI cause a substantial number of deaths, particularly among pedestrians and other vulnerable road users. Interventions to prevent collisions and reduce injuries might address over half of the RTI deaths. Improved pre-hospital transport and hospital trauma care might address just over a third of the RTI deaths.

#### **ARTICLE SUMMARY**

#### Article focus

 To directly estimate the age- and sex-specific mortality rates and describe the place and timing of death, modes of transportation, and injuries sustained for road traffic injury (RTI) deaths in India using a nationally representative mortality survey of 1.1 million homes.

#### Key messages

- Road traffic injuries cause a substantial number of avertable deaths, particularly in males of productive working age and among pedestrians and other vulnerable road users.
- Preventative interventions should be emphasized as the majority of all RTI deaths occurred at the scene of collision, within minutes of collision, and/or involved a head injury.
- Properly designed mortality survey with verbal autopsy narratives can provide muchneeded data to assist RTI prevention efforts.

#### Strengths and limitations of this study

- This study is the first nationally representative survey of the causes of death in India and overcomes limitations of existing data sources including regional injury surveys, hospital series, and national police reports.
- Limitations of the study include potential misclassification of deaths by physician coders, the use of layperson narratives with a potential for recall bias and inaccuracies, and limited ability to forward project study results given the rapid changes in motorization in India.

#### INTRODUCTION

Road traffic injuries (RTI) area large and growing public health burden, especially in low-and middle-income countries (LMIC) where 90% of the world's deaths due to RTI are estimated to occur.[1] There are few high-quality epidemiologic data on RTI to guide the development, implementation, and surveillance of evidence-based policy and programs in LMICs.[2-4]

The number of deaths due to RTI in India is projected to rise with increasing motorization.[1,5] Aside from a few regional injury surveys,[6-11] the current data on the numbers and mechanisms of RTI deaths in India rely on police or hospital records, both of which can substantially underestimate death rates in the poor, rural, and uneducated people who still constitute large proportions of the Indian population.[2-4,12,13]

The World Health Organization (WHO), using indirect modeling methods, estimated about 202 000 RTI deaths in India in 2004.[14,15] No study has validated this estimate with direct measurement nor documented detailed RTI mechanism for India nationally. Here, we estimate the regional, age- and sex-specific mortality rate and risk of RTI death in India using data from the Million Death Study (MDS). We also report the modes of transportation, place and timing of death, and injuries sustained in RTI deaths.

**BMJ Open** 

#### METHODS

Study Design: The MDS is an on-going nationally representative survey designed to determine the causes and risk factors of death in India, organized by the Registrar General of India (RGI). The design, methodology, and preliminary findings of the MDS have been described elsewhere.[16-19] In brief, the MDS used an enhanced version of verbal autopsy (known as the routine, reliable, representative, re-sampled household investigation of mortality with medical evaluation or RHIME) to monitor a nationally representative sample of 1.1 million households in the Sample Registration System (SRS). Within six months of every death occurring in these households from 2001-3, a trained, nonmedical RGI surveyor interviewed a relative or closeacquaintance of the deceased to obtain the symptoms and events around the death using structured questions and a local language narrative guided by a specific symptom list. These records were converted into electronic records and emailed to two of 140 trained physicians who, independently and anonymously, assigned an underlying cause of death (with allocation determined randomly based only on the physician's ability to read the local language), using guidelines for the major causes of death.[20] Records were assigned cause of death in threedigit International Statistical Classification of Diseases and Related Health Problems, 10th revision (ICD-10).[21] Records where coders disagreed on the cause of death underwent anonymous reconciliation. Continuing disagreements were adjudicated by a third senior physician. Five percent of households were randomly resurveyed and the results were consistent within families of ICD-10 codes.[16] Participation in the SRS is on a voluntary basis and oral consent was obtained under the confidentiality and consent procedures of the Registration of Births and Deaths Act, 1969.

**Road Traffic Injury Deaths:** The RTI deaths in this study were of people who died between 2001 and 2003 with a final assigned ICD-10 code within V01-V89. We translated the open-ended narratives into English from 14 local languages, and systematically extracted the modes

#### **BMJ Open**

of transportation, place and timing of death, and injuries sustained from 2157 of the 2299 RTI deaths using a standardized data extraction tool and procedure (the remaining 142 deaths, 6%, had missing or illegible narratives). For these four data elements, there were substantial interrater agreement between two investigators and two research assistants who were trained and independently extracted data from the narratives of a random 10% of RTI deaths (lowest kappa statistic was greater than 0.69 for all pair-wise comparisons between the four data extractors; data not shown). The two research assistants then independently extracted data from all narratives. Adjudication was done by an investigator (MH) for discrepancies in extracted data.

**Analysis:** The age and sex-specific proportion of RTI deaths within the 2001-2003 survey was applied to the 2005 United Nations (UN) estimates of the number of deaths from all causes in India, after weighting for sampling probability for each rural or urban stratum per state (although such weighting made little difference because the study was nationally representative).[18.22] The 2005 UN death estimates were used so as to correct for the slight undercounts reported in the total death rates in the SRS [23,24] and to account for the 12% of enumerated deaths without completed field visits (mostly due to out-migration of the family or from incomplete field records). The proportion of these missed deaths was similarly dispersed across sex, age, and states. Use of 2003 or 2004 UN death totals yielded nearly identical results (data not shown). The 99% confidence intervals (99%CI) for mortality rate were calculated based on the weighted number of study deaths. State- and rural/urban-specific estimates of the number, mortality rate, and lifetime risk of RTI death were calculated by partitioning the UN national death totals according to relative SRS death rates as previously described. [18,25,26] Urban and rural status was defined according to the Census of India. Logistic regression was used to compare the socio-demographic traits of pedestrian and non-pedestrian RTI deaths. Household fuel type was used as a measure of community wealth, based on earlier principal component analyses [18]: high asset neighbourhoods had >50% of households that used gas, electricity, or kerosene; low

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

#### **BMJ Open**

asset or poor neighbourhoods used primarily coal, firewood, or other. Attributable proportion was calculated for traits of pedestrian deaths compared to non-pedestrian RTI deaths.

The MDS received ethics approval from the review boards of the Post-Graduate Institute of Medical Education and Research in Chandigarh, India; St Michael's Hospital in Toronto, Canada; and the Indian Council of Medical Research's Health Ministry's Screening Committee.

#### RESULTS

The 2299 RTI deaths in the 2001-2003 survey correspond to an estimated 183 600 (99%CI 173 800-193 400) RTI deaths in India in 2005. The majority of these RTI deaths occurred in males (152 100 deaths, 82.8%; table 1). The age-standardized RTI mortality rate for males (26.2 per 100 000, 24.6-27.7) was higher than for females (5.7 per 100 000, 5.0-6.4). While the RTI mortality rate increased with age in both genders, the largest number of RTI deaths occurred in males between 15-59 years of age (118 900, 64.8%).

At these death rates and in the theoretical absence of other causes of death, males in India had a 2.1% (2.0-2.3) risk of dying from RTI before age 70, with the highest risks at ages 30-59 years; females had a 0.5% (0.4-0.5) risk of dying from RTI before age 70. Males in Haryana, Punjab, Tamil Nadu, and Uttar Pradesh had significantly higher risks (3.0-4.1%) than the national risk (figure 1). In contrast, males in Bihar, Jharkhand, Andhra Pradesh, Orissa, Gujarat, and West Bengal had significantly lower risks (1.3-1.6%) than the national risk of RTI deaths. Males living in urban areas had slightly higher age-standardized mortality rates and risks of RTI deaths (27.6 per 100 000; 2.4%, 2.1-2.6) compared to males living in rural areas (24.9 per 100 000; 2.0%, 1.8-2.1). By contrast, female RTI mortality rates and risks before age 70 varied much less across states and were similar in rural and urban areas (data not shown).

|                                     |                               | Study deaths       | s, 2001-2003 | BMJ Open               |                                               | All India, 2           | 005                            | Page 8 of 53           |
|-------------------------------------|-------------------------------|--------------------|--------------|------------------------|-----------------------------------------------|------------------------|--------------------------------|------------------------|
|                                     | Number of RTI<br>deaths / all | Proportion<br>RTI* | Rural (%**)  | Two coders immediately | All deaths / population<br>(millions, 2005 UN | Estimated RTI deaths§, | RTI death rateΨ<br>per 100 000 | Period risk<br>for RTI |
| 1                                   | coded deaths                  |                    |              | agree                  | estimates)                                    | thousands              | (99% CI)                       | death <sup>†</sup>     |
| <sup>2</sup> Male - age in years    |                               |                    |              |                        |                                               |                        | · · · ·                        |                        |
| 3 0-4                               | 44 / 11719                    | 0.4%               | 37 (76.7)    | 44                     | 1.2 / 67                                      | 4.9                    | 7.4 (6.5-8.4)¶                 | 0.04%                  |
| 4 5-14                              | 97 / 1926                     | 5.2%               | 86 (84.1)    | 87                     | 0.2 / 129                                     | 8.5                    | 6.6 (4.9-8.3)                  | 0.1%                   |
| 5 15-29                             | 605 / 4727                    | 13.0%              | 462 (68.9)   | 558                    | 0.4 / 163                                     | 47.1                   | 28.9 (25.9-31.9)               | 0.4%                   |
| <u>6</u> <u>30-44</u>               | 529 / 6817                    | 7.7%               | 385 (67.0)   | 477                    | 0.6 / 115                                     | 43.8                   | 37.9 (33.7-42.1)               | 0.6%                   |
| 7 45-59                             | 356 / 11731                   | 3.0%               | 249 (60.9)   | 312                    | 0.9 / 73                                      | 28.0                   | 38.4 (33.2-43.6)               | 0.6%                   |
| 8 60-69                             | 149 / 12120                   | 1.2%               | 117 (71.8)   | 133                    | 0.9 / 24                                      | 10.6                   | 44.0 (34.6-53.4)               | 0.5%                   |
| 9 >70                               | 123 / 18732                   | 0.6%               | 106 (81.2)   | 98                     | 1.3 / 14                                      | 9.1                    | 64.5 (49.1-80.0)               |                        |
| 10 All ages                         | 1903 / 67772                  | 2.8%               | 1442 (68.9)  | 1709                   | 5.3 / 585                                     | 152.1                  | 26.2                           | 2.1%†                  |
| 11 (% or 99% CI)<br>12              |                               |                    | ( )          | (89.8%)                |                                               | (143.2-161.0)          | (24.6-27.7)                    | (2.0-2.3)              |
| 13 Female - age in years            |                               |                    |              |                        |                                               |                        |                                |                        |
| 14 0-4                              | 50 / 11492                    | 0.4%               | 46 (93.4)    | 45                     | 1.2 / 61                                      | 5.0                    | 8.1 (7.1-9.1)¶                 | 0.04%                  |
| 15 <sub>5-14</sub>                  | 44 / 1955                     | 2.3%               | 38 (80.1)    | 43                     | 0.2 / 118                                     | 3.8                    | 3.2 (2.0-4.4)                  | 0.03%                  |
| 16 <sub>15-29</sub>                 | 72 / 4394                     | 1.5%               | 53 (60.5)    | 63                     | 0.3 / 150                                     | 5.3                    | 3.5 (2.4-4.6)                  | 0.1%                   |
| 17 <sub>30-44</sub>                 | 59 / 4055                     | 1.4%               | 39 (59.0)    | 50                     | 0.3 / 106                                     | 4.4                    | 4.1 (2.7-5.5)                  | 0.1%                   |
| 18 45-59                            | 70 / 6402                     | 1.1%               | 55 (70.9)    | 61                     | 0.5 / 69                                      | 6.0                    | 8.6 (5.9-11.3)                 | 0.1%                   |
| 19 <sub>60-69</sub>                 | 54 / 9016                     | 0.6%               | 42 (68.6)    | 52                     | 0.6 / 25                                      | 3.7                    | 14.8 (9.8-19.9)                | 0.2%                   |
| 20>70                               | 47 / 17343                    | 0.3%               | 33 (61.8)    | 35                     | 1.3 / 16                                      | 3.5                    | 21.6 (13.4-29.9)               |                        |
| 21 All ages                         | 396 / 54657                   | 0.7%               | 306 (69.8)   | 349                    | 4.5 / 546                                     | 31.5                   | 5.7                            | 0.5%†                  |
| 22 (% or 99% CI)                    |                               |                    |              | (88.1%)                |                                               | (27.5-35.6)            | (5.0-6.4)                      | (0.4-0.5)              |
| 23                                  |                               |                    |              |                        |                                               | (                      | ()                             | ()                     |
| 24 Total male and female, <70 years | 2129 / 86354                  | 2.4%               | 1609 (68.5)  | 1925                   | 7.2 / 1100                                    | 171.0                  | 15.5                           | 1.3%†                  |
| 25 (% or 99% CI)                    |                               |                    | × /          | (90.4%)                |                                               | (161.5-180.4)          | (14.7-16.4)                    | (1.3-1.4)              |
| 26 Total male and female, all ages  | 2299 / 122429                 | 1.8%               | 1748 (69.0)  | 2058                   | 9.8 / 1131                                    | 183.6                  | 16.2                           | 1.3%†                  |
| 27 (% or 99% CI)                    |                               |                    |              | (89.5%)                |                                               | (173.8-193.4)          | (15.4-17.1)                    | (1.3-1.4)              |
| 28                                  |                               |                    |              | /                      |                                               |                        |                                |                        |

<sup>30</sup> **Table 1: Road traffic injury deaths in the present study and estimated national totals for 2005, by age and gender.** \*Proportion of RTI deaths <sup>31</sup> compared to all deaths, weighted by state and residence (rural/urban). \*\*Percentage rural is weighted by state and residence (rural/urban). §Obtained by <sup>32</sup> multiplying the United Nations estimated total deaths in 2005 by the weighted proportions. ΨAge standardized to the 2005 United Nations estimated <sup>34</sup> Indian population; 99% CI shown are calculated based on weighted number of study deaths, which result in wider CI than those based on physician <sup>35</sup> agreement. †Annual RTI death rate multiplied by the duration of age range, except for the lifetime risk which is calculated between 0-69 years by <sup>36</sup> summation of the age specific period risks. ¶Crude death rate.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

47 48

46

Page 9 of 53

#### **BMJ Open**

The deceased mode of transportation was described in the narratives of 2105 (92%) of the RTI deaths. National estimates for the deceased mode of transportation were calculated, as those with unknown and known modes of transportation did not appear to differ with respect to the major socio-demographic traits (Supplementary Table 1). Vulnerable road users are those without a rigid barrier protecting against traumatic forces and include pedestrians, motorcyclists, bicyclists, and three-wheelers. They constituted a majority (68%; n=124 000, 99%CI 115 000-131 000) of RTI deaths, led by pedestrians (37%; n=68 000, 62 000-73 000) and motorcyclists (20%; n=36 000, 31 000-40 000) (figure 2). Drivers and passengers of motorized four-wheelers comprised 16% (n=31 000, 27 000-35 000) of RTI deaths. By contrast, the 2005 police reports, which use a different but compatible classification system to ICD-10, recorded only 33000 vulnerable road user deaths and only 9000 pedestrian deaths.[27] The most common types of vehicle to collide into the decedents were heavy transport vehicles and buses (37%; n=68 000, 61 000-74 000), followed by cars and vans (15%; n=28 000, 24 000-32 000). Single-vehicle incidents comprised 9% of deaths (n=17 000, 14 000-20 000). The most frequent combinations, resulting in 23% (n=42 000, 37 000-47 000) of RTI deaths, were collisions of heavy transport vehicles or buses with pedestrians and motorcyclists (data not shown).

The place and timing of death were described in the narratives of 1733 (75%) and 1596 (69%) of the RTI deaths respectively (figure 2; see supplementary table 1 for a summary of missing data from the narratives with respect to deceased characteristics). For these narratives, only the study proportion and not national estimates were made. Most RTI deaths occurred at the scene of collision (58%, 1005/1733) or instantly, defined as within 5 minutes (55%, 883/1596). Only 3% (45/1733) were labeled as potentially avertable with better pre-hospital transport as they occurred on scene but not instantly. Another 35% of deaths occurred en route (7%, 124/1733) or in hospital (28%, 481/1733).

#### **BMJ Open**

Injuries sustained by the deceased were reported from1124 narratives (49%). Head injuries were the most commonly reported (62%, 691/1124), of which 76% (524/691) were reported as isolated head injuries (figure 3). A greater percentage of motorcyclists (78%, 188/241) had head injuries reported compared to non-motorcyclists (57%, 457/807). After adjusting for age, sex, rural/urban, neighbourhood asset, and education, bicyclists and motorcyclists were more likely to have head injuries reported compared to non-vulnerable road users (adjusted OR 1.7, 1.2-2.5) (supplementary table 2).

Compared to non-pedestrian RTI deaths, pedestrian deaths occurred to those who had less education (or in the case of children age <15 years, have less educated parents) (adjusted OR 2.9, 99%CI 2.0-4.2), lived in poorer neighbourhoods (1.7, 1.1-2.5), were children or elderly adults (<15 years: 2.9, 1.8-4.5; >59 years: 1.7, 1.2-2.4), were female (1.5, 1.2-2.2), and lived in urban areas (1.5, 1.1-2.2) (table 2). If pedestrian deaths had the same proportion of secondary or higher education as non-pedestrian RTI deaths, there would be 406/825 (49%) fewer pedestrian deaths, corresponding to approximately 33 000 deaths nationally in 2005. The corresponding attributable proportion for living in richer versus poorer neighbourhoods would be 265/825 (32%) or approximately 22 000 deaths nationally. Within the narratives we could code, there were no differences between pedestrians and non-pedestrian RTI deaths in timing of death, place of death, reported injuries, or reported routine use of alcohol or smoking (data not shown).

|                                          | Pedestrian /<br>Non-Pedestrian<br>Total=825/1280 | Adjusted OR^<br>(99% CI) | Attributable<br>Pedestrian Deaths<br>(% of all 825<br>pedestrian deaths) |
|------------------------------------------|--------------------------------------------------|--------------------------|--------------------------------------------------------------------------|
| Education*                               |                                                  |                          |                                                                          |
| Secondary or higher                      | 112/382                                          | ref                      |                                                                          |
| Primary or middle                        | 248/450                                          | 1.8 (1.3-2.6)            | 110 ] 406 (49%                                                           |
| Below primary                            | 451/423                                          | 2.9 (2.0-4.2)            | 296 -                                                                    |
| Unknown                                  | 14/25                                            | 1.6 (0.6-4.2)            | N/A                                                                      |
| Neighbourhood Asset                      |                                                  |                          |                                                                          |
| High                                     | 137/320                                          | ref                      |                                                                          |
| Low                                      | 643/895                                          | 1.7 (1.1-2.5)            | 265 (32%)                                                                |
| Unknown                                  | 45/65                                            | 1.5 (0.8-2.8)            | N/A                                                                      |
| Age in years                             |                                                  |                          |                                                                          |
| 15-59 (driving ages)                     | 497/1046                                         | ref                      |                                                                          |
| <15 (children)                           | 144/74                                           | 2.9 (1.8-4.5)            | $\frac{94}{76}$ ] 170 (21%)                                              |
| >59 (elderly adults)                     | 184/160                                          | 1.7 (1.2-2.4)            | 76 - 76 - 76                                                             |
| Sex                                      |                                                  |                          |                                                                          |
| Male                                     | 621/1121                                         | ref                      |                                                                          |
| Female                                   | 204/159                                          | 1.5 (1.1-2.2)            | 68 (8%)                                                                  |
| Location                                 |                                                  |                          |                                                                          |
| Rural                                    | 643/962                                          | ref                      |                                                                          |
| Urban                                    | 182/318                                          | 1.5 (1.1-2.2)            | 61 (7%)                                                                  |
| Occupation                               |                                                  |                          |                                                                          |
| Salaried / Wage Earner / Professional    | 229/517                                          | ref                      |                                                                          |
| Cultivator / Agricultural labour / Other | 162/300                                          | 0.9 (0.6-1.3)            | N/A                                                                      |
| Non-worker / Children <15 years          | 433/463                                          | 1.2 (0.9-1.6)            | N/A                                                                      |
| Unknown                                  | 1/0                                              | N/A                      | N/A                                                                      |
| Routine Alcohol Use**                    |                                                  |                          |                                                                          |
| No                                       | 494/877                                          | ref                      |                                                                          |
| Yes                                      | 145/260                                          | 1.1 (0.7-1.5)            | N/A                                                                      |
| Unknown                                  | 42/69                                            | 1.0 (0.5-1.9)            | N/A                                                                      |

**Table 2: Characteristics of pedestrian RTI deaths and attributable proportions.** \*Education of deceased adults or, in cases of deceased children <15 years, education of respondent. \*\*Excludes 218 children. ^Odds ratios are adjusted for all other variables in this table except for alcohol use; the odds ratios for alcohol use are adjusted for all other variables in this table.

#### DISCUSSION

RTI is an important cause of death in India, causing 183 600 deaths in 2005, or about 2% of all

deaths.[22] Much of the deceased were men between ages 15-59 years. Males had a four-fold

#### BMJ Open

higher cumulative risk of RTI death compared to females before the age of 70. Among the major states, there was approximately 3-fold variation in the age-standardized RTI death rate and cumulative risk for males.

Our estimated number of RTI deaths is more than 50% greater than the 118 265 deaths reported in the official police statistics of the National Crime Records Bureau (NCRB) in 2005.[27] Compared to our estimates, the extent of under-reporting of the crude death rate in major states by NCRB ranged from <1% to about 80% (supplementary table 3). Existing regional population-based injury surveys in India support our findings and also report higher crude RTI death rates than NCRB statistics.[8,11] Under-reporting of RTI deaths in police statistics has been reported in India and other LMIC.[28-30] A study in urban India comparing both hospital- and community-based RTI data to police records identified factors contributing to under-reporting that included the deceased believed to be at fault, collision resulting from hit-and-runs, limited police resources, and the lack of a standard police reporting protocol by hospitals.[28] The factors contributing to police under-reporting, especially in rural India, require further examination. Our estimated number of RTI deaths in 2005 was consistent with the WHO estimate for 2004.[14] However, we observed a slightly higher male proportion (83% MDS vs. 77% WHO, all ages) and a higher proportion of male deaths between 15-59 years (65% MDS vs. 61% WHO).

Almost three-quarters of all RTI deaths in India were of pedestrians and other vulnerable road users. In contrast, a much lower proportion (27%) was reported by the NCRB (figure 2). This difference equated to 59 000 pedestrian and 32 000 other vulnerable road user deaths that were not included in the 2005 NCRB records. Existing RTI studies based on regional surveys and hospital series also reported a high proportion (>60%) of vulnerable road user deaths similar to our findings.[11,12,30-32] Since the majority of vulnerable road users were pedestrians, our

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

#### **BMJ Open**

findings suggested that RTI deaths in individuals who were less educated, poor, female or live in urban areas may have been disproportionally excluded from the NCRB records. While poverty and education are not likely to be in the direct causal pathway of pedestrian deaths, they nonetheless point to other associated risk factors. Indeed, 55 000 pedestrian deaths in 2005 (81%) was associated with lower education or living in poorer neighbourhoods compared to non-pedestrian RTI deaths. While the less educated and the poor likely travelled more often by foot, they might also be exposed to undetermined environmental (neighbourhoods with unsafe roads), biological (poor vision or decreased mobility due to poor health), and behavioral (alcohol or other substance use) risk factors for pedestrian death.[12, 33, 34] Further studies are needed to better understand pedestrian deaths in LMIC.

Over half of RTI deaths occurred instantly at the scene of collision and/or had head injury reported. These findings, together with existing RTI hospital series and regional surveys in India, make a strong argument that investments in primary and secondary prevention could potentially avert the greatest proportion of RTI deaths. To address the high proportion of instant deaths and head injuries among RTI deaths in India, specific interventions that are effective and based on studies in LMIC should be emphasized; these may include speed bumps, motorcycle helmets, and increasing fines and license suspensions for rule infractions.[33] In contrast, improving pre-hospital transport and hospital trauma care, could only potentially affect the 38%who died on scene with delayed hospital transport (3%), en route to hospital (7%), or in hospital (28%).

Our study is the first nationally representative survey of the causes of death in India. The simple descriptive statistics provide clear evidence on the large and avertable burden from RTI, particularly among productive age adults and pedestrians. To the best of our knowledge, only one recent study in Vietnam has used similar methods to analyze RTI deaths and policy implications on a national scale.[35]

#### **BMJ Open**

Our study faced certain limitations. First, we might have misclassified certain causes of death

including suicide as RTI deaths. However, the extent of misclassification should be minimal since the RHIME verbal autopsy method was shown to be robust in discerning between types of injury deaths[36] and since the immediate two-physician agreement was high for RTI deaths(89.5%, table 1). Furthermore, suicides cause about 200 000 deaths in India annually but few are due to RTI.[19] Second, since the modes of transportation, place and timing of death, and injuries sustained were extracted from layperson open-ended narratives, the data accuracy may be in question. For example with the deceased mode of transportation, the extent of misclassification (by our study) or misreporting (by NCRB) that contributed to the differences between the two sources is uncertain. With reported injuries, our findings from these narratives most likely undercounted less visible injuries (chest, abdomen, and spine) compared to highly visible injuries such as bleeding and deformity for head and extremity injuries. Nevertheless, our findings are consistent with available Indian regional surveys and hospital series on the mode of transportation[11,12,30-32,37] place and timing of death,[1,37-41] and injuries sustained.[12,37,42,43] Third, since the narrative was not designed specifically to capture RTI death characteristics, over 25% of deaths had missing data for mode of transportation, place of death, timing of death, or reported injuries (supplementary table 1). Thus, our findings for these elements extracted from the narratives may be less representative of the decedents who lived in rural or poor areas. Finally, reliable forward projection of the number of RTI deaths beyond 2005 was not possible since the increase in the NCRB reported number of RTI deaths of 140% from 2005 to 2011 appeared to outpace the rate of population growth.[44] As the proportion of vulnerable road user deaths remained stable during this period in the NCRB reports, we postulated that this increase represented an actual increase in RTI death totals rather than more accurate reporting. Furthermore, given the rapid economic expansion and concurrent changes in motorization including the types of vehicle sharing the road and road infrastructure, [45,46] our

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

#### **BMJ Open**

results on deceased mode of transportation, place and timing of death, and injuries sustained may not reflect the current Indian scenario. An analysis of the trend from 2001-2014 is planned pending ongoing data collection in the MDS.

In India, RTI is a significant cause of preventable death, particularly in males of productive working age and among pedestrians, bicyclists, and motorcyclist. We have shown that properly designed simple verbal autopsy narratives can document the much needed surveillance data on the numbers, rates, risks, and basic RTI mechanism such as modes of transportation, timing of death, place of death, and injuries sustained. Our findings suggested that investment in primary and secondary prevention could address a large proportion of avoidable RTI deaths.

#### ACKNOWLEDGEMENTS

We thank the Office of the RGI for the ongoing productive collaboration on the MDS, C Ramasundarahettige for technical assistance, M Puri and S Levitt for data extraction. The opinions expressed in this article are those of the authors and do not necessarily represent those of the Government of India or the RGI.

#### **COMPETING INTERESTS**

We declare that we have no competing interests.

#### FUNDING

This study is supported by grants from the John E Fogarty International Center of the National Institutes of Health (R01-TW05991–01 and TW07939-01), the Bill & Melinda Gates Foundation through the Disease Control Priorities Network Project, and the University of Toronto (to PJ); the Canada Research Chair Programme (to PJ and ABN); and the Canadian Institutes of Health Research Doctoral Award (to MH). The funding sources had no role in the study design; data

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

collection, analysis, interpretation; writing of the manuscript; or decision to submit for publication. The senior author had full access to all the data in the study and had final responsibility for the decision to submit this study for publication.

#### **AUTHOR'S CONTRIBUTION**

PJ and the MDS Collaborators (appendix) designed, planned, the executed the MDS in close collaboration with the Office of the Registrar General of India (RGI). MH and PJ performed the data analysis. All authors contributed to data interpretation, revisions of the manuscript, and provided final approval. PJ is the guarantor for this report.

#### DATA SHARING STATEMENT

Data used in this study are the property of the Registrar General of India and the overall mortality results have been published in 2009.[47] This specific analyses is produced under an agreement with CGHR.

#### REFERENCES

- Peden M, Scurfield R, Sleet D, *et al.* World report on road traffic injury prevention: World Health Organization 2004;1–244.
- 2 Chisholm D, Naci H, Hyder AA, *et al.* Cost effectiveness of strategies to combat road traffic injuries in sub-Saharan Africa and South East Asia: mathematical modelling study. *BMJ* 2012;**344**:e612.
- 3 The PLoS Medicine Editors. Preventing Road Deaths—Time for Data. *PLoS Med* 2010;**7**:e1000257.
- 4 Barffour M, Gupta S, Gururaj G, *et al.* Evidence-based road safety practice in India: assessment of the adequacy of publicly available data in meeting requirements for comprehensive road safety data systems. *Traffic Inj Prev* 2012;**13 Suppl 1**:17–23.
- 5 Kopits E, Cropper ML. *Traffic fatalities and economic growth*. World Bank Development Research Group Environment and Infrastructure, 2003.
- 6 Sathiyasekaran BW. Population-based cohort study of injuries. *Injury* 1996;27:695–8.
- 7 Varghese M, Mohan D. Transportation injuries in rural Haryana, North India. *In: Proceedings of the international conference on traffic safety* 2003;326–9.
- 8 WHO. Injury Prevention and Control: An epidemiological study of injuries in the area of Municipal Corporation of Delhi. *Regional Office for South-East Asia* 2003;1–18.
- 9 Gururaj G, Suryanarayana SP. Burden and impact of injuries: Results of population-based survey. *Proceedings of the 7th world conference on injury prevention* 2004;275–6.
- 10 Dandona R. Patterns of road traffic injuries in a vulnerable population in Hyderabad, India.

Injury Prevention 2006;**12**:183–8.

- 11 Dandona R, Kumar GA, Ameer MA, *et al.* Incidence and burden of road traffic injuries in urban India. *Inj Prev* 2008;**14**:354–9.
- 12 Gururaj G. Road traffic deaths, injuries and disabilities in India: current scenario. *Natl Med J India* 2008;**21**:14–20.
- 13 Garg N, Hyder A. Road traffic injuries in India: A review of the literature. Scand J of Public Health 2006;34:100–9.
- 14 World Health Organization. *The Global Burden of Disease: 2004 Update*. World Health Organization 2008.
- 15 Mathers CD, Bernard C, Moesgaard Iburg K, *et al.* Global Burden of Disease in 2002: data sources, methods, and results. Global Programme on Evidence for Health Policy Discussion Paper No. 54. World Health Organization 2003.
- 16 Jha P, Gajalakshmi V, Gupta PC, *et al.* Prospective Study of One Million Deaths in India: Rationale, Design, and Validation Results. *PLoS Med* 2006;**3**:e18.
- 17 Million Death Study Collaborators,. Causes of neonatal and child mortality in India: a nationally representative mortality survey. *Lancet* 2010;**376**:1853–60.
- 18 Dikshit R, Gupta PC, Ramasundarahettige C, *et al.* Cancer mortality in India: a nationally representative survey. *Lancet* 2012;**379**:1807–16.
- 19 Patel V, Ramasundarahettige C, Vijayakumar L, *et al.* Suicide mortality in India: a nationally representative survey. *Lancet* 2012;**379**:2343–51.
- 20 Sinha DN, Dikshit R, Kumar R, et al. Prospective Study of Million Deaths in India: Technical

| Page 19 of 53     | BMJ Open                                                                                         |
|-------------------|--------------------------------------------------------------------------------------------------|
| 1                 |                                                                                                  |
| 2<br>3<br>4       | document no VIII: Health care professional's manual for assigning causes of death based          |
| 5 6               | on RHIME household reports. RGI-CGHR, University of Toronto.                                     |
| 7<br>8            | 2011.http://www.cghr.org/mds (accessed 1 Aug2012).                                               |
| 9<br>10           |                                                                                                  |
| 11 21<br>12       | WHO. International Statistical Classification of Diseases and Related Health Problems,           |
| 13<br>14          | ICD-10: Three Volume Set. World Health Organization 2010.                                        |
| 15<br>16 22       | United Nations Populations Division. World population prospects (2008 revision).                 |
| 17<br>18          | 2009.http://www.un.org/esa/population/publications/wpp2008/ (accessed 2 July 2011).              |
| 19<br>20          |                                                                                                  |
| 21<br>22 23       | Mari Bhat PN. Completeness of India's sample registration system: an assessment using            |
| 23<br>24          | the general growth balance method. <i>Popul Stud</i> 2002; <b>56</b> :119–34.                    |
| 25<br>26          |                                                                                                  |
| 27 24<br>28       | Sivanandan V. An assessment of the completeness of death registration in India over the          |
| 29<br>30<br>31    | periods 1975-1978 and 1996-1999 under the generalized population model: an analysis              |
| 32<br>33          | based on SRS data. Mumbai: International Institute for Population Sciences2004.                  |
| 34<br>35 25       | Jha P, Kumar R, Khera A, et al. HIV mortality and infection in India: estimates from             |
| 36<br>37          | nationally representative mortality survey of 1.1 million homes. BMJ 2010;340:c621.              |
| 38<br>39          |                                                                                                  |
| 40 26<br>41       | Dhingra N, Jha P, Sharma VP, et al. Adult and child malaria mortality in India: a nationally     |
| 42<br>43          | representative mortality survey. <i>Lancet</i> 2010; <b>376</b> :1768–74.                        |
| 44<br>45 27       | National Crime Records Bureau. Accidental Deaths and Suicides in India, 2005. Ministry of        |
| 46<br>47          | Home Affairs, Government of India2005.                                                           |
| 48<br>49          |                                                                                                  |
| 50<br>51 28       | Dandona R, Kumar GA, Ameer MA, et al. Under-reporting of road traffic injuries to the            |
| 52<br>53<br>54    | police: results from two data sources in urban India. <i>Inj Prev</i> 2008; <b>14</b> :360–5.    |
| 55<br>56 29       | Alcorn T. Uncertainty clouds China's road-traffic fatality data. Lancet 2011; <b>378</b> :305–6. |
| 50 29<br>57<br>58 |                                                                                                  |
| 59<br>60          |                                                                                                  |
|                   | 19<br>For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                  |

- 30 Naci H, Chisholm D, Baker TD. Distribution of road traffic deaths by road user group: a global comparison. Inj Prev 2009;15:55-9. 31 Mohan D. The road ahead: Traffic injuries and fatalities in India. Transportation research and injury prevention programme, Indian Institute of Technology, Delhi2004. 32 Mohan D. Traffic safety and health in Indian cities. Journal of Transport and Infrastructure 2002;**9**:79–94. 33 Norton R, Hyder A, Bishai D, et al. Unintentional Injuries. In: Disease Control Priorities in Developing Countries. Oxford University Press, USA2006. 34 Grimm M, Treibich C. Determinants of road traffic crash fatalities across Indian states. Health Econ Published Online First: 30 August 2012. doi:10.1002/hec.2870 35 Ngo AD, Rao C, Phuong Hoa N, et al. Road traffic related mortality in Vietnam: Evidence for policy from a national sample mortality surveillance system. BMC Public Health 2012;**12**:561. 36 Hsiao M, Morris SK, Bassani DG, et al. Factors Associated with Physician Agreement on Verbal Autopsy of over 11500 Injury Deaths in India. *PLoS ONE* 2012;7:e30336. Singh H, Dhattarwal SK. Pattern and distribution of injuries in fatal road traffic accidents in Rohtak (Haryana). Journal of Indian Academy of Forensic Medicine 2004;26:20–3. Dandona R, Mishra A. Deaths due to road traffic crashed in Hyderabad city in India: need for strengthening surveillance. Natl Med J India 2004;17:74-9.
  - 39 Sahdev P, Lacqua MJ, Singh B, *et al.* Road traffic fatalities in Delhi: causes, injury patterns, and incidence of preventable deaths. *Accident Analysis & Prevention* 1994;**26**:377–84.

| 1              |            |                                                                                                      |
|----------------|------------|------------------------------------------------------------------------------------------------------|
| 2<br>3         | 40         | Bhattacharjee J, Bora D, Sharma RS, et al. Unnatural deaths in Delhi during 1991. Med Sci            |
| 4<br>5         |            |                                                                                                      |
| 6              |            | <i>Law</i> 1996; <b>36</b> :194–8.                                                                   |
| 7<br>8         | 41         | Jain A, Menezes RG, Kanchan T, <i>et al.</i> Two wheeler accidents on Indian roadsa study            |
| 9<br>10        | <b>T</b> 1 | Jain A, Menezes NO, Nanchan T, et al. Two wheeler accidents of indian roadsa study                   |
| 10<br>11<br>12 |            | from Mangalore, India. <i>J Forensic Leg Med</i> 2009; <b>16</b> :130–3.                             |
| 13<br>14       | 42         | Gururaj G, Shastry KVR, Chandramouli AB, et al. Traumatic brain injury. Bangalore:                   |
| 15<br>16       |            | National Institute of Mental Health and Neuro Sciences, 2005.                                        |
| 17<br>18       |            |                                                                                                      |
| 19<br>20       | 43         | Colohan AR, Alves WM, Gross CR, et al. Head injury mortality in two centers with different           |
| 21<br>22       |            | emergency medical services and intensive care. <i>J Neurosurg Pediatrics</i> 1989; <b>71</b> :202–7. |
| 23<br>24       |            |                                                                                                      |
| 25             | 44         | National Crime Records Bureau. Accidental Deaths and Suicides in India, 2011. Ministry of            |
| 26<br>27       |            | Home Affairs, Government of India2011.                                                               |
| 28<br>29       |            |                                                                                                      |
| 30<br>31       | 45         | Transport Research Wing, Ministry of Road Transport & Highways. Basic Road Statistics of             |
| 32<br>33       |            | India. Government of India 2012.                                                                     |
| 34             |            |                                                                                                      |
| 35<br>36       | 46         | Transport Research Wing, Ministry of Road Transport & Highways. Road Transport Year                  |
| 37<br>38       |            | Book (2009-10 & 2010-11). Government of India 2012.                                                  |
| 39<br>40       |            |                                                                                                      |
| 41<br>42       | 47         | Registrar General of India and Centre for Global Health Research. Causes of Death in                 |
| 43<br>44       |            | India, 2001-2003: Sample Registration System. Government of India 2009.                              |
| 45             |            |                                                                                                      |
| 46<br>47       |            |                                                                                                      |
| 48             |            |                                                                                                      |
| 49             |            |                                                                                                      |
| 50<br>51       |            |                                                                                                      |
| 52             |            |                                                                                                      |
| 53             |            |                                                                                                      |
| 54             |            |                                                                                                      |
| 55<br>56       |            |                                                                                                      |
| 56<br>57       |            |                                                                                                      |
| 58             |            |                                                                                                      |

#### FIGURE LEGENDS

## Figure 1: Road traffic injury deaths, age-standardized death rate, and cumulative risk (age 0-69 years) across states and regions of India, by gender.

Death rates are standardized to the 2005 United Nations estimated Indian population. Symbol size is proportional to sample size. Northeast states include Sikkim, Arunachal Pradesh, Nagaland, Manipur, Mizoram, Tripura, and Meghalaya. Total estimates include the 80 male and 19 female deaths from Pondicherry, Chandigarh, Uttarakhand, Dadra & Nagar Haveli, A&N Islands, Daman & Diu, Lakshadweep, and Goa. CHT=Chhatisgarh.

#### Figure 2: Deceased mode of transportation, place of death, and timing of death.

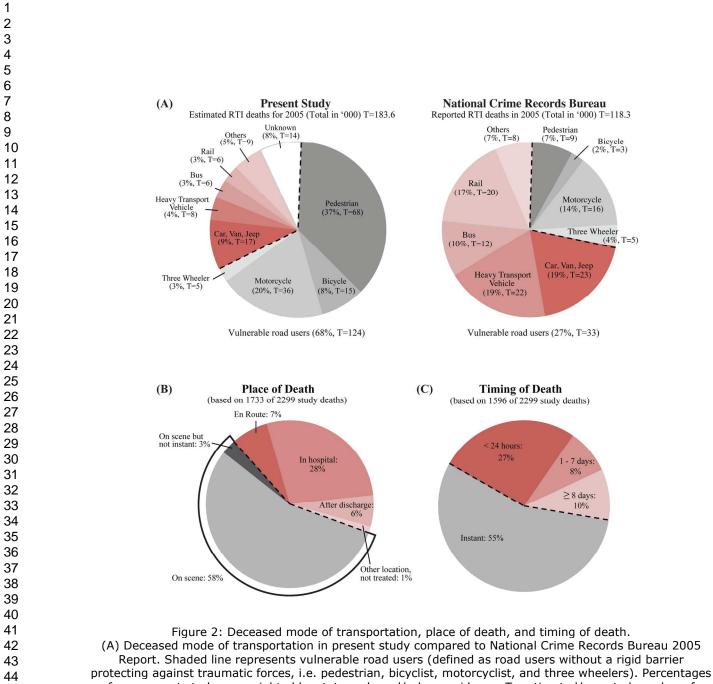
(A) Deceased mode of transportation in present study compared to National Crime Records Bureau 2005 Report. Shaded line represents vulnerable road users (defined as road users without a rigid barrier protecting against traumatic forces, i.e. pedestrian, bicyclist, motorcyclist, and three wheelers). Percentages from present study are weighted by state and rural/urban residence. T=estimated/reported number of deaths in 2005 (in thousands). (B) Place of death and (C) timing of death based on verbal autopsy narratives. Shaded lines represent deaths that are reported as occurring at the scene of collision or occurring instantly (defined as within 5 minutes).

# Figure 3: Reported injuries from 1124 verbal autopsy narratives (49% of all 2299 RTI deaths).

Percentages refer to those in each row with given injury (columns). \*Values in bold denote two by two chi square tests with p<0.05 (excluding unknowns). Abdominal and spinal injuries were also reported but not shown due to small numbers (61 and 25 cases, respectively).

### LIST OF ACRONYMS

| CI     | Confidence interval                                                                                |
|--------|----------------------------------------------------------------------------------------------------|
| ICD-10 | International Statistical Classification of Diseases and Related Health Problems, 10 <sup>th</sup> |
|        | Revision                                                                                           |
| LMIC   | Low- and middle-income countries                                                                   |
| MDS    | Million Death Study                                                                                |
| NCRB   | National Crime Records Bureau                                                                      |
| RGI    | Registrar General of India                                                                         |
| RTI    | Road traffic injury                                                                                |
| SRS    | Sample registration system                                                                         |
| UN     | United Nations                                                                                     |
| WHO    | World Health Organization                                                                          |
|        |                                                                                                    |


| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 13<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| $\begin{smallmatrix} & - \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \\ & 11 \\ & 12 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ $ |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| ∠ I<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 29<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| ১/<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 44<br>45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 45<br>46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 40<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 50<br>51<br>52<br>53<br>54<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 52<br>52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 53<br>54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |

|                      | Study RTI<br>deaths | Estimated RTI<br>Deaths 2005<br>('000) | Age standardized<br>RTI Death Rate<br>(per 100 000) | ·             | – Cumulative Risk (age 0-69 years) for Males (99% Cl) |
|----------------------|---------------------|----------------------------------------|-----------------------------------------------------|---------------|-------------------------------------------------------|
| State or Region      | Male / Female       | Male / Female                          | Male / Female                                       | ·             |                                                       |
| Haryana              | 137 / 20            | 5.4 / 1.0                              | 43.2 / 8.7                                          | 4.1 (2.9-5.2) | <b>_</b>                                              |
| Punjab               | 104 / 17            | 6.3 / 1.2                              | 42.8 / 7.7                                          | 4.0 (2.8-5.1) | ₽→                                                    |
| Tamil Nadu           | 133 / 29            | 12.4 / 2.4                             | 32.6 / 7.0                                          | 3.0 (2.3-3.6) | <b>_</b> _                                            |
| Uttar Pradesh        | 226 / 52            | 27.8 / 6.4                             | 31.0 / 7.1                                          | 2.5 (2.1-2.8) |                                                       |
| Jammu & Kashmir      | 56 / 13             | 1.9 / 0.5                              | 31.6 / 9.4                                          | 2.4 (1.1-3.7) |                                                       |
| Kerala               | 109 / 16            | 4.4 / 0.7                              | 22.6 / 3.4                                          | 2.2 (1.5-2.9) |                                                       |
| Himachal Pradesh     | 32 / 6              | 0.9 / 0.2                              | 25.5 / 4.2                                          | 2.2 (0.5-3.9) |                                                       |
| Maharashtra          | 106 / 20            | 15.6 / 2.6                             | 26.9 / 4.5                                          | 2.1 (1.7-2.5) | — <b>—</b>                                            |
| Rajasthan            | 107 / 17            | 7.7 / 1.8                              | 25.5 / 5.0                                          | 2.0 (1.5-2.5) | <b>B</b>                                              |
| Madhya Pradesh + CHT | 129 / 24            | 13.6 / 2.4                             | 27.9 / 6.2                                          | 2.0 (1.6-2.4) | <b></b>                                               |
| Northeast States     | 81 / 32             | 2.8 / 0.9                              | 22.0 / 12.3                                         | 1.9 (0.4-3.5) | <b></b>                                               |
| Karnataka            | 92 / 20             | 6.9 / 1.6                              | 21.8 / 5.4                                          | 1.8 (1.3-2.4) |                                                       |
| Delhi                | 32 / 5              | 2.0/0.3                                | 22.9 / 3.1                                          | 1.7 (0.8-2.6) | <b>_</b>                                              |
| Assam                | 54 / 8              | 2.9 / 0.5                              | 19.1 / 3.6                                          | 1.6 (0.9-2.3) | <b>_</b>                                              |
| Bihar + Jharkhand    | 118 / 23            | 12.1 / 1.9                             | 20.7 / 3.7                                          | 1.6 (1.3-2.0) | — <b>B</b> —                                          |
| Andhra Pradesh       | 82 / 12             | 9.6 / 1.6                              | 21.5 / 3.8                                          | 1.6 (1.2-2.0) | <b>_</b>                                              |
| Orissa               | 71 / 19             | 4.0 / 1.1                              | 19.6 / 5.4                                          | 1.5 (0.9-2.1) | <b>_</b>                                              |
| Gujarat              | 62 / 20             | 5.1 / 2.0                              | 16.9 / 7.2                                          | 1.4 (1.0-1.9) | <b>e</b>                                              |
| West Bengal          | 92 / 24             | 7.5 / 2.1                              | 16.0 / 4.9                                          | 1.3 (1.0-1.7) | _ <b>_</b>                                            |
| Rural                | 1442 / 306          | 103.0 / 22.5                           | 24.9 / 5.4                                          | 2.0 (1.8-2.1) | •                                                     |
| Urban                | 461 / 90            | 49.1 / 9.1                             | 27.6 / 6.1                                          | 2.4 (2.1-2.6) | -                                                     |
| Total Male           | 1903                | 152.1                                  | 27.1                                                | 2.1 (2.0-2.3) | $\diamond$                                            |
| Total Female         | 396                 | 31.5                                   | 5.8                                                 | 0.5 (0.4-0.5) | •                                                     |
|                      |                     |                                        |                                                     | 0             |                                                       |

Figure 1: Road traffic injury deaths, age-standardized death rate, and cumulative risk (age 0-69 years) across states and regions of India, by gender.

Death rates are standardized to the 2005 United Nations estimated Indian population. Symbol size is proportional to sample size. Northeast states include Sikkim, Arunachal Pradesh, Nagaland, Manipur, Mizoram, Tripura, and Meghalaya. Total estimates include the 80 male and 19 female deaths from Pondicherry, Chandigarh, Uttarakhand, Dadra & Nagar Haveli, A&N Islands, Daman & Diu, Lakshadweep, and Goa. CHT=Chhatisgarh.

160x111mm (300 x 300 DPI)



from present study are weighted by state and rural/urban residence. T=estimated/reported number of deaths in 2005 (in thousands). (B) Place of death and (C) timing of death based on verbal autopsy narratives. Shaded lines represent deaths that are reported as occurring at the scene of collision or occurring instantly (defined as within 5 minutes).

178x182mm (300 x 300 DPI)

| י<br>ר                                                             |                                      |
|--------------------------------------------------------------------|--------------------------------------|
| 2                                                                  |                                      |
| 3                                                                  |                                      |
| 2<br>3<br>4<br>5<br>6<br>7                                         |                                      |
| 5<br>6                                                             |                                      |
| 6                                                                  |                                      |
| 7                                                                  |                                      |
| ۰<br>۵                                                             |                                      |
| 0                                                                  |                                      |
| 9                                                                  | 0                                    |
| 1                                                                  | 0                                    |
|                                                                    | 1                                    |
| 1                                                                  | 2<br>3<br>4                          |
| 1                                                                  | 3                                    |
| 1                                                                  | 4                                    |
| 1                                                                  | 5                                    |
| 1                                                                  | 5<br>6<br>7<br>8                     |
| 4                                                                  | 7                                    |
| 1                                                                  | 1                                    |
| 1                                                                  | 8                                    |
| 1                                                                  | 9                                    |
| 2                                                                  | 0<br>1                               |
| 2                                                                  | 1                                    |
| 2                                                                  | 2                                    |
| ~                                                                  | 2                                    |
| 2                                                                  | 3                                    |
| 2                                                                  | 4                                    |
| 2                                                                  | 5                                    |
| 2                                                                  | 6                                    |
| 2                                                                  | 7                                    |
| 2                                                                  | 0                                    |
| 2                                                                  | 0                                    |
| 2                                                                  | 9                                    |
| 3                                                                  | 0                                    |
| 0                                                                  |                                      |
| J                                                                  | 1                                    |
| 3                                                                  | 1<br>2                               |
| 333                                                                | 1<br>2<br>3                          |
| 3<br>3<br>3<br>2                                                   | 1<br>2<br>3                          |
| 3<br>3<br>3<br>3                                                   | 1<br>2<br>3<br>4                     |
| 3<br>3<br>3<br>3<br>3                                              | 1<br>2<br>3<br>4<br>5                |
| 3<br>3<br>3<br>3<br>3<br>3                                         | 1<br>2<br>3<br>4<br>5<br>6           |
| 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                          | 1<br>2<br>3<br>4<br>5<br>6<br>7      |
| 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3      | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 |
| 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 123456789                            |
| 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>4                | 12345678901234567890                 |
| 4                                                                  | 0                                    |
| 4<br>4                                                             | 0                                    |
| 4<br>4<br>4                                                        | 0<br>1<br>2                          |
| 4<br>4<br>4<br>4                                                   | 0<br>1<br>2<br>3                     |
| 4<br>4<br>4<br>4<br>4                                              | 0<br>1<br>2<br>3<br>4                |
| 4<br>4<br>4<br>4                                                   | 0<br>1<br>2<br>3<br>4                |
| 4<br>4<br>4<br>4<br>4                                              | 0<br>1<br>2<br>3<br>4<br>5           |
| 4<br>4<br>4<br>4<br>4<br>4<br>4                                    | 0<br>1<br>2<br>3<br>4<br>5<br>6      |
| 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                          | 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7 |
| 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                     | 012345678                            |
| 4 4 4 4 4 4 4 4 4                                                  | 0123456789                           |
| 444444444                                                          | 01234567890                          |
| 4444444455                                                         | 012345678901                         |
| 4444444455                                                         | 012345678901                         |
| 4444444455                                                         | 012345678901                         |
| 4444444455555                                                      | 01234567890123                       |
| 44444444555555                                                     | 012345678901234                      |
| 444444445555555555555555555555555555555                            | 0123456789012345                     |
| 444444444555555555555555555555555555555                            | 01234567890123456                    |
| 444444444555555555555555555555555555555                            | 01234567890123456                    |
| 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5                            | 0123456789012345678                  |
| 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5                            | 0123456789012345678                  |
| 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5                            | 01234567890123456                    |

| Percent of 1124 RTI deaths with<br>injuries reported | 60% -<br>50% -<br>40% - |           | Part of mu<br>Isolated in | ltiple injuries<br>jury |
|------------------------------------------------------|-------------------------|-----------|---------------------------|-------------------------|
| 124 ]<br>ies re                                      | 30% -                   |           |                           |                         |
| ent of 1<br>injur                                    | 20%                     |           |                           |                         |
| Perce                                                | 10% -                   |           |                           |                         |
|                                                      | 0,0 =                   | Head      | Extremity                 | Chest                   |
|                                                      |                         | n (%)     | n (%)                     | n (%)                   |
| RTI deaths with reported                             |                         |           |                           |                         |
| injuries (N=1124)                                    |                         | 691 (62)  | 235 (21)                  | 120 (11)                |
| Sex                                                  |                         | 594 ((2)) | 104 (21)                  | 105 (11)                |
| Male (N=931)<br>Equals (N=102)                       |                         | 584 (63)  | 194 (21)                  | 105 (11)                |
| Female (N=193)<br>Place of Death                     |                         | 107 (55)  | 41 (21)                   | 15 (8)                  |
| Pre-hospital (N=492)                                 |                         | 322 (65)  | 56 (11)*                  | 44 (9)                  |
| Hospital or other $(N=457)$                          |                         | 291 (64)  | 142 (31)*                 | 58 (13)                 |
| Unknown (N=175)                                      |                         | 78 (45)   | 37 (21)                   | 18 (10)                 |
| Timing of Death                                      |                         | /0(15)    | 57 (21)                   | 10 (10)                 |
| Instant (N=347)                                      |                         | 216 (62)  | 28 (8)*                   | 29 (8)                  |
| Later (N=521)                                        |                         | 344 (66)  | 145 (28)*                 | 62 (12)                 |
| Unknown (N=256)                                      |                         | 131 (51)  | 62 (24)                   | 29 (11)                 |
| Mode of Transportation                               |                         | ~ /       | ~ /                       | ~ /                     |
| Motorcycle (N=241)                                   |                         | 188 (78)* | 51 (21)                   | 18 (7)                  |
| Non-motorcycle (N=807)                               |                         | 457 (57)* | 160 (20)                  | 95 (12)                 |
| Unknown (N=76)                                       |                         | 46 (61)   | 24 (32)                   | 7 (9)                   |

Figure 3: Reported injuries from 1124 verbal autopsy narratives (49% of all 2299 RTI deaths). Percentages refer to those in each row with given injury (columns). \*Values in bold denote two by two chi square tests with p<0.05 (excluding unknowns). Abdominal and spinal injuries were also reported but not shown due to small numbers (61 and 25 cases, respectively). 141x191mm (300 x 300 DPI)

| Pa | ge 27 of 53         | Na                   | rrative section |       | Tir        | ning of Death | 1     | BMJ Q      | Repof Death |       | Deceased    | Mode of Transp            | ortation | In          | jury Reported |       |
|----|---------------------|----------------------|-----------------|-------|------------|---------------|-------|------------|-------------|-------|-------------|---------------------------|----------|-------------|---------------|-------|
|    |                     | Missing              | Not missing     |       | Missing    | Not missing   |       | Missing    | Not missing |       | Missing     | Not missing               |          | Missing     | Not missing   |       |
| _  |                     | n (%)                | n (%)           | р     | n (%)      | n (%)         | р     | n (%)      | n (%)       | р     | n (%)       | n (%)                     | р        | n (%)       | n (%)         | р     |
| 1  | all RTI (n=2299)    | 142 (6.2)            | 2157 (93.8)     |       | 703 (30.6) | 1596 (69.4)   |       | 566 (24.6) | 1733 (75.4) |       | 194 (8.4)   | 2105 (91.6)               |          | 1175 (51.1) | 1124 (48.9)   |       |
|    | age                 |                      |                 |       |            |               |       |            |             |       |             |                           |          |             |               |       |
| 2  | <20 years           | 12 (2.9)             | 402 (97.1)      | 0.002 | 106 (25.6) | 308 (74.4)    | 0.015 | 90 (21.7)  | 324 (78.0)  | 0.133 | 37 (8.9)    | 377 (91.1)                | 0.687    | 199 (48.1)  | 215 (51.9)    | 0.172 |
| 3  | ≥20 years           | 130 (6.9)            | 1755 (93.1)     |       | 597 (31.7) | 1288 (68.3)   |       | 476 (25.3) | 1409 (75.0) |       | 157 (8.3)   | 1728 (91.7)               |          | 976 (51.8)  | 909 (48.2)    |       |
| 4  | sex                 |                      |                 |       |            |               |       |            |             |       |             |                           |          |             |               |       |
| 5  | male                | 118 (6.2)            | 1785 (93.8)     | 0.916 | 582 (30.6) | 1321 (69.4)   | 0.991 | 461 (24.2) | 1442 (75.8) | 0.336 | 161 (8.5)   | 1742 (91.5)               | 0.934    | 972 (51.1)  | 931 (48.9)    | 0.946 |
|    | female              | 24 (6.1)             | 372 (93.9)      |       | 121 (30.6) | 275 (69.4)    |       | 105 (26.5) | 291 (73.5)  |       | 33 (8.3)    | 363 (91.7)                |          | 203 (51.3)  | 193 (48.7)    |       |
| 6  | location            |                      |                 |       |            |               |       |            |             |       |             |                           |          |             |               |       |
| 1  | rural               | 125 (7.2)            | 1623 (92.9)     | 0.001 | 559 (32.0) | 1189 (68.0)   | 0.009 | 456 (26.1) | 1292 (73.9) | 0.004 | 143 (8.2)   | 1605 (91.8)               | 0.429    | 896 (51.3)  | 852 (48.7)    | 0.799 |
| 8  | urban               | 17 (3.1)             | 534 (96.9)      |       | 144 (26.1) | 407 (73.9)    |       | 110 (20.0) | 441 (80.0)  |       | 51 (9.3)    | 500 (90.7)                |          | 279 (50.6)  | 272 (49.4)    |       |
| 9  | neighbourhood asset |                      |                 |       |            |               |       |            |             |       |             |                           |          |             |               |       |
| 10 | low                 | 126 (7.5)            | 1548 (92.5)     | 0.001 | 552 (33.0) | 1122 (67.0)   | 0.000 | 451 (26.9) | 1223 (73.1) | 0.001 | 136 (8.1)   | 1538 (91.9)               | 0.468    | 883 (52.8)  | 791 (47.3)    | 0.057 |
|    |                     | 16 (3.2)             | 487 (96.8)      |       | 121 (24.1) | 382 (75.9)    |       | 97 (19.3)  | 406 (80.7)  |       | 46 (9.2)    | 457 (90.9)                |          | 241 (47.9)  | 262 (52.1)    |       |
| 11 | missing             | 0 (0.0)              | 122 (100.0)     |       | 30 (24.6)  | 92 (75.4)     |       | 18 (14.8)  | 104 (85.3)  |       | 12 (9.8)    | 110 (90.2)                |          | 51 (41.8)   | 71 (58.2)     |       |
| 12 | education           | 20 (1.0)             | 016 (06)        | 0.000 | 200 (20.2) |               | 0.004 | 220 (24.1) | 704 (75.0)  | 0.710 | 00 (0 1)    | 074 (01 ()                | 0.757    | 4(0 (40 1)  | 406 (50.0)    | 0.004 |
| 13 | below primary       | 38 (4.0)             | 916 (96)        | 0.000 | 289 (30.3) | 665 (69.7)    | 0.894 | 230 (24.1) | 724 (75.9)  | 0.719 | 80 (8.4)    | 874 (91.6)                | 0.757    | 468 (49.1)  | 486 (50.9)    | 0.094 |
| 14 | primary and above   | 100 (7.7)            | 1196 (92.3)     |       | 396 (30.6) | 900 (69.4)    |       | 321 (24.8) | 975 (75.2)  |       | 104 (8.0)   | 1192 (92.0)               |          | 682 (52.6)  | 614 (47.4)    |       |
|    | 8                   | 4 (8.2)              | 45 (91.8)       |       | 18 (36.7)  | 31 (63.3)     |       | 15 (30.6)  | 34 (69.4)   |       | 10 (20.4)   | 39 (79.6)                 |          | 25 (51.0)   | 24 (49.0)     |       |
|    | occupation          | (0, (0, 1))          | (70, (01, 0))   | 0.000 | 242 (22.0) | 10( ((7.1)    | 0.004 | 205(27.7)  | 524 (72.2)  | 0.016 | (0, (9, 1)) | (70, (01, 0))             | 0.701    | 201 (51 ()  | 259 (49 4)    | 0 757 |
| 16 | non-worker          | 60 (8.1)<br>81 (5.2) | 679 (91.9)      | 0.006 | 243 (32.9) | 496 (67.1)    | 0.094 | 205 (27.7) | 534 (72.3)  | 0.016 | 60(8.1)     | 679 (91.9)<br>1425 (01.4) | 0.701    | 381 (51.6)  | 358 (48.4)    | 0.757 |
| 17 | worker              | 81 (5.2)             | 1478 (94.8)     |       | 459 (29.4) | 1100 (70.6)   |       | 360 (23.1) | 1199 (76.9) |       | 134 (8.6)   | 1425 (91.4)               |          | 793 (50.9)  | 766 (49.1)    |       |
| 18 | missing             | 1 (100.0)            | 0 (0.0)         |       | 1 (100.0)  | 0 (0.0)       |       | 1 (100.0)  | 0 (0.0)     |       | 0 (0.0)     | 1 (100.0)                 |          | 1 (100.0)   | 0 (0.0)       |       |
| 10 |                     |                      |                 |       |            |               |       |            |             |       |             |                           |          |             |               |       |

<sup>19</sup> Supplementary Table 1: Summary of missing data. There are no missing values for age, sex, and location in the study population. The chi square test was used to determine the p values and excluded deaths with missing neighbourhood asset, education, or occupation. asset, euucu 

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

|                                        | Timing of  | Death wa | s Instant | PIECE SP   | en<br>eath was P | rehospital | Head Inj   | ury was Ro | eported  |
|----------------------------------------|------------|----------|-----------|------------|------------------|------------|------------|------------|----------|
|                                        |            | Adjusted |           |            | Adjusted         |            |            | Adjusted   |          |
| <b>Deceased Mode of Transportation</b> | n (%)      | OR       | 99% CI    | n (%)      | OR               | 99% CI     | n (%)      | OR         | 99% CI   |
| non-vulnerable road users              | 170 (58.6) | ref      |           | 223 (69.5) | ref              |            | 125 (31.5) | ref        |          |
| vulnerable road users:                 |            |          |           |            |                  |            |            |            |          |
| pedestrian                             | 338 (58.5) | 1.1      | 0.7-1.7   | 425 (69.1) | 1.1              | 0.7-1.7    | 192 (24.9) | 0.8        | 0.5-1.1  |
| bicyclist & motorcyclist               | 245 (52.0) | 0.8      | 0.5-1.1   | 306 (59.2) | 0.6              | 0.4-1.0    | 256 (43.5) | 1.7*       | 1.2-2.5* |
| three wheelers & animal riders         | 93 (56.4)  | 0.9      | 0.5-1.6   | 117 (67.6) | 0.9              | 0.5-1.7    | 72 (33.0)  | 1.2        | 0.7-1.9  |
| unknown                                | 37 (40.2)  | 0.5      | 0.3-1.0   | 55 (51.4)  | 0.5              | 0.3-1.0    | 46 (25.1)  | 0.8        | 0.5-1.4  |

Supplementary Table 2: Association between deceased mode of transportation and the timing of death, place of death, and head injuries reported. Odds ratios 10 are adjusted for deceased's age, sex, rural/urban, neighbourhood asset, and education. \*Value in bold denote statistically significant difference between comparison 11 groups.

\_ . . . .

Page 28 of 53

| 3211     3211       6455     22181       1     36591       3     1120       4121     4121       9150     3 | MDS         NCI           3610         72           7380         162           13172         343           33287         986           2335         85           4037         155           32277         143           9363         436 | RB         MDS           24         27.3           22         27.9           30         10.8           60         17.8           57         21.0           89         28.6           56         11.2 | * 100,000)*<br>NCRB<br>5.5<br>6.1<br>2.8<br>5.3<br>7.7<br>11.3<br>5.0<br>5.0 | Rate<br>79.9<br>78.0<br>74.0<br>70.4<br>63.3<br>60.6<br>55.6<br>53.4 |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 6455     1       22181     1       36591     3       1120     2       4121     4       9150     3          | 738016213172343332879862335855403715832771439363436                                                                                                                                                                                      | 2227.93010.86017.85721.08928.65611.2                                                                                                                                                                 | 6.1<br>2.8<br>5.3<br>7.7<br>11.3<br>5.0                                      | 78.0<br>74.0<br>70.4<br>63.3<br>60.6<br>55.6                         |
| 22181     1       36591     3       1120     2       4121     4       9150     3                           | 1317234332879823358540371583277149363436                                                                                                                                                                                                 | 3010.86017.85721.08928.65611.2                                                                                                                                                                       | 2.8<br>5.3<br>7.7<br>11.3<br>5.0                                             | 74.0<br>70.4<br>63.3<br>60.6<br>55.6                                 |
| 36591     3       1120     2       4121     2       9150     2                                             | 33287980233585403715332771439363430                                                                                                                                                                                                      | 6017.85721.08928.65611.2                                                                                                                                                                             | 5.3<br>7.7<br>11.3<br>5.0                                                    | 70.4<br>63.3<br>60.6<br>55.6                                         |
| 1120 2<br>4121 2<br>9150 3                                                                                 | 233585403715832771459363436                                                                                                                                                                                                              | 5721.08928.65611.2                                                                                                                                                                                   | 7.7<br>11.3<br>5.0                                                           | 63.3<br>60.6<br>55.6                                                 |
| 4121 4<br>9150 3                                                                                           | 403715832771439363436                                                                                                                                                                                                                    | 8928.65611.2                                                                                                                                                                                         | 11.3<br>5.0                                                                  | 60.6<br>55.6                                                         |
| 9150                                                                                                       | 3277         14:           9363         430                                                                                                                                                                                              | 56 11.2                                                                                                                                                                                              | 5.0                                                                          | 55.6                                                                 |
|                                                                                                            | 9363 430                                                                                                                                                                                                                                 |                                                                                                                                                                                                      |                                                                              |                                                                      |
| 6499                                                                                                       |                                                                                                                                                                                                                                          | 64 10.8                                                                                                                                                                                              | 5.0                                                                          | 53.4                                                                 |
|                                                                                                            | 1570 70                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |                                                                              |                                                                      |
| 0568 1                                                                                                     | 15726 768                                                                                                                                                                                                                                | 86 17.4                                                                                                                                                                                              | 8.5                                                                          | 51.1                                                                 |
| 3688 0                                                                                                     | 6128 328                                                                                                                                                                                                                                 | 82 25.9                                                                                                                                                                                              | 13.9                                                                         | 46.4                                                                 |
| 9485                                                                                                       | 5083 289                                                                                                                                                                                                                                 | 95 12.9                                                                                                                                                                                              | 7.3                                                                          | 43.0                                                                 |
| 3785                                                                                                       | 5051 310                                                                                                                                                                                                                                 | 61 15.0                                                                                                                                                                                              | 9.4                                                                          | 37.4                                                                 |
| )6386 1                                                                                                    | 16638 106                                                                                                                                                                                                                                | 513 15.6                                                                                                                                                                                             | 10.0                                                                         | 36.2                                                                 |
| 3375                                                                                                       | 9237 679                                                                                                                                                                                                                                 | 93 14.6                                                                                                                                                                                              | 10.7                                                                         | 26.5                                                                 |
| 5926                                                                                                       | 6987 520                                                                                                                                                                                                                                 | 64 12.5                                                                                                                                                                                              | 9.4                                                                          | 24.7                                                                 |
| 5559                                                                                                       | 1077 85                                                                                                                                                                                                                                  | 54 16.4                                                                                                                                                                                              | 13.0                                                                         | 20.7                                                                 |
| 7141 8                                                                                                     | 8172 68                                                                                                                                                                                                                                  | 76 14.3                                                                                                                                                                                              | 12.0                                                                         | 15.9                                                                 |
| 6289                                                                                                       | 2161 202                                                                                                                                                                                                                                 | 23 13.3                                                                                                                                                                                              | 12.4                                                                         | 6.4                                                                  |
|                                                                                                            | 14808 139                                                                                                                                                                                                                                | 961 22.4                                                                                                                                                                                             | 21.1                                                                         | 5.7                                                                  |
|                                                                                                            | 10991 109                                                                                                                                                                                                                                | 944 13.4                                                                                                                                                                                             | 13.4                                                                         | 0.4                                                                  |
| 6154 1                                                                                                     | 178520 082                                                                                                                                                                                                                               | 254 15.8                                                                                                                                                                                             | 8.7                                                                          | 45.0                                                                 |
| ſ                                                                                                          | 6154<br>1934                                                                                                                                                                                                                             | 615414808139193410991109                                                                                                                                                                             | 6154 14808 13961 22.4                                                        | 6154148081396122.421.11934109911094413.413.4                         |

Supplementary Table 3: Comparison between present study (MDS) estimates and National Crime Records Bureau (NCRB) police reports of the number of RTI deaths and crude death rate, by state. \*Excludes railroad deaths since NCRB does not publish state-level railroad death figures. Northeast States include Sikkim, Arunachal Pradesh, Nagaland, Manipur, Mizoram, Tripura, and Meghalaya. Other States include Pondicherry, Chandigarh, Uttaranchal, Dadra & Nagar Haveli, A & N Islands, Daman & Diu, Lakshadweep, and Goa. CDH = Chhatisgarh. % under reporting = (MDS death rate - NCRB death rate) / MDS death rate \*100%.

### <sup>2</sup>MILLION DEATH STUDY COLLOBORATORS

### 4

1

#### 5Indian Academic Partners (in alphabetical order):

- 61. Department of Community Medicine Gujarat Medical College, Ahmedabad: DV Bala, P Seth, KN Trivedi
- Department of Community Medicine Kolkatta Medical College, Kolkatta: SK Roy 72.
- 83. Department of Community Medicine Regional Institute of Medical Sciences, Imphal: L Usharani
- 94 Department of Community Medicine S.C.B. Medical College Cuttack, Orissa: Dr. B Mohapatra
- 1Q Department of Community Medicine SMS Medical College Jaipur: AK Bharadwaj, R Gupta
- 1027330405 Epidemiological Research Center, Chennai: V Gajalakshmi, CV Kanimozhi
- Gandhi Medical College, Bhopal: RP Dikshit, S Sorangi
- Healis-Seskarhia Institute of Public Health, Navi Mumbai: PC Gupta, MS Pednekar, S Sreevidya
- Apollo Institute of Medical Sciences & Research, Hyderabad: P Bhatia
- 160. St. John's Academy of Health Sciences, Bangalore: A Kurpad, P Mony, M Vaz, S Srinivasan, A Shet, AS Shet, D Xavier.
- S Rathi, V Habbare 17
- 181. King George Medical College, Lucknow: S Awasthi
- 192. Najafgarh Rural Health Training Centre, Ministry of Health Government of India, New Delhi: N Dhingra, J Sudhir, I 20 Rawat (until 2007)
- 213. Regional Medical Research Center, ICMR Institute, Bhubaneshwar: AS Karketta, SK Dar
- 224. School of Preventative Oncology, Patna: DN Sinha
- <sup>235</sup>. School of Public Health Post Graduate Institute of Medical Education and Research, Chandigarh: N Kaur, R Kumar, JS 24 Thakur
- 256. Tata Memorial Cancer Hospital, Mumbai: RA Badwe, RP Dikshit, M Mallath, K Panse, A Budukh

## 27 28 Partners:

24. Office of the Registrar-General India, RK Puram, New Delhi India: C Chandramouli (Registrar General of India [RGI]), 3 RC Sethi, B Mishra (until 2012), S Jain (until 2008), DK Dey, AK Saxena, MS Thapa, N Kumar; JK Banthia and DK Sikri 3(former RGIs)

32

33. Million Death Study Coordinating Centre for Global Health Research (CGHR) Li Ka Shing Knowledge Institute, St. 34 Ichael's Hospital, Dalla Lana School of Public Health, University of Toronto, Canada: P Jha (Principal Investigator), R <sup>3</sup> Kamadod, S Rathi, S Rao-Seshadri, P Rodriguez, P Sati, J Sudhir, C Ramasundarahettige, W Suraweera 36

### <sup>37</sup>Affiliated Partners:

- Зâ Indian Council of Medical Research, New Delhi India: VM Katoch (Director General or DG from 2008), NK Ganguly 39
- (DG to 2008), L Kant, B Bhattacharya, B Shah, DK Shukla 40
- World Health Organisation, Geneva and SEARO Office, New Delhi: T Boerma, A Fric, S Habayeb (former WHO 4<del>1</del>
- Representative-India), S Khanum, CD Mathers, DN Sinha, N Singh, P Singh (Deputy Regional Director) 42
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), University of Oxford, England: N Bhala, J 4**3**.
- Boreham, R Peto, G Whitlock 44
- 45
- 46
- 47
- 48 49
- 50
- 51
- 52
- 53 54
- 55
- 56
- 57
- 58
- 59 60

# Road traffic injury mortality and its mechanisms in India: nationally representative mortality survey of 1.1 million homes

Marvin Hsiao, Ajai Malhotra, JS Thakur, Jay K Sheth, Avery B Nathens, Neeraj Dhingra, Prabhat Jha, for the Million Death Study Collaborators.

Centre for Global Health Research, Li Ka Shing Knowledge Institute, St Michael's Hospital, University of Toronto, Toronto, Canada (M Hsiao MD, Prof P Jha DPhil); Division of General Surgery, Department of Surgery, University of Toronto, Toronto, Canada (M Hsiao MD, Prof AB Nathens MD); Department of Surgery, VCU Medical Center, Virginia Commonwealth University, Richmond, USA (Prof A Malhotra MD); Department of Community Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India (JS Thakur MD); Smt. N.H.L. Municipal Medical College, Ahmedabad, India (JK Sheth MD); Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada (Prof AB Nathens MD); National AIDS Control Organization, New Delhi, India (N Dhingra MD)

Correspondence to: Marvin Hsiao Centre for Global Health Research, Li Ka Shing Knowledge Institute, St Michael's Hospital, and Division of General Surgery, Department of Surgery, University of Toronto 30 Bond Street, Toronto, Ontario, Canada M5B 1W8 <u>marvin.my.hsiao@gmail.com</u> +1 416-864-6042 (phone) / +1 416-864-5256 (fax)

Keywords: Road traffic injury; verbal autopsy; India; low- and middle-income countries

Word count: Text: <u>3361</u>3440

#### **ABSTRACT:**

**Objectives**: To quantify and describe the mechanism of road traffic injury (RTI) deaths in India. **Design**: We conducted a nationally representative mortality survey where at least two physicians coded each non-medical field staff's verbal autopsy reports. RTI mechanism data were extracted from the narrative section of these reports.

Setting: 1.1 million homes in India.

Participants: Over 122 000 deaths at all ages from 2001-2003.

**Primary and secondary outcome measures**: Age- and sex-specific mortality rates, place and timing of death, modes of transportation, and injuries sustained.

**Results**: The 2299 RTI deaths in the survey correspond to an estimated 183 600 RTI deaths or about 2% of all deaths in 2005 nationally, of which 65% occurred in males between the ages of 15-59 years. The age-adjusted mortality rate was greater in males than in females, in urban than in rural areas, and was notably higher than that estimated from national police records. Pedestrians (68 000), motorcyclists (36 000), and other vulnerable road users (20 000) constituted 68% of RTI deaths (124 000) nationally. Among the study sample, the majority of all RTI deaths occurred at the scene of collision (1005/1733, 58%), within minutes of collision (883/1596, 55%), and/or involved a head injury (691/1124, 62%). Compared to non-pedestrian RTI deaths, about 55 000 (81%) of pedestrian deaths were associated with less education and living in poorer neighbourhoods.

**Conclusions**: In India, RTI cause a substantial number of deaths, particularly among pedestrians and other vulnerable road users. Interventions to prevent collisions and reduce injuries might address over half of the RTI deaths. Improved pre-hospital transport and hospital trauma care might address just over a third of the RTI deaths.

#### ARTICLE SUMMARY

#### Article focus

 To directly estimate the age- and sex-specific mortality rates and describe the place and timing of death, modes of transportation, and injuries sustained for road traffic injury (RTI) deaths in India using a nationally representative mortality survey of 1.1 million homes.

#### Key messages

- Road traffic injuries cause a substantial number of avertable deaths, particularly in males of productive working age and among pedestrians and other vulnerable road users.
- Preventative interventions should be emphasized as the majority of all RTI deaths occurred at the scene of collision, within minutes of collision, and/or involved a head injury.
- Properly designed mortality survey with verbal autopsy narratives can provide muchneeded data to assist RTI prevention efforts.

#### Strengths and limitations of this study

- This study is the first nationally representative survey of the causes of death in India and overcomes limitations of existing data sources including regional injury surveys, hospital series, and national police reports.
- Limitations of the study include potential misclassification of deaths by physician coders, the use of layperson narratives with a potential for recall bias and inaccuracies, and limited ability to forward project study results given the rapid changes in motorization in India.

#### INTRODUCTION

Road traffic injuries (RTI) area large and growing public health burden, especially in low-and middle-income countries (LMIC) where 90% of the world's deaths due to RTI are estimated to occur.[1] There are few high-quality epidemiologic data on RTI to guide the development, implementation, and surveillance of evidence-based policy and programs in LMICs.[2-4]

The number of deaths due to RTI in India is projected to rise with increasing motorization.[1,5] Aside from a few regional injury surveys,[6-11] the current data on the numbers and mechanisms of RTI deaths in India rely on police or hospital records, both of which can substantially underestimate death rates in the poor, rural, and uneducated people who still constitute large proportions of the Indian population.[2-4,12,13]

The World Health Organization (WHO), using indirect modeling methods, estimated about 202 000 RTI deaths in India in 2004.[14,15] No study has validated this estimate with direct measurement nor documented detailed RTI mechanism for India nationally. Here, we estimate the regional, age- and sex-specific mortality rate and risk of RTI death in India using data from the Million Death Study (MDS). We also report the modes of transportation, place and timing of death, and injuries sustained in RTI deaths.

**BMJ Open** 

#### METHODS

Study Design: The MDS is an on-going nationally representative survey designed to determine the causes and risk factors of death in India, organized by the Registrar General of India (RGI). The design, methodology, and preliminary findings of the MDS have been described elsewhere.[16-19] In brief, the MDS used an enhanced version of verbal autopsy (known as the routine, reliable, representative, re-sampled household investigation of mortality with medical evaluation or RHIME) to monitor a nationally representative sample of 1.1 million households in the Sample Registration System (SRS). Within six months of every death occurring in these households from 2001-3, a trained, nonmedical RGI surveyor interviewed a relative or closeacquaintance of the deceased to obtain the symptoms and events around the death using structured questions and a local language narrative guided by a specific symptom list. These records were converted into electronic records and emailed to two of 140 trained physicians who, independently and anonymously, assigned an underlying cause of death (with allocation determined randomly based only on the physician's ability to read the local language), using guidelines for the major causes of death.[20] Records were assigned cause of death in threedigit International Statistical Classification of Diseases and Related Health Problems, 10th revision (ICD-10).[21] Records where coders disagreed on the cause of death underwent anonymous reconciliation. Continuing disagreements were adjudicated by a third senior physician. Five percent of households were randomly resurveyed and the results were consistent within families of ICD-10 codes.[16] Participation in the SRS is on a voluntary basis and oral consent was obtained under the confidentiality and consent procedures of the Registration of Births and Deaths Act, 1969.

**Road Traffic Injury Deaths:** The RTI deaths in this study were of people who died between 2001 and 2003 with a final assigned ICD-10 code within V01-V89. We translated the open-ended narratives into English from 14 local languages, and systematically extracted the modes

#### **BMJ Open**

of transportation, place and timing of death, and injuries sustained from 2157 of the 2299 RTI deaths using a standardized data extraction tool and procedure (the remaining 142 deaths, 6%, had missing or illegible narratives). For these four data elements, there were substantial interrater agreement between two investigators and two research assistants who were trained and independently extracted data from the narratives of a random 10% of RTI deaths (lowest kappa statistic was greater than 0.69 for all pair-wise comparisons between the four data extractors; data not shown). The two research assistants then independently extracted data from all narratives. Adjudication was done by an investigator (MH) for discrepancies in extracted data.

**Analysis:** The age and sex-specific proportion of RTI deaths within the 2001-2003 survey was applied to the 2005 United Nations (UN) estimates of the number of deaths from all causes in India, after weighting for sampling probability for each rural or urban stratum per state (although such weighting made little difference because the study was nationally representative).[18.22] The 2005 UN death estimates were used so as to correct for the slight undercounts reported in the total death rates in the SRS [23,24] and to account for the 12% of enumerated deaths without completed field visits (mostly due to out-migration of the family or from incomplete field records). The proportion of these missed deaths was similarly dispersed across sex, age, and states. Use of 2003 or 2004 UN death totals yielded nearly identical results (data not shown). The 99% confidence intervals (99%CI) for mortality rate were calculated based on the weighted number of study deaths. State- and rural/urban-specific estimates of the number, mortality rate, and lifetime risk of RTI death were calculated by partitioning the UN national death totals according to relative SRS death rates as previously described. [18,25,26] Urban and rural status was defined according to the Census of India. Logistic regression was used to compare the socio-demographic traits of pedestrian and non-pedestrian RTI deaths. Household fuel type was used as a measure of community wealth, based on earlier principal component analyses [18]: high asset neighbourhoods had >50% of households that used gas, electricity, or kerosene; low

#### **BMJ Open**

asset or poor neighbourhoods used primarily coal, firewood, or other. Attributable proportion was calculated for traits of pedestrian deaths compared to non-pedestrian RTI deaths.

The MDS received ethics approval from the review boards of the Post-Graduate Institute of Medical Education and Research in Chandigarh, India; St Michael's Hospital in Toronto, Canada; and the Indian Council of Medical Research's Health Ministry's Screening Committee.

#### RESULTS

The 2299 RTI deaths in the 2001-2003 survey correspond to an estimated 183 600 (99%CI 173 800-193 400) RTI deaths in India in 2005. The majority of these RTI deaths occurred in males (152 100 deaths, 82.8%; table 1). The age-standardized RTI mortality rate for males (26.2 per 100 000, 24.6-27.7) was higher than for females (5.7 per 100 000, 5.0-6.4). While the RTI mortality rate increased with age in both genders, the largest number of RTI deaths occurred in males between 15-59 years of age (118 900, 64.8%).

At these death rates and in the theoretical absence of other causes of death, males in India had a 2.1% (2.0-2.3) risk of dying from RTI before age 70, with the highest risks at ages 30-59 years; females had a 0.5% (0.4-0.5) risk of dying from RTI before age 70. Males in Haryana, Punjab, Tamil Nadu, and Uttar Pradesh had significantly higher risks (3.0-4.1%) than the national risk (figure 1). In contrast, males in Bihar, Jharkhand, Andhra Pradesh, Orissa, Gujarat, and West Bengal had significantly lower risks (1.3-1.6%) than the national risk of RTI deaths. Males living in urban areas had slightly higher age-standardized mortality rates and risks of RTI deaths (27.6 per 100 000; 2.4%, 2.1-2.6) compared to males living in rural areas (24.9 per 100 000; 2.0%, 1.8-2.1). By contrast, female RTI mortality rates and risks before age 70 varied much less across states and were similar in rural and urban areas (data not shown).

|                                       |               | Study death | is, 2001-2003 | BMJ Open    |                         | All India, 2  | 2005             | Page 38 of 53 |
|---------------------------------------|---------------|-------------|---------------|-------------|-------------------------|---------------|------------------|---------------|
|                                       | Number of RTI | Proportion  | Rural (%**)   | Two coders  | All deaths / population | Estimated RTI | RTI death rateΨ  | Period risk   |
| 1                                     | deaths / all  | RTI*        |               | immediately | (millions, 2005 UN      | deaths§,      | per 100 000      | for RTI       |
| 1                                     | coded deaths  |             |               | agree       | estimates)              | thousands     | (99% CI)         | death†        |
| <sup>2</sup> Male - age in years      |               |             |               |             |                         |               |                  |               |
| 4 0-4                                 | 44 / 11719    | 0.4%        | 37 (76.7)     | 44          | 1.2 / 67                | 4.9           | 7.4 (6.5-8.4)¶   | 0.04%         |
| 4 5-14                                | 97 / 1926     | 5.2%        | 86 (84.1)     | 87          | 0.2 / 129               | 8.5           | 6.6 (4.9-8.3)    | 0.1%          |
| 5 15-29                               | 605 / 4727    | 13.0%       | 462 (68.9)    | 558         | 0.4 / 163               | 47.1          | 28.9 (25.9-31.9) | 0.4%          |
| $\frac{6}{30-44}$                     | 529 / 6817    | 7.7%        | 385 (67.0)    | 477         | 0.6 / 115               | 43.8          | 37.9 (33.7-42.1) | 0.6%          |
| 7 45-59                               | 356 / 11731   | 3.0%        | 249 (60.9)    | 312         | 0.9 / 73                | 28.0          | 38.4 (33.2-43.6) | 0.6%          |
| 8 60-69                               | 149 / 12120   | 1.2%        | 117 (71.8)    | 133         | 0.9 / 24                | 10.6          | 44.0 (34.6-53.4) | 0.5%          |
| 9 >70                                 | 123 / 18732   | 0.6%        | 106 (81.2)    | 98          | 1.3 / 14                | 9.1           | 64.5 (49.1-80.0) |               |
| 10 All ages                           | 1903 / 67772  | 2.8%        | 1442 (68.9)   | 1709        | 5.3 / 585               | 152.1         | 26.2             | 2.1%†         |
| 11 $(\% \text{ or } 99\% \text{ CI})$ |               | <u>_</u>    |               | (89.8%)     |                         | (143.2-161.0) | (24.6-27.7)      | (2.0-2.3)     |
| 12                                    |               |             |               | (0)(0))     |                         | (             | (,               | (,            |
| <sup>13</sup> Female - age in years   |               |             |               |             |                         |               |                  |               |
| 14 0-4                                | 50 / 11492    | 0.4%        | 46 (93.4)     | 45          | 1.2 / 61                | 5.0           | 8.1 (7.1-9.1)¶   | 0.04%         |
| 15 <sub>5-14</sub>                    | 44 / 1955     | 2.3%        | 38 (80.1)     | 43          | 0.2 / 118               | 3.8           | 3.2 (2.0-4.4)    | 0.03%         |
| 16 <sub>15-29</sub>                   | 72 / 4394     | 1.5%        | 53 (60.5)     | 63          | 0.3 / 150               | 5.3           | 3.5 (2.4-4.6)    | 0.1%          |
| 17 30-44                              | 59 / 4055     | 1.4%        | 39 (59.0)     | 50          | 0.3 / 106               | 4.4           | 4.1 (2.7-5.5)    | 0.1%          |
| 18 45-59                              | 70 / 6402     | 1.1%        | 55 (70.9)     | 61          | 0.5 / 69                | 6.0           | 8.6 (5.9-11.3)   | 0.1%          |
| 19 60-69                              | 54 / 9016     | 0.6%        | 42 (68.6)     | 52          | 0.6 / 25                | 3.7           | 14.8 (9.8-19.9)  | 0.2%          |
| 20 > 70                               | 47 / 17343    | 0.3%        | 33 (61.8)     | 35          | 1.3 / 16                | 3.5           | 21.6 (13.4-29.9) |               |
| 21 All ages                           | 396 / 54657   | 0.7%        | 306 (69.8)    | 349         | 4.5 / 546               | 31.5          | 5.7              | 0.5%†         |
| 22 (% or 99% CI)                      |               |             |               | (88.1%)     |                         | (27.5-35.6)   | (5.0-6.4)        | (0.4-0.5)     |
| 23                                    |               |             |               | (001170)    |                         | (_,,          | (0.0 0)          | (0.1 0.0)     |
| 24 Total male and female, <70 years   | 2129 / 86354  | 2.4%        | 1609 (68.5)   | 1925        | 7.2 / 1100              | 171.0         | 15.5             | 1.3%†         |
| 25 (% or 99% CI)                      |               |             |               | (90.4%)     |                         | (161.5-180.4) | (14.7-16.4)      | (1.3-1.4)     |
| 26 Total male and female, all ages    | 2299 / 122429 | 1.8%        | 1748 (69.0)   | 2058        | 9.8 / 1131              | 183.6         | 16.2             | 1.3%†         |
| 27 (% or 99% CI)                      |               |             | 1, 10 (0, 11) | (89.5%)     |                         | (173.8-193.4) | (15.4-17.1)      | (1.3-1.4)     |
| 28                                    |               |             |               | (0).0,0,    |                         | (1,0:0 1)0:1) |                  | (1.2 1)       |

<sup>30</sup> **Table 1: Road traffic injury deaths in the present study and estimated national totals for 2005, by age and gender.** \*Proportion of RTI deaths <sup>31</sup> compared to all deaths, weighted by state and residence (rural/urban). \*\*Percentage rural is weighted by state and residence (rural/urban). §Obtained by <sup>32</sup> multiplying the United Nations estimated total deaths in 2005 by the weighted proportions. ΨAge standardized to the 2005 United Nations estimated <sup>34</sup> Indian population; 99% CI shown are calculated based on weighted number of study deaths, which result in wider CI than those based on physician <sup>35</sup> agreement. †Annual RTI death rate multiplied by the duration of age range, except for the lifetime risk which is calculated between 0-69 years by <sup>36</sup> summation of the age specific period risks. ¶Crude death rate.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

47 48 40

46

Page 39 of 53

#### **BMJ Open**

The deceased mode of transportation was described in the narratives of 2105 (92%) of the RTI deaths. National estimates for the deceased mode of transportation were calculated, as those with unknown and known modes of transportation did not appear to differ with respect to the major socio-demographic traits (Supplementary Table 1). Vulnerable road users are those without a rigid barrier protecting against traumatic forces and include pedestrians, motorcyclists, bicyclists, and three-wheelers. They constituted a majority (68%; n=124 000, 99%CI 115 000-131 000) of RTI deaths, led by pedestrians (37%; n=68 000, 62 000-73 000) and motorcyclists (20%; n=36 000, 31 000-40 000) (figure 2). Drivers and passengers of motorized four-wheelers comprised 16% (n=31 000, 27 000-35 000) of RTI deaths. By contrast, the 2005 police reports, which use a different but compatible classification system to ICD-10, recorded only 33000 vulnerable road user deaths and only 9000 pedestrian deaths.[27] The most common types of vehicle to collide into the decedents were heavy transport vehicles and buses (37%; n=68 000, 61 000-74 000), followed by cars and vans (15%; n=28 000, 24 000-32 000). Single-vehicle incidents comprised 9% of deaths (n=17 000, 14 000-20 000). The most frequent combinations, resulting in 23% (n=42 000, 37 000-47 000) of RTI deaths, were collisions of heavy transport vehicles or buses with pedestrians and motorcyclists (data not shown).

The place and timing of death were described in the narratives of 1733 (75%) and 1596 (69%) of the RTI deaths respectively (figure 2; see supplementary table 1 for a summary of missing data from the narratives with respect to deceased characteristics). For these narratives, only the study proportion and not national estimates were made. Most RTI deaths occurred at the scene of collision (58%, 1005/1733) or instantly, defined as within 5 minutes (55%, 883/1596). Only 3% (45/1733) were labeled as potentially avertable with better pre-hospital transport as they occurred on scene but not instantly. Another 35% of deaths occurred en route (7%, 124/1733) or in hospital (28%, 481/1733).

#### **BMJ Open**

Injuries sustained by the deceased were reported from1124 narratives (49%). Head injuries were the most commonly reported (62%, 691/1124), of which 76% (524/691) were reported as isolated head injuries (figure 3). A greater percentage of motorcyclists (78%, 188/241) had head injuries reported compared to non-motorcyclists (57%, 457/807). After adjusting for age, sex, rural/urban, neighbourhood asset, and education, bicyclists and motorcyclists were more likely to have head injuries reported compared to non-vulnerable road users (adjusted OR 1.7, 1.2-2.5) (supplementary table 2).

Compared to non-pedestrian RTI deaths, pedestrian deaths occurred to those who had less education (or in the case of children age <15 years, have less educated parents) (adjusted OR 2.9, 99%CI 2.0-4.2), lived in poorer neighbourhoods (1.7, 1.1-2.5), were children or elderly adults (<15 years: 2.9, 1.8-4.5; >59 years: 1.7, 1.2-2.4), were female (1.5, 1.2-2.2), and lived in urban areas (1.5, 1.1-2.2) (table 2). If pedestrian deaths had the same proportion of secondary or higher education as non-pedestrian RTI deaths, there would be 406/825 (49%) fewer pedestrian deaths, corresponding to approximately 33 000 deaths nationally in 2005. The corresponding attributable proportion for living in richer versus poorer neighbourhoods would be 265/825 (32%) or approximately 22 000 deaths nationally. Within the narratives we could code, there were no differences between pedestrians and non-pedestrian RTI deaths in timing of death, place of death, reported injuries, or reported routine use of alcohol or smoking (data not shown).

|                                          | Pedestrian /<br>Non-Pedestrian<br>Total=825/1280 | Adjusted OR^<br>(99% CI) | Attributable<br>Pedestrian Deaths<br>(% of all 825<br>pedestrian deaths) |
|------------------------------------------|--------------------------------------------------|--------------------------|--------------------------------------------------------------------------|
| Education*                               |                                                  |                          |                                                                          |
| Secondary or higher                      | 112/382                                          | ref                      |                                                                          |
| Primary or middle                        | 248/450                                          | 1.8 (1.3-2.6)            | 110 ] 406 (49%                                                           |
| Below primary                            | 451/423                                          | 2.9 (2.0-4.2)            | 296 -                                                                    |
| Unknown                                  | 14/25                                            | 1.6 (0.6-4.2)            | N/A                                                                      |
| Neighbourhood Asset                      |                                                  |                          |                                                                          |
| High                                     | 137/320                                          | ref                      |                                                                          |
| Low                                      | 643/895                                          | 1.7 (1.1-2.5)            | 265 (32%)                                                                |
| Unknown                                  | 45/65                                            | 1.5 (0.8-2.8)            | N/A                                                                      |
| Age in years                             |                                                  |                          |                                                                          |
| 15-59 (driving ages)                     | 497/1046                                         | ref                      |                                                                          |
| <15 (children)                           | 144/74                                           | 2.9 (1.8-4.5)            | 94<br>76 ] 170 (21%                                                      |
| >59 (elderly adults)                     | 184/160                                          | 1.7 (1.2-2.4)            | 76 ] 1/0 (21/0                                                           |
| Sex                                      |                                                  |                          |                                                                          |
| Male                                     | 621/1121                                         | ref                      |                                                                          |
| Female                                   | 204/159                                          | 1.5 (1.1-2.2)            | 68 (8%)                                                                  |
| Location                                 |                                                  |                          |                                                                          |
| Rural                                    | 643/962                                          | ref                      |                                                                          |
| Urban                                    | 182/318                                          | 1.5 (1.1-2.2)            | 61 (7%)                                                                  |
| Occupation                               |                                                  |                          |                                                                          |
| Salaried / Wage Earner / Professional    | 229/517                                          | ref                      |                                                                          |
| Cultivator / Agricultural labour / Other | 162/300                                          | 0.9 (0.6-1.3)            | N/A                                                                      |
| Non-worker / Children <15 years          | 433/463                                          | 1.2 (0.9-1.6)            | N/A                                                                      |
| Unknown                                  | 1/0                                              | N/A                      | N/A                                                                      |
| Routine Alcohol Use**                    |                                                  |                          |                                                                          |
| No                                       | 494/877                                          | ref                      |                                                                          |
| Yes                                      | 145/260                                          | 1.1 (0.7-1.5)            | N/A                                                                      |
| Unknown                                  | 42/69                                            | 1.0 (0.5-1.9)            | N/A                                                                      |

**Table 2: Characteristics of pedestrian RTI deaths and attributable proportions.** \*Education of deceased adults or, in cases of deceased children <15 years, education of respondent. \*\*Excludes 218 children. ^Odds ratios are adjusted for all other variables in this table except for alcohol use; the odds ratios for alcohol use are adjusted for all other variables in this table.

#### DISCUSSION

RTI is an important cause of death in India, causing 183 600 deaths in 2005, or about 2% of all

deaths.[22] Much of the deceased were men between ages 15-59 years. Males had a four-fold

#### BMJ Open

higher cumulative risk of RTI death compared to females before the age of 70. Among the major states, there was approximately 3-fold variation in the age-standardized RTI death rate and cumulative risk for males.

Our estimated number of RTI deaths is more than 50% greater than the 118 265 deaths reported in the official police statistics of the National Crime Records Bureau (NCRB) in 2005.[27] Compared to our estimates, the extent of under-reporting of the crude death rate in major states by NCRB ranged from <1% to about 80% (supplementary table 3). Existing regional population-based injury surveys in India support our findings and also report higher crude RTI death rates than NCRB statistics.[8,11] Under-reporting of RTI deaths in police statistics has been reported in India and other LMIC.[28-30] A study in urban India comparing both hospital- and community-based RTI data to police records identified factors contributing to under-reporting that included the deceased believed to be at fault, collision resulting from hit-and-runs, limited police resources, and the lack of a standard police reporting protocol by hospitals.[28] The factors contributing to police under-reporting, especially in rural India, require further examination. Our estimated number of RTI deaths in 2005 was consistent with the WHO estimate for 2004.[14] However, we observed a slightly higher male proportion (83% MDS vs. 77% WHO, all ages) and a higher proportion of male deaths between 15-59 years (65% MDS vs. 61% WHO).

Almost three-quarters of all RTI deaths in India were of pedestrians and other vulnerable road users. In contrast, a much lower proportion (27%) was reported by the NCRB (figure 2). This difference equated to 59 000 pedestrian and 32 000 other vulnerable road user deaths that were not included in the 2005 NCRB records. Existing RTI studies based on regional surveys and hospital series also reported a high proportion (>60%) of vulnerable road user deaths similar to our findings.[11,12,30-32] Since the majority of vulnerable road users were pedestrians, our

#### **BMJ Open**

findings suggested that RTI deaths in individuals who were less educated, poor, female or live in urban areas may have been disproportionally excluded from the NCRB records. While poverty and education are not likely to be in the direct causal pathway of pedestrian deaths, they nonetheless point to other associated risk factors. Indeed, 55 000 pedestrian deaths in 2005 (81%) was associated with lower education or living in poorer neighbourhoods compared to non-pedestrian RTI deaths. While the less educated and the poor likely travelled more often by foot, they might also be exposed to undetermined environmental (neighbourhoods with unsafe roads), biological (poor vision or decreased mobility due to poor health), and behavioral (alcohol or other substance use) risk factors for pedestrian death.[12, 33, 34] Further studies are needed to better understand pedestrian deaths in LMIC.

Over half of RTI deaths occurred instantly at the scene of collision and/or had head injury reported. These findings, together with existing RTI hospital series and regional surveys in India, make a strong argument that investments in primary and secondary prevention could potentially avert the greatest proportion of RTI deaths. To address the high proportion of instant deaths and head injuries among RTI deaths in India, specific interventions that are effective and based on studies in LMIC should be emphasized; these may include speed bumps, motorcycle helmets, and increasing fines and license suspensions for rule infractions.[33] In contrast, improving pre-hospital transport and hospital trauma care, could only potentially affect the 38%who died on scene with delayed hospital transport (3%), en route to hospital (7%), or in hospital (28%).

Our study is the first nationally representative survey of the causes of death in India. The simple descriptive statistics provide clear evidence on the large and avertable burden from RTI, particularly among productive age adults and pedestrians. To the best of our knowledge, only one recent study in Vietnam has used similar methods to analyze RTI deaths and policy implications on a national scale.[35]

#### **BMJ Open**

Our study faced certain limitations. First, we might have misclassified certain causes of death including suicide as RTI deaths. However, the extent of misclassification should be minimal since the RHIME verbal autopsy method was shown to be robust in discerning between types of injury deaths[36] and since the immediate two-physician agreement was high for RTI deaths(89.5%, table 1). Furthermore, suicides cause about 200 000 deaths in India annually but few are due to RTI.[19] Second, since the modes of transportation, place and timing of death, and injuries sustained were extracted from layperson open-ended narratives, the data accuracy may be in question. For example with the deceased mode of transportation, the extent of misclassification (by our study) or misreporting (by NCRB) that contributed to the differences between the two sources is uncertain. With reported injuries, our findings from these narratives most likely undercounted less visible injuries (chest, abdomen, and spine) compared to highly visible injuries such as bleeding and deformity for head and extremity injuries. Nevertheless, our findings are consistent with available Indian regional surveys and hospital series on the mode of transportation[11,12,30-32,37] place and timing of death,[1,37-41] and injuries sustained.[12,37,42,43] Third, since the narrative was not designed specifically to capture RTI death characteristics, over 25% of deaths had missing data for mode of transportation, place of death, timing of death, or reported injuries (supplementary table 1). Thus, our findings for these elements extracted from the narratives may be less representative of the decedents who lived in rural or poor areas. Finally, reliable forward projection of the number of RTI deaths beyond 2005 was not possible since the increase in the NCRB reported number of RTI deaths of 140% from 2005 to 2011 appeared to outpace the rate of population growth.[44] As the proportion of vulnerable road user deaths remained stable during this period in the NCRB reports, we postulated that this increase represented an actual increase in RTI death totals rather than more accurate reporting. Furthermore, given the rapid economic expansion and concurrent changes in motorization including the types of vehicle sharing the road and road infrastructure, [45,46] our

#### **BMJ Open**

results on deceased mode of transportation, place and timing of death, and injuries sustained may not reflect the current Indian scenario. An analysis of the trend from 2001-2014 is planned pending ongoing data collection in the MDS.

In India, RTI is a significant cause of preventable death, particularly in males of productive working age and among pedestrians, bicyclists, and motorcyclist. We have shown that properly designed simple verbal autopsy narratives can document the much needed surveillance data on the numbers, rates, risks, and basic RTI mechanism such as modes of transportation, timing of death, place of death, and injuries sustained. Our findings suggested that investment in primary and secondary prevention could address a large proportion of avoidable RTI deaths.

#### ACKNOWLEDGEMENTS

We thank the Office of the RGI for the ongoing productive collaboration on the MDS, C Ramasundarahettige for technical assistance, M Puri and S Levitt for data extraction. The opinions expressed in this article are those of the authors and do not necessarily represent those of the Government of India or the RGI.

#### **COMPETING INTERESTS**

We declare that we have no competing interests.

#### FUNDING

This study is supported by grants from the John E Fogarty International Center of the National Institutes of Health (R01-TW05991–01 and TW07939-01), the Bill & Melinda Gates Foundation through the Disease Control Priorities Network Project, and the University of Toronto (to PJ); the Canada Research Chair Programme (to PJ and ABN); and the Canadian Institutes of Health Research Doctoral Award (to MH). The funding sources had no role in the study design; data

collection, analysis, interpretation; writing of the manuscript; or decision to submit for publication. The senior author had full access to all the data in the study and had final responsibility for the decision to submit this study for publication.

#### **AUTHOR'S CONTRIBUTION**

PJ and the MDS Collaborators (appendix) designed, planned, the executed the MDS in close collaboration with the Office of the Registrar General of India (RGI). MH and PJ performed the data analysis. All authors contributed to data interpretation, revisions of the manuscript, and provided final approval. PJ is the guarantor for this report.

#### DATA SHARING STATEMENT

Data used in this study are the property of the Registrar General of India and the overall mortality results have been published in 2009.[47] This specific analyses is produced under an agreement with CGHR.

#### REFERENCES

- Peden M, Scurfield R, Sleet D, *et al.* World report on road traffic injury prevention: World Health Organization 2004;1–244.
- 2 Chisholm D, Naci H, Hyder AA, *et al.* Cost effectiveness of strategies to combat road traffic injuries in sub-Saharan Africa and South East Asia: mathematical modelling study. *BMJ* 2012;**344**:e612.
- 3 The PLoS Medicine Editors. Preventing Road Deaths—Time for Data. *PLoS Med* 2010;**7**:e1000257.
- 4 Barffour M, Gupta S, Gururaj G, *et al.* Evidence-based road safety practice in India: assessment of the adequacy of publicly available data in meeting requirements for comprehensive road safety data systems. *Traffic Inj Prev* 2012;**13 Suppl 1**:17–23.
- 5 Kopits E, Cropper ML. *Traffic fatalities and economic growth*. World Bank Development Research Group Environment and Infrastructure, 2003.
- 6 Sathiyasekaran BW. Population-based cohort study of injuries. *Injury* 1996;27:695–8.
- 7 Varghese M, Mohan D. Transportation injuries in rural Haryana, North India. *In: Proceedings of the international conference on traffic safety* 2003;326–9.
- 8 WHO. Injury Prevention and Control: An epidemiological study of injuries in the area of Municipal Corporation of Delhi. *Regional Office for South-East Asia* 2003;1–18.
- 9 Gururaj G, Suryanarayana SP. Burden and impact of injuries: Results of population-based survey. *Proceedings of the 7th world conference on injury prevention* 2004;275–6.
- 10 Dandona R. Patterns of road traffic injuries in a vulnerable population in Hyderabad, India.

Injury Prevention 2006;12:183-8.

- 11 Dandona R, Kumar GA, Ameer MA, *et al.* Incidence and burden of road traffic injuries in urban India. *Inj Prev* 2008;**14**:354–9.
- 12 Gururaj G. Road traffic deaths, injuries and disabilities in India: current scenario. *Natl Med J India* 2008;**21**:14–20.
- 13 Garg N, Hyder A. Road traffic injuries in India: A review of the literature. Scand J of Public Health 2006;34:100–9.
- 14 World Health Organization. *The Global Burden of Disease: 2004 Update*. World Health Organization 2008.
- 15 Mathers CD, Bernard C, Moesgaard Iburg K, *et al.* Global Burden of Disease in 2002: data sources, methods, and results. Global Programme on Evidence for Health Policy Discussion Paper No. 54. World Health Organization 2003.
- 16 Jha P, Gajalakshmi V, Gupta PC, *et al.* Prospective Study of One Million Deaths in India: Rationale, Design, and Validation Results. *PLoS Med* 2006;**3**:e18.
- 17 Million Death Study Collaborators,. Causes of neonatal and child mortality in India: a nationally representative mortality survey. *Lancet* 2010;**376**:1853–60.
- 18 Dikshit R, Gupta PC, Ramasundarahettige C, *et al.* Cancer mortality in India: a nationally representative survey. *Lancet* 2012;**379**:1807–16.
- 19 Patel V, Ramasundarahettige C, Vijayakumar L, *et al.* Suicide mortality in India: a nationally representative survey. *Lancet* 2012;**379**:2343–51.
- 20 Sinha DN, Dikshit R, Kumar R, et al. Prospective Study of Million Deaths in India: Technical

| Page 49 of 53           | BMJ Open                                                                                                |
|-------------------------|---------------------------------------------------------------------------------------------------------|
| 1                       |                                                                                                         |
| 2<br>3<br>4             | document no VIII: Health care professional's manual for assigning causes of death based                 |
| 5<br>6                  | on RHIME household reports. RGI-CGHR, University of Toronto.                                            |
| 7<br>8                  | 2011.http://www.cghr.org/mds (accessed 1 Aug2012).                                                      |
| 9<br>10                 |                                                                                                         |
| 11 2 <sup>-</sup><br>12 | WHO. International Statistical Classification of Diseases and Related Health Problems,                  |
| 13<br>14                | ICD-10: Three Volume Set. World Health Organization 2010.                                               |
| 15<br>16 22             | 2 United Nations Populations Division. World population prospects (2008 revision).                      |
| 17<br>18                | 2009.http://www.un.org/esa/population/publications/wpp2008/ (accessed 2 July 2011).                     |
| 19<br>20                |                                                                                                         |
| 21<br>22 23             | Mari Bhat PN. Completeness of India's sample registration system: an assessment using                   |
| 23<br>24                | the general growth balance method. <i>Popul Stud</i> 2002; <b>56</b> :119–34.                           |
| 25<br>26<br>27          | Sivenender V. An ecception of the completeness of death registration in India over the                  |
| 27 24<br>28<br>29       |                                                                                                         |
| 30<br>31                | periods 1975-1978 and 1996-1999 under the generalized population model: an analysis                     |
| 32<br>33                | based on SRS data. Mumbai: International Institute for Population Sciences2004.                         |
| 34<br>35 25             | 5 Jha P, Kumar R, Khera A, et al. HIV mortality and infection in India: estimates from                  |
| 36<br>37                | nationally representative mortality survey of 1.1 million homes. BMJ 2010;340:c621.                     |
| 38<br>39                |                                                                                                         |
| 40 26<br>41             |                                                                                                         |
| 42<br>43                | representative mortality survey. <i>Lancet</i> 2010; <b>376</b> :1768–74.                               |
| 44<br>45 27             | National Crime Records Bureau. Accidental Deaths and Suicides in India, 2005. Ministry of               |
| 46<br>47                | Home Affairs, Government of India2005.                                                                  |
| 48<br>49<br>50          |                                                                                                         |
| 51 28<br>52             | B Dandona R, Kumar GA, Ameer MA, et al. Under-reporting of road traffic injuries to the                 |
| 53<br>54                | police: results from two data sources in urban India. <i>Inj Prev</i> 2008; <b>14</b> :360–5.           |
| 55<br>56 29             | Alcorn T. Uncertainty clouds China's road-traffic fatality data. <i>Lancet</i> 2011; <b>378</b> :305–6. |
| 57<br>58                | ,                                                                                                       |
| 59<br>60                |                                                                                                         |
|                         | 19<br>For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                         |

- 30 Naci H, Chisholm D, Baker TD. Distribution of road traffic deaths by road user group: a global comparison. Inj Prev 2009;15:55-9. Mohan D. The road ahead: Traffic injuries and fatalities in India. Transportation research and injury prevention programme, Indian Institute of Technology, Delhi2004. 32 Mohan D. Traffic safety and health in Indian cities. Journal of Transport and Infrastructure 2002;**9**:79–94. 33 Norton R, Hyder A, Bishai D, et al. Unintentional Injuries. In: Disease Control Priorities in Developing Countries. Oxford University Press, USA2006. 34 Grimm M, Treibich C. Determinants of road traffic crash fatalities across Indian states. Health Econ Published Online First: 30 August 2012. doi:10.1002/hec.2870 35 Ngo AD, Rao C, Phuong Hoa N, et al. Road traffic related mortality in Vietnam: Evidence for policy from a national sample mortality surveillance system. BMC Public Health 2012;**12**:561. 36 Hsiao M, Morris SK, Bassani DG, et al. Factors Associated with Physician Agreement on Verbal Autopsy of over 11500 Injury Deaths in India. *PLoS ONE* 2012;7:e30336. Singh H, Dhattarwal SK. Pattern and distribution of injuries in fatal road traffic accidents in Rohtak (Haryana). Journal of Indian Academy of Forensic Medicine 2004;26:20–3. Dandona R, Mishra A. Deaths due to road traffic crashed in Hyderabad city in India: need for strengthening surveillance. Natl Med J India 2004;17:74-9.
  - 39 Sahdev P, Lacqua MJ, Singh B, *et al.* Road traffic fatalities in Delhi: causes, injury patterns, and incidence of preventable deaths. *Accident Analysis & Prevention* 1994;**26**:377–84.

| 1        |    |                                                                                                      |
|----------|----|------------------------------------------------------------------------------------------------------|
| 2<br>3   | 40 | Bhattacharjee J, Bora D, Sharma RS, et al. Unnatural deaths in Delhi during 1991. Med Sci            |
| 4<br>5   |    |                                                                                                      |
| 6<br>7   |    | <i>Law</i> 1996; <b>36</b> :194–8.                                                                   |
| 8        | 41 | Jain A, Menezes RG, Kanchan T, <i>et al.</i> Two wheeler accidents on Indian roadsa study            |
| 9<br>10  |    |                                                                                                      |
| 11<br>12 |    | from Mangalore, India. <i>J Forensic Leg Med</i> 2009; <b>16</b> :130–3.                             |
| 13<br>14 | 42 | Gururaj G, Shastry KVR, Chandramouli AB, et al. Traumatic brain injury. Bangalore:                   |
| 15<br>16 |    | National Institute of Mental Health and Neuro Sciences, 2005.                                        |
| 17<br>18 |    |                                                                                                      |
| 19<br>20 | 43 | Colohan AR, Alves WM, Gross CR, et al. Head injury mortality in two centers with different           |
| 20       |    |                                                                                                      |
| 22<br>23 |    | emergency medical services and intensive care. <i>J Neurosurg Pediatrics</i> 1989; <b>71</b> :202–7. |
| 24       |    |                                                                                                      |
| 25<br>26 | 44 | National Crime Records Bureau. Accidental Deaths and Suicides in India, 2011. Ministry of            |
| 26<br>27 |    | Home Affairs, Government of India2011.                                                               |
| 28       |    |                                                                                                      |
| 29<br>30 | 45 |                                                                                                      |
| 30<br>31 | 45 | Transport Research Wing, Ministry of Road Transport & Highways. Basic Road Statistics of             |
| 32       |    | India. Government of India 2012.                                                                     |
| 33<br>34 |    |                                                                                                      |
| 35       | 40 | Transport Descerch Wing Ministry of Dead Transport fullishways, Dead Transport Veer                  |
| 36       | 46 | Transport Research Wing, Ministry of Road Transport & Highways. Road Transport Year                  |
| 37<br>38 |    | Book (2009-10 & 2010-11). Government of India 2012.                                                  |
| 39       |    |                                                                                                      |
| 40       | 47 | Pagistrar Canaral of India and Cantra for Clabal Health Pagastah, Causas of Death in                 |
| 41<br>42 | 47 | Registrar General of India and Centre for Global Health Research. Causes of Death in                 |
| 43       |    | India, 2001-2003: Sample Registration System. Government of India 2009.                              |
| 44<br>45 |    |                                                                                                      |
| 45<br>46 |    |                                                                                                      |
| 47       |    |                                                                                                      |
| 48       |    |                                                                                                      |
| 49<br>50 |    |                                                                                                      |
| 51       |    |                                                                                                      |
| 52       |    |                                                                                                      |
| 53       |    |                                                                                                      |
| 54<br>55 |    |                                                                                                      |
| 56       |    |                                                                                                      |
| 57<br>59 |    |                                                                                                      |
| 58       |    |                                                                                                      |

#### FIGURE LEGENDS

# Figure 1: Road traffic injury deaths, age-standardized death rate, and cumulative risk (age 0-69 years) across states and regions of India, by gender.

Death rates are standardized to the 2005 United Nations estimated Indian population. Symbol size is proportional to sample size. Northeast states include Sikkim, Arunachal Pradesh, Nagaland, Manipur, Mizoram, Tripura, and Meghalaya. Total estimates include the 80 male and 19 female deaths from Pondicherry, Chandigarh, Uttarakhand, Dadra & Nagar Haveli, A&N Islands, Daman & Diu, Lakshadweep, and Goa. CHT=Chhatisgarh.

#### Figure 2: Deceased mode of transportation, place of death, and timing of death.

(A) Deceased mode of transportation in present study compared to National Crime Records Bureau 2005 Report. Shaded line represents vulnerable road users (defined as road users without a rigid barrier protecting against traumatic forces, i.e. pedestrian, bicyclist, motorcyclist, and three wheelers). Percentages from present study are weighted by state and rural/urban residence. T=estimated/reported number of deaths in 2005 (in thousands). (B) Place of death and (C) timing of death based on verbal autopsy narratives. Shaded lines represent deaths that are reported as occurring at the scene of collision or occurring instantly (defined as within 5 minutes).

# Figure 3: Reported injuries from 1124 verbal autopsy narratives (49% of all 2299 RTI deaths).

Percentages refer to those in each row with given injury (columns). \*Values in bold denote two by two chi square tests with p<0.05 (excluding unknowns). Abdominal and spinal injuries were also reported but not shown due to small numbers (61 and 25 cases, respectively).

#### LIST OF ACRONYMS

| CI     | Confidence interval                                                                                |
|--------|----------------------------------------------------------------------------------------------------|
| ICD-10 | International Statistical Classification of Diseases and Related Health Problems, 10 <sup>th</sup> |
|        | Revision                                                                                           |
| LMIC   | Low- and middle-income countries                                                                   |
| MDS    | Million Death Study                                                                                |
| NCRB   | National Crime Records Bureau                                                                      |
| RGI    | Registrar General of India                                                                         |
| RTI    | Road traffic injury                                                                                |
| SRS    | Sample registration system                                                                         |
| UN     | United Nations                                                                                     |
| WHO    | World Health Organization                                                                          |
|        |                                                                                                    |
|        |                                                                                                    |
|        |                                                                                                    |