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Mitosis-targeted anti-cancer therapies: where they
stand

K-S Chan1, C-G Koh*,1 and H-Y Li*,1

The strategy of clinically targeting cancerous cells at their most vulnerable state during mitosis has instigated numerous studies
into the mitotic cell death (MCD) pathway. As the hallmark of cancer revolves around cell-cycle deregulation, it is not surprising
that antimitotic therapies are effective against the abnormal proliferation of transformed cells. Moreover, these antimitotic drugs
are also highly selective and sensitive. Despite the robust rate of discovery and the development of mitosis-selective inhibitors,
the unpredictable complexities of the human body’s response to these drugs still herald the biggest challenge towards clinical
success. Undoubtedly, the need to bridge the gap between promising preclinical trials and effective translational bedside
treatment prompts further investigations towards mapping out the mechanistic pathways of MCD, understanding how these
drugs work as medicine in the body and more comprehensive target validations. In this review, current antimitotic agents are
summarized with particular emphasis on the evaluation of their clinical efficacy as well as their limitations. In addition, we
discuss the basis behind the lack of activity of these inhibitors in human trials and the potential and future directions of mitotic
anticancer strategies.
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Facts

1. The fragility of cancer cells when they undergo division
serves as a critical intervention point in chemotherapy.

2. This strategy encompasses a prolonged arrest of cells in
mitosis, culminating in mitotic cell death (MCD).

3. Classical antimitotic therapies achieved some level of
success, but complete neoplasm eradication is rare and
often plagued with issues of slippages, resistance and
toxicity.

4. The majority of newer mitosis-targeting drugs currently
under development could not translate their preclinical
efficacy to clinical response in human trials.

Open Questions

1. Are antimitotics still relevant as a potent chemotherapeutic
strategy?

2. How to improve the selectivity of antimitotics towards
cancer cells without off-site(s) targeting?

3. Can the balance of therapeutic benefits and reversible side
effects be struck in combinatorial treatments consisting of
multiple antimitotics targeting different stages of mitosis?

4. What about multi-phasic combinatorial therapies encom-
passing antimitotics, DNA-damaging agents (including

antimetabolites and antibiotics) and/or antiangiogenic
drugs?

Mitosis is an elaborate process in actively proliferating cells,
resulting in the division of duplicated sets of chromosomes
and two genetically identical daughter cells. Failure of cell-
cycle checkpoint regulations often results in aneuploidy and
genetic instability, culminating either in cell death or in
cancer.1 In the same vein, cancer describes abnormal,
deregulated cells that undergo unrestricted divisions.

Despite being the shortest phase of the cell-cycle, mitosis
orchestrates major changes in multiple cellular components.
Signaling pathways are intricately activated and silenced on
cues, and timely prompting of protein degradation processes
leads to gross dynamic reorganization of the cell structure.
Hence, it is considered to be the most fragile period of the cell-
cycle, during which it is highly susceptible to cell death when
exposed to various insults.2 Damages incurred by these
cellular stressors activate the spindle assembly checkpoint
(SAC), which halts progression and induces a prolonged
mitotic arrest. Such delays are likely to signal the induction of a
death program, known as mitotic cell death (MCD), and it is
widely exploited as an antiproliferative strategy for the
development of chemotherapeutic agents. Induced MCD
often centralizes around the inhibitions of mitotic progressions
achieved through spindle-disruption activities and the
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restriction of key mitotic regulatory proteins in terms of
availability and functionality.

Given the lack of an accurate and consistent definition of
MCD, as long as cell death processes are activated within the
duration of mitosis leading up to cell death thereafter, they are
regarded as MCD. There are crosstalks between different
modes of cell death. Thus far, antimitotics-induced MCD
exhibits features that resemble the apoptotic pathway
(caspase activation, cytochrome c release and chromosome
condensation),3 necrosis-like phenotype (caspase-indepen-
dent death),4 and autophagy characteristics.5 It is likely that
molecular events that drive cell death are shared across
different pathways through simultaneous activations or
sequential triggering in a dying cell.

Regardless of the targets and mechanisms, antimitotics
interfere with normal mitotic propagation without seriously
affecting quiescent, non-dividing cells. Spurred by the
success of paclitaxel and vinblastine for the treatment of
various malignancies, MCD is considered to be highly
effective in treating tumor cells.6 Nevertheless, from the
perspective of antimitotic therapy, relapses are not uncom-
mon and total eradication of clinical tumors is rare. Even with a
new generation of promising antimitotics aiming at novel
targets, especially the mitotic kinases and spindle motor
proteins, clinical trial results are disappointing. In this review,
we will focus on the existing chemomitotic approaches,
evaluate the efficacy behind mitosis-based therapies and
discuss possible directions for novel therapies.

Mitosis-Selective Strategies Against Cancer

Anti-microtubular drugs. With a long history of clinical
efficacy, microtubule-targeting agents (MTAs) remain to date
the most classical yet, reliable antimitotics. This class of
drugs disrupts proper microtubule dynamics, leading to
abnormal spindle formation, chromosome misalignment and
the perpetual activation of SAC.7 MTAs can be further
subcategorized into (i) microtubule-destabilizing agents, like
Vinca alkaloids, that prevent microtubule polymerization and
(ii) microtubule-stabilizing agents, like taxanes and Epothi-
lones, that stimulate polymerization.8 MTAs have shown anti-
tumor activity in a wide range of tumors, particularly breast,
ovarian, non-small-cell-lung and head-and-neck cancers.9

The microtubule stabilizers typified by Taxol bind b-tubulin
with high affinity along the interior surface of the micro-
tubules, thereby inducing conformational change in the
tubulin, which increases and stabilizes its interaction with
neighboring tubulin molecules.8 Although mitotic chromo-
somes are still able to attach to Taxol-stabilized micro-
tubules, tension is compromised across sister chromatids
and proper chromosome biorientation is not achieved.10

On the other hand, vinblastine typifies the microtubule
destabilizers. It is often used in combination with other
chemotherapeutic drugs for treatment of cancers such as
lymphoma, leukemia, testicular and breast cancer. Vinblas-
tine causes microtubule depolymerization and targets both
tubulin monomers and microtubules by binding to b-tubulin at
a region adjacent to the GTP binding site known as the vinca
domain. The subsequent conformational change in tubulin
then promotes self-association and prevents microtubule

formation.8 The mode of action may be different from the
microtubule stabilizers, but it is the SAC-dependent mitotic
delay that enhances cell vulnerabilities towards MCD or,
alternatively, death after mitotic slippage.

Although MTAs are developed to selectively target actively
dividing cells by virtue of the intense turnover and restructur-
ing of spindles during mitosis, interphase cells may be
targeted too, as microtubules are prevalent throughout the
cell-cycle. Hence, undesirable effects to non-proliferating
cells are observed through disrupted physiological processes
such as vesicular trafficking, axonal transport and main-
tenance of cytoskeleton functions.11 Myeloid toxicity and
neurotoxicity are common, resulting from mitotic arrest-
related impairment in cycling bone marrow cells and functional
disruption in neuronal cells. In addition, MTA resistance
further compounds the challenges.8 Therefore, there is a
strong interest in developing novel drugs that do not affect
microtubule structures and yet are able to specifically inhibit
the progression of mitosis.

Anti-kinases
Entry kinases. One class of new targets involves kinases
responsible for directing cells into mitosis. Generally, mitotic
entry is driven by the activation of a ‘mitosis-promoting
factor’, which comprises the cyclin-dependent kinase 1
(Cdk1)/cyclin B1 heterodimer.12 The activated Cdk1/cyclin
B1 complex kick-starts the mitotic machinery by phosphor-
ylating proteins that are fundamentally involved in chromo-
some condensation, nuclear envelope breakdown, spindle
assembly, centrosome separation and Golgi fragmenta-
tion.13 Inhibition of Cdk1 blocks mitosis and induces cell
death (Table 1). Nevertheless, despite the excitement
generated at preclinical stages, human trials on Cdk drugs
such as UNC-01 and flavopiridol failed to deliver significant
clinical advantages, with majority reports citing toxicity and
side effects, thus preventing more rigorous regimen.14

Checkpoint kinases 1 and 2 (Chk1 and 2) are DNA damage
checkpoint proteins regulating p53 and Cdc25 to mediate cell-
cycle arrest/apoptosis and Cdk1 activation, respectively.15 As
G2 checkpoints, they are important for ensuring cells with
cellular damage are prevented from progressing into mitosis
until the damage is repaired. Studies have shown that the
inhibition of checkpoint genes promote DNA damage-induced
MCD.16,17 Following that, a host of Chk1 inhibitors have been
identified and tested for clinical efficacy (Table 1). However,
side effects and limited responses plague single-agent
therapies using these drugs.

Mitotic kinases. Kinases belonging to the Aurora kinase and
polo-like kinase (Plk) families are widely regarded as the
bona fide mitotic kinases given their peak expression in
mitosis, with little to null detection in G0, G1 and S phases.18

The mammalian Aurora members A, B and C are serine/
threonine protein kinases that have multiple essential roles
during mitosis. Often times, they are overexpressed in
several tumor types, making them ideal targets for cancer
therapy.19 Several Aurora kinase inhibitors have been
established and they are in various stages of clinical
development (Table 1). Plks also play critical roles during
mitotic progression. Four members of Plks have been
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identified in mammalian cells. Plk1 is the most thoroughly
studied member. It is involved in spindle assembly, centro-
some maturation, SAC activation, chromosome segregation
and cytokinesis. In addition, the expression of Plk1 was
found to be upregulated in a variety of cancers, including
ovarian, bladder, gastric, breast, colon, head and neck,
esophageal, thyroid cancers, melanomas and gliomas.20

Therefore, targeting Plk1 is viewed as an attractive anti-
cancer strategy.

The spindle pole localization of Plk1 and Aurora A during
early mitosis (Figure 1) is functionally coupled to direct
centrosome maturation and separation. Targeted inhibition
of Aurora A or Plk1 gives rise to SAC activation, mitotic arrest,
and increased cell death due to monopolar spindle forma-
tion.21,22 Tumor-specific partial responses have also been
reported in clinical trials utilizing drugs directing at these
kinases.23 Aurora B inhibitors, however, work differently at the
end of mitosis by disrupting cytokinesis and causing poly-
ploidy cells with restricted viability.24 Aurora B localizes to the
kinetochore, regulating kinetochore–microtubule attachment
during metaphase.25 It is likely that Aurora B inhibition could
also induce SAC-dependent arrest. However, none of these
compounds showed spectacular clinical results, with moder-
ate to severe side effects and partial responses recorded
at best.

Anti-motor proteins. Building upon anti-microtubular ther-
apy, new targets and strategies were devised to exploit
spindle dynamics and functionalities. With the discovery of
Monastrol (Eg5 inhibitor) as a potent mitotic arrest inducer,26

mitotic kinesins have become anti-cancer targets. Eg5 is a
plus end-directed motor protein responsible for centrosome
separation and bipolar spindle formation. Compromising
Eg5’s activities leads to monopolar spindles, abnormal
chromosome congression, SAC-dependent arrest and pos-
sibly cell death.27 Currently, Eg5 inhibitors such as Ispinesib,
AZD-4877 and others have entered clinical development
(Table 1). Of interest, Eg5 inhibition has been shown to be
effective in targeting Taxol-resistant cancer cells.28 Further-
more, Eg5 inhibitors do not display severe cytotoxicities and
are generally well tolerated. Yet, to date these agents are
generally lacking in activity in clinical trials.29

Centromeric protein E (CENP-E) is another targeted mitotic
kinesin, minimally found during G1 and accumulates during
late G2 and M-phases. It is localized at the kinetochores
(Figure 1) and is required for proper chromosome congression
during metaphase. Moreover, it also stabilizes kinetochore–
microtubule attachments and serves as a sensor of SAC by
binding to and regulating the activity of BubR1.30,31 Existing
CENP-E inhibitors can be subdivided into two categories: (i)
ATPase antagonist of the motor domain or (ii) farnesyl

Figure 1 Localization of current druggable protein targets during mitosis (metaphase). The four key subcellular domains highlighted are: (i) mitotic spindle region,
(ii) kinetochore/ centromeric region, (iii) centrosomal region and (iv) mitoplasm (nucleoplasmþ interphase cytoplasm after the breakdown of the nuclear envelope). It is worth
noting that certain proteins exhibit dynamic localization throughout mitosis, such as components of the CPC, which are localized near the centromeres during prophase and
metaphase, before shifting to the developing midzone microtubules during anaphase, and finally settled at the midbody during telophase and cytokinesis. Aurora A and Plk1
similarly redistributes to the midbody towards the end stages of mitosis
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transferase inhibitors (FTIs). Hindering the ATPase activity of
the CENP-E motor domain stabilizes it with ADP, resulting in
CENP-E being tightly bound to the microtubules. This
prevents proper chromosome alignment during metaphase,
thereby leading to mitotic arrest and MCD.32 Conversely,
inhibiting the farnesylation of CENP-E perturbs the normal
assembly and function of the kinetochore complexes, thereby
weakening the kinetochore–microtubule interactions, and
activates the SAC. Other observable phenotypes include
abnormal chromosomal maintenance, premature release of
chromosomes from the spindle equator and lagging chromo-
somes.33 In preclinical work, CENP-E-specific inhibitors have
shown positive activity in mouse models and xenograft
studies.32,34 The first human trial with CENP-E inhibitor
GSK923295 showed low levels of myelo/neurotoxicities
among patients with refractory solid tumors, warranting
further studies to analyze its anti-proliferative capability.35

Anti-multiprotein complexes
APC/C-Cdc20. The anaphase promoting complex/cylosome
(APC/C) is an E3 ubiquitin ligase, and, together with its
coactivator Cdc20, forms the APCCdc20 complex involved in
driving the progression through anaphase and exiting from
mitosis.36 Tumorigenesis is linked to mutations and expres-
sion deregulations of APC/C subunits or its regulators,
Cdc20 and Cdh1.37 Despite this correlation, targeting the
mitotic exit as an anticancer strategy via APC Cdc20 stems
from a more pressing issue of resistance against current
generation of antimitotics due to mitotic slippage.2 During
mitotic arrest, SAC prevents the activation of APCCdc20, thus
restricting the ubiquitination and the degradation of Cyclin B.
However, the SAC-enforced inhibition on APC/C activation is
not absolute. Slippage is proposed to occur when the
APCCdc20-mediated background degradation of Cyclin B
under the setting of an active SAC exceeds a certain
threshold before cell death is initiated, subsequently prompt-
ing the cell to escape from mitosis.38 Indeed, the depletion of
Cdc20 has shown promising results in eliciting complete
metaphase arrest in cell lines and prominent tumor cell-killing
capability in mouse models.39,40 Bolstering the therapeutic
approach of APC/C-mitotic exit targeting, a prodrug of TAME
(tosyl-L-arginine methyl ester) was found to effectively trigger
cell death after prolonged mitosis in tumor cells by reducing
the binding of Cdc20 to APC.41

Proteasome. Another interesting antitumor target, which is
associative but yet to be established as a mitosis-selective
approach, is the proteasome. As the executor of the
supramolecular ubiquitin–proteasome system (UPS), protea-
somes degrade misfolded or dysregulated proteins that have
been tagged with ubiquitin molecule(s). Aberrations in the
UPS are implicated in malignant transformation,42 intensify-
ing efforts to exploit UPS as a potential anticancer strategy.
Several proteasome inhibitors are currently undergoing
clinical trials (Table 1). Of note, bortezomib had already
been approved for the treatment of multiple myeloma and
refractory mantle cell lymphoma.43 Cyclin B is a ubiquitinated
substrate of proteasome, degradation of which is required for
mitotic exit. Interestingly, bortezomib had been reported to
induce mitotic cell death in natural killer lymphoma cells.44

Despite proteasome inhibitors’ lack of specificity, the side
effects of bortezomib are surprisingly limited. This allows for
further development, optimization and combinatorial thera-
pies. Treatments incorporating bortezomib and taxanes
significantly intensify cell death relative to individual drug
effects in cancer cell lines of gastric, head and neck
origins.45,46 Unfortunately, these results have yet to be
reflected in phase I/II clinical trials involving cotreatment
using bortezomib and paclitaxel.47,48

Emerging targets
Mcl1. Mcl1 is gaining traction as an antimitotic target with
increasing evidences associating its degradation in mitosis to
the timely induction of cell death.49 As a member of the Bcl-2
family of anti-apoptotic proteins, Mcl1 is able to disrupt Bax
and Bak’s interaction with the mitochondrial membrane,
thereby averting apoptosis initiation. The expression of Mcl1
peaks when a cell is arrested in mitosis either normally
(possibly to resolve checkpoint errors) or drug-induced. The
apoptotic suppression by Mcl1 is not permanent, as it
undergoes a concerted sequence of phosphorylation–
polyubiquitination, culminating in APCCdc20 dependent
degradation by the proteasome.50 Because of this transient
protection, arrested cells will escape death if the cyclin B’s
level drops to the exit threshold before Mcl1 is degraded
sufficiently to elicit apoptotic responses. Studies have shown
that Mcl1 is overexpressed in patient-derived tumors.51,52

Regulatory proteins such as protein phosphatase PP2A and
deubiquitinase USP9X along the Mcl1 axis have been
proposed as a possible intervention point, inhibition of which
will promote the degradation of Mcl1 and abolish its
cytoprotectivity.53 This strategy could probably boost clinical
efficacy in combination with other mitosis-specific
therapeutics.

Condensin. Current antimitotics do not aim at the death
pathway directly. Rather, intracellular stresses induced
during mitotic arrest had been proposed to collectively
orchestrate the cell’s demise. How this is conducted remains
poorly understood. In addition, it is also unknown how
chromosomal DNA damage54 (often observed in cancer cells
treated with chemical agents) can occur on a highly
condensed chromosomal structure. Recently, we had identi-
fied a novel molecular event directly linking the regulation of
condensin to mitotic death.55 Our model shows that caspase-
3-mediated depletion of the condensin 1 subunit Cap-H and
the subsequent loss of chromosomal structural integrity is
crucial in MCD. Clearly, these early results require validation
for their importance in cancer therapy. Still, condensin-based
approaches may be an interesting avenue to devise novel
anticancer strategies. Although targeting condensin may not
be an orthodox approach given that it is not cancer-specific, it
is worth noting that the bulk of condensin’s activities abound
during mitosis. Condensins are required for proper chromo-
some assembly, contributing towards condensation and
metaphase chromosomal architecture and chromosome
segregation in vertebrate cells.56 Although condensin has
also been implicated to regulate higher-order chromosome
structure during interphase, studies on condensin perturba-
tion reveal that aberration occurs predominantly during
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chromosomal condensation and mitotic progression.57

Hence, targeted inhibition of condensin will generally affect
only dividing cells.

Limitations of Existing Antimitotic Approaches

The general theme afflicting the development of anticancer
therapeutics has always been the inability of high-potential
drugs to deliver their efficacy in human trials. These drugs are
envisioned to recapitulate the success of MTAs by disrupting
mitosis to induce prolonged arrest and cell death, without the
ill effects of myelosuppression and neurotoxicities. The
question remains, why aren’t they working like they are
supposed to?

The selectivity of antimitotics is modeled and even
marketed as targeting rapidly growing cancer cells without
adversely affecting normal tissues consisting mostly of
quiescent non-cycling cells. This unintentional propaganda
has been going on for so long, established as fact, and misled
patients, physicians or even researchers alike. The truth of the
matter is, both normal and malignant cells follow a concerted

and precisely controlled process to progress through cell
division in a similar schedule. Komlodi-Pasztor et al also
recently highlighted this misconception (that tumor cells divide
more frequently and more rapidly) as the downfall for mitotic
agents.58 Within the treatment duration, mitosis-specific
drugs target only the cells in M-phase, leaving the rest of the
G1- or S-phase tumor cells refractory to the cytotoxic effect.59

Once the drug is cleared, the likelihood of the remaining tumor
cells repopulating the cleared fraction cannot be ruled out. In
line with the ‘fractional kill theory’, chemotherapy necessitates
multiple cycles of treatment to remove the tumor. However,
the tumor-doubling time in patients is found to be unexpect-
edly long (some over 300 days for solid tumors and over 700
days for hematopoietic malignancies) compared with cell lines
(ranging from 0.5 to 5.4 days) or animal models (ranging from
1.3 to 7.3 days) (Table 2). This may be the reason why
encouraging preclinical antimitotics failed as they advanced
into human testing. To further compound on the low mitotic
index observed in human tumors (estimated to be o1%), the
proliferation rate is variable in different patients, origins and
locations of the tumors.60–62 This can also be extrapolated to

Table 2 Categorical analysis of doubling-time estimates in cancers of selected originsATCC,58,118–138

Cell lines Preclinical models Patient record

Cancer origin
ID Average doubling

time (days)
Average doubling

time (days)
Average doubling

time (days)

Solid tumors
Colon SW480

CaCO-2
SW620
Colo205
HCT-116

5.4
3.8
3.2
1.0
0.7

3.4 391

Prostate DU145
PC-3

1.2
0.8

3.4 219

Breast HCC1954
MDA-MB-468

MCF7
BT474

MDA-MB-231

1.3
1.3
1.2
1.2
1.2

5.6 152

Skin MM8.1
A375
A375

0.8
0.5
0.5

5.4 147

Lung SNU-371
H2126

SNU-1330
H1299
A549

4.1
1.7
1.6
1.0
0.9

4.4 114

Haematopoetic malignancies
Chronic lymphoblastic
leukemia (CLL)

MEC1
MEC2

WSU-CLL

1.6
1.3
0.75

7.3 781a

Acute lymphoblastic
leukemia (ALL)

Jurkat
SK-9

CCRF-CEM

2.0
2.0
1.0

2.7 5.7

Chronic myelogenous
leukemia (CML)

MEG-01
KU812
K562

1.8
1.0
0.5

N.Ab 8.0

Acute Myelogenous
Leukemia (AML)

KG-1
HL-60

1.9
1.5

1.3 2.5

aDenotes average lymphocyte doubling times of patients from stages A, B, and C (Binet’s clinical stages)
bNot applicable (NA): difficulty in the specific isolation of CML stem cells from the normal hematopoietic stem cells in patients complicates the development of reliable
CML animal models139
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heterogeneity in responses to chemotherapy, which has been
periodically reported in clinical trials or even in approved
regimens. It is worth noting that for blood cancers in general,
the doubling times are not too far off between in-patient
records and the corresponding cell lines. No doubt the rapid
doubling time is associated with aggressive cancers and bad
prognosis for the patients. Nonetheless, this also partially
explains why chemotherapy is generally more effective
against before other complications (mutations, resistance
etc) set in.

Although it is valid to reason that the current antimitotics are
targeting only a limited fraction of cells within a tumor
population, it still does not explain how taxanes achieved
considerable clinical efficacy by similarly affecting the
propagation of mitosis. Several possibilities had been outlined
by Mitchison,63 which indirectly underscore the inadequacies
of existing drugs. Chief among these factors is the drug
retention issue, where paclitaxel has been shown to linger in
the tumor cells for a week and is thus able to exert its
cytotoxicity longer compared with the newer mitosis-selective
inhibitors with a median half-life of approximately 13 h.35,64–66

Additionally, it is likely that quiescent cancer cells can be
targeted by paclitaxel as well because of the importance of
microtubule dynamic trafficking in cells not undergoing
mitosis. These raise serious doubts and warrant re-examina-
tion of the development of chemical inhibitors and the validity
of mitosis-specific drugs in single-agent therapies.

From a different angle, the scourge of chemotherapy has
always been the establishment of resistance to clinical agents
before total tumor removal. Mutations and the expression of
drug efflux pumps are largely seen as the driving force behind
the development of drug resistance.67 Antimitotics included,
paclitaxel resistance has been linked to aberrant expression of
specific beta-tubulin isotypes, mutation within the beta-tubulin
itself or even the expression of drug efflux pump such as the
ABCB1.68 Despite the relatively short time of application, drug
resistance had also been reported for the newer mitosis-
selective agents like the Eg5 inhibitor.69 These evidences
seem to build upon mitotic slippage, widely considered as the
biggest shortcoming of existing antimitotics that is anchored on
the basis of mitotic arrest followed by cell death. Unfortunately,
not all the arrested cells will die; some adopt different cell fates
after slippage, such as death in the following G1 phase, or
even exist as viable multiploidy cells (re-enter the cell-cycle
and become increasingly unstable and potentially malignant).7

The resulting chromosomal instability (CIN) is linked to graver
consequences such as development of metastatic capability
and acquisition of resistance.70,71 This illustrates the dreaded
scenario where chemotherapy becomes the selection pres-
sure for cancer to become even more malicious. Nonetheless,
excessive CIN could also lead to non-viable progenies and
subsequent lethality.72 In fact, exploiting extreme CIN as a
positive anticancer approach has been proposed by inhibiting
Mps1 (mitotic checkpoint kinase)73 or the synergistic effect of
mitotic checkpoint inhibition coupled to sublethal doses of
paclitaxel.74 With that in mind, the ideal antimitotic agent
should therefore be effective enough to prevent mitotic
slippage, or even if slippage occurs, severe CIN that
compromises tumor cell viability must be invoked by the single
inhibitor or in combination with other drugs.

The challenge of identifying or designing more specific and
potent drugs, especially against families of proteins with high
sequence similarities, slows the advent of antimitotic
approaches. Often times, the current generation of pan/
multi-targeted drugs like Aurora A, Cdk1 or Plk inhibitors show
lack of activity, specificity and increased toxicity, especially if
the targeted kinase is regulating a plethora of substrates.75 In
addition, Plk2 and Plk4 have been suggested to act as tumor
suppressors.76,77 A Plk1 inhibitor, which concurrently recog-
nizes Plk2 and Plk4, may enhance tumorigenesis. It remains a
hurdle to discover robust inhibitors against multiprotein
complexes such as the mitosis-specific APC/C, SAC or even
the proteasome. The obstacles are in expressing such huge
recombinant proteins and then isolating them to high levels of
purity for screening purposes. Additionally, these proteins
have relatively large flat surfaces, thereby hindering the
binding of small chemical inhibitors, or even if binding occurs it
is difficult to restrict interactions or functionalities on the large
complex as a whole.78

Future Perspectives

Although challenges abound for the development of new
antimitotics, optimization and potency improvement of exist-
ing drugs, it is still possible to exploit current drugs under new
strategies. One cannot ignore the ubiquitous efficacy shown
by these drugs in preclinical work. With more research to
validate targets and to better understand the translational
barrier in clinical application, targeting the mitotic defects of
cancer cells can still be useful in anti-cancer therapy.

Granted the two main reasons behind failed mitosis-
selective approaches are the underestimated slowness of
human tumor-doubling time and the occurrence of mitotic
slippage, one can envisage two possible ways to circumvent
the complications: (i) antagonizing cancer-specific target that
has oncogenic roles outside mitosis (i.e., important through-
out the cell-cycle), and (ii) combining targeted inhibitors to
maximize mitotic arrest-cell death and minimize mitotic exit
(combinatorial therapy).

There are many versatile proteins that have significant roles
encompassing both interphase and mitosis, but it is extremely
rare to identify one that is cancer specific. Survivin, which
belongs to the Inhibitor of Apoptosis Protein (IAP) family, is
one among the few. While Survivin is a vital suppressor of
apoptosis, it is also an integral component of the chromosome
passenger complex (CPC), which directs mitotic activities.79

The expression of Survivin is cell cycle-regulated and
escalates to a maximum during the G2/M phase, consistent
with its role in mitosis. Survivin strikes as a clear cancer-
specific gene, as it is overexpressed in practically every
human tumor examined. As a cell death regulator, Survivin
exhibits its cytoprotectivity either directly or indirectly through
the suppression of pro-apoptotic molecules such as the
caspases.80,81 We have reported that Survivin withdrawal via
abrogated nucleocytoplasmic transport tilts the survival
balance irreversibly to the execution of apoptosis.82,83 Other
studies involving the physical or functional termination of
Survivin by various molecular entities demonstrated sponta-
neous sensitization to caspase-dependent apoptosis in vitro
and also in animal models.84,85 Conversely, as a mitotic
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facilitator, Survivin interacts with Borealin, INCENP, and
Aurora-B to form the functional CPC. Downregulation and
functional attenuation of Survivin revealed severe defects in
mitotic spindles assembly and maintenance, compromised
spindle checkpoint surveillance, aberrant chromosome move-
ments, increase in ploidy and the inability to complete
cytokinesis.86,87 Taken together, a therapeutic targeting
Survivin is likely to transcend the shortcomings of antimitotics.
Several anti-Survivin strategies have been devised over the
years to varied levels of success. Encouragingly, early-phase
human trials of Survivin inhibitors showed tolerable toxicity
and proofs of clinical efficacy.88

Pertaining to the high rates of mitotic slippages in cancer
cells as a result of SAC-related mutations and the prevalent
basal level of Cyclin B degradation, targeting mitotic exit has
shown remarkable results thus far. Similarly, this approach
can be extrapolated to aim at targets involved in different
stages of mitosis, thus collectively achieving maximum MCD.
It is interesting to speculate on the efficacy of combinatorial

treatment involving simultaneous inhibitions of mitotic entry
and/or spindle-associated/mitotic checkpoint targets together
with mitotic exit. The idea is that it is unlikely for tumor cells to
escape targeted interventions that hit them sequentially in
waves at different stages of mitosis. In addition, such intense
regimen would leave no room for acquired resistance to
develop. Figure 2 depicts the network of selected druggable
targets at various stages of mitosis, many of which shared
regulatory connections, downstream targets and substrates.
The possible numbers and permutations of antimitotic targets
that can be selected are theoretically endless (limited only to
the tolerance level of a patient); the challenge would then be to
find combinations that work synergistically and complement
one another.

Such tactic is not without ramifications, prompting careful
considerations and comprehensive analysis in devising
combinatorial strategies. In any antimitotic treatment, cyto-
toxicity is seen not only in cancer cells but also in healthy
cycling cells, particularly the bone marrow myeloid progenitor

Figure 2 Interplay of pharmacologic targets in mitosis. A combinatorial anti-mitotic regimen encompassing inhibitors concurrently targeting different stages of mitosis
(limiting mitotic entry, strengthening checkpoint arrest and preventing mitotic exit, all of which lead to cell death) may yield higher efficacy in terms of clinical treatment. In
addition, such an intense strategy is likely to minimize the development of acquired resistance and/or reduce the drawback of response heterogeneity
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cells. In accordance, the fear is that multiple drugs targeting
various levels of regulatory molecules might not achieve
relevant clinical activity because of dosage limitations as set
by bone marrow toxicity or alternative detrimental effects on
other dividing tissues. Further questions can be asked
regarding the duration of the strategy, the reversibility of side
effects under persisted therapy and the cross-reactivity of the
combined antimitotics. Regardless, considering the prelimin-
ary success of targeting mitotic exit, a multiphase combina-
torial antimitotic strategy provides an alternative and
interesting avenue towards developing more effective mito-
sis-selective therapies.

Summary

From the perspective of tumor cells, one key distinction that
separates them from the non-dividing cells in the body is that
they undergo unrestricted growth. Perhaps not in terms of
proliferation rate (especially when compared to normal
dividing cells), but for them to grow, they need to divide. This
crudely covers the issue of selectivity to a certain extent and
confers vulnerability during cellular division, thus making
mitosis a valid point of intervention in anti-cancer therapy. It is
widely regarded that antimitotics cause prolonged mitotic
arrest due to the activation of SAC. Following mitotic arrest,
the cells can die from MCD or adopt different cell fates.7 A
repertoire of chemical inhibitors targeting various mitosis-
specific kinases, motor proteins and multiprotein complexes
has been developed since the relative success of the classical
microtubule poisons. These drugs are naturally more mitosis-
selective yet without the side effect of neurotoxicities.
However, dramatic bench results do not necessarily translate
to bedside efficacy, as seen in a majority of these mitotic
therapeutics. The inherent slow growth of human tumors and
the rapid development of drug resistance (associated to
mitotic slippages both as a cause and as a consequence) limit
patients’ response and curb the full potential of existing
mitosis-selective inhibitors. As such, much work is needed to
map out the complexities of how cytotoxic drugs work as
medicine, to harness the full potential of antimitotics, and to
resolve the gaps behind preclinical to clinical shortcomings.
Identifying new cancer-specific druggable molecules, optimiz-
ing combinatorial treatments and devising novel anticancer
strategies remain a future challenge and hope for treating
cancer.
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