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Abstract

Background: In computational biology, one often faces the problem of deriving the causal
relationship among different elements such as genes, proteins, metabolites, neurons and so on,
based upon multi-dimensional temporal data. Currently, there are two common approaches used
to explore the network structure among elements. One is the Granger causality approach, and the
other is the dynamic Bayesian network inference approach. Both have at least a few thousand
publications reported in the literature. A key issue is to choose which approach is used to tackle
the data, in particular when they give rise to contradictory results.

Results: In this paper, we provide an answer by focusing on a systematic and computationally
intensive comparison between the two approaches on both synthesized and experimental data. For
synthesized data, a critical point of the data length is found: the dynamic Bayesian network
outperforms the Granger causality approach when the data length is short, and vice versa. We then
test our results in experimental data of short length which is a common scenario in current
biological experiments: it is again confirmed that the dynamic Bayesian network works better.

Conclusion: When the data size is short, the dynamic Bayesian network inference performs
better than the Granger causality approach; otherwise the Granger causality approach is better.

Background
Based upon high throughput data, to reliably and
accurately explore the network structure of elements
(genes, proteins, metabolites, neurons etc.) is one of the
most important issues in computational biology [1-6].
Currently, there are two main approaches which are
often used to infer causal relationships [7] or interac-
tions among a set of elements [8,9]. One is the Granger
causality approach [10,11], and the other is the Bayesian
network inference approach [12,13]. The latter is often
applied to static data. However, one can employ the
dynamic Bayesian networks to deal with time series data
for which the Granger causality has been solely

developed. The Granger causality has the advantage of
having a corresponding frequency domain decomposi-
tion so that one can clearly find at which frequencies two
elements interact with each other.

Giving a multi-variable time series dataset, the Granger
causality and dynamic Bayesian networks [14] can both
be applied. The Granger causality notation, which was
firstly introduced by Wiener and Granger [15,16],
proposed that we can determine a causal influence of
one time series on another: the prediction of one time
series can be improved by incorporating the knowledge
of the second one. On the other hand, The Bayesian
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network [17] is a special case of a diagrammatic
representation of probability distributions, called prob-
abilistic graphical models [18-20]. The Bayesian network
graph model comprises nodes (also called vertices)
connected by directed links (also called edges or arcs)
and there is no cycle in the graph. To learn the structure
and the parameters for the Bayesian networks from a set
of data, we should search the space(s) of all possible
graph representations, and find out which structure is
most likely to produce our data. If we have a scoring
function (or likelihood function) which can determine
the structure and parameter likelihood from the data,
then the problem is to find the highest score (maximum
likelihood) structure among all the possible representa-
tions.

The causal relationship derived from these two
approaches could be different, in particular when we
face the data obtained from experiments. Therefore it is
of vital importance to compare these two causal inferring
approaches before we could confidently apply them to
biological data. By doing the comparison, one expects to
find the advantages, performances and stabilities for
each technique.

Adopting the most common existing methods to find the
coefficients of the time series in both approaches in the
literature, we compare the dynamic Bayesian network
with the Granger causality both in the linear and
nonlinear model. Interestingly, a critical point of the
data length is found. When the data length is shorter
than the critical point, the dynamic Bayesian network
approach outperforms the Granger causality approach.
But when the data length is longer, the Granger causality
is more reliable. The conclusion is obtained via intensive
computations (more than 100 computers over a few
weeks). A biological data set of gene microarray is
analyzed using both approaches, which indicates that for
a data set with a short sampling length the dynamic
Bayesian network produces more reliable results. In
summary, we would argue that the dynamic Bayesian
network is more suitable for dealing with experimental
data.

Results
To illustrate and compare the differences between the
dynamic Bayesian network inference and the conditional
Granger causality, a simple multivariate model with
fixed coefficients, which has been discussed in many
papers to test the Granger causality, is tested first. We
then extend our comparisons to the more general case of
the model with random coefficients, which requires
considerable computational resources. More than 100
networked computers are used to perform the

comparisons for more than a week. Both the Granger
causality and the dynamic Bayesian network are applied
to nonlinear models. Finally, we test our approach on a
set of microarray data recently acquired from a compar-
ison of mock and infected Arabidopsis leaf.

Synthesized data: linear case
Example 1 Suppose we have 5 simultaneously recorded
time series generated according to the equations:
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where n is the time, and [ε1, ε2, ε3, ε4, ε5] are independent
Gaussian white noise processes with zero means and
unit variances. From the equations, we see that X1(n) is a
cause of X2(n), X3(n) and X4(n), and X4(n) and X5(n)
share a feedback loop with each other, as depicted in
Figure 1B. Figure 1A shows an example of the time trace
of 5 time series. For the Granger causality approach, we
simulated the fitted vector autoregressive (VAR) model
to generate a data set of 100 realizations of 1000 time
points, and applied the bootstrap approach to construct
the 95% confidence intervals (Figure 1C). For Granger
causality, we assume the causality value is Gaussian
distributed. Then the confidence intervals can be
obtained by calculating the mean and standard deriva-
tion values [21,22]. According to the confidence inter-
vals, one can derive the network structure as shown in
Figure 1B which correctly recovers the pattern of the
connectivity in our toy model. For the dynamic Bayesian
network inference approach, we can infer a network
structure (Figure 1Da) for each realization of 1000 time
points. The final resulting causal network model was
inferred with high-confidence causal arcs (the arcs occur
more than 95% of the time in the whole population)
between various variables [13]. This complex network
contains the information of different time-lags for each
variable. It fits exactly the pattern of connectivity in our
VAR model. In order to compare it with the Granger
causality approach, we can further simplify the network
by hiding the information of time-lags, and then we infer
the exactly same structure as the Granger causality
approach (Figure 1Dd). From this simple example, we
can find that both approaches can reveal correct network
structures for the data with a large sample size (1000
here).

Most, if not all, experimental data has a very limited time
step due to various experimental restrictions. Hence one
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of the key quantities to test the reliability of an approach
is the data length (sample size). In the next setup, we

reduce the sample size to a smaller value and check its
impact. Figure 2A shows the case of the sample size of
80: we find both approaches start failing to detect some
interactions (false negative). By reducing the sample size
to 20, we can see that the Bayesian network inference can
derive more true positive connections than the Granger
causality. This is certainly an interesting phenomenon
and we intend to explore whether it is true for a more
general case.

Example 2 we considered a more general toy model; the
coefficients in the equations (1) of Example 1 are
randomly generated. This toy model aims to test the
causality sensitivity for the two approaches. Suppose 5
simultaneously generated time series according to the
equations:
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where W1, W2, ..., W9 are uniformly distributed random
variables in the interval [-1,1]. The randomly generated
coefficients are also required to make the system stable.
The stability can be tested by using the z-plane pole-zero
method, which states if the outermost poles of the z-
transfer function describing the time series are inside the
unit circle on the z-plane pole-zero plot, then the system
is stable.

The above toy model is then used to test the two different
causality approaches: Bayesian network inference and
Granger causality. They are applied with different sample
sizes. For each sample size, we randomly generated 100
different coefficient vectors [W1, W2, ..., W9], which
corresponds to100 different toy models in Example 1. For
each different coefficient vectors model, we applied the
same approach as in Example 1, using Monte Carlos
method to construct 95% confidence interval for the
Granger causality approach and chose high-confidence
arcs (appearing in at least 95% of all samplings) for the
Bayesian network inference approach. The total number
of arcs (or causalities) is 500 (5 interactions for each
realization) for each sample size. However we cannot
expect to detect the maximum number of arcs in our
system, since the coefficients are randomly generated,
which could be significantly small.

Figure 3Aa shows the comparison result of the percen-
tage of true positive connections derived from these two

Figure 1
Granger causality and Bayesian network inference
approaches applied on a simple linear toy model. A.
Five time series are simultaneously generated, and the length
of each time series is 1000. X2, X3, X4 and X5 are shifted
upward for visualization purpose. B. Granger causality
results. (a) The network structure inferred from Granger
causality approach. (b) The 95% confidence intervals graph
for all the possible directed connections. (c) For visualization
purpose, all directed edges (causalities) are sorted and
enumerated into the table. The total number of edges is 20.
C. Dynamic Bayesian network inference results. (a) The
causal network structure learned from Bayesian network
inference. (b) Each variable is represented by four nodes,
representing different time-lags, we have a total of 20 nodes.
They are numbered and enumerated in the table. (c) The
simplified network structure: since we only care about the
causality to the current time status, we can remove all the
other edges and nodes that have no connection to the node
16 to node 20 (five variables with current time status).
(d) A further simplified network structure of causality.
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methods. In general, the Granger causality approach can
infer slightly more true positive causalities compared to

the Bayesian network inference approach when the data
length is long. It is interesting to see that there is a critical
point at around 30 in Figure 3Aa. If the sample size is
larger than 30, then the Bayesian network recovers less
positive connections. However, if the sample size is
smaller than 30, the Bayesian network performs better.
From Figure 3Ab, we see that computing time for the
Bayesian network inference is much larger than the
Granger causality.

Now we are in the position to find out why the dynamic
Bayesian network is better than the Granger causality
when the data length is short, and vise verse. In Figure
3B, we compare the performances on different coeffi-
cients (strength of interaction) for a fixed sample size of
900 (super-critical case). The x-axis shows the absolute
value of coefficients, and y shows the corresponding
causality (1 indicates positive causality and 0 indicates
no causality). For visualization purposes, the figure for
the Granger causality is shifted upward. From the five
graphs, we can see that there is no difference between
these two approaches if the coefficients are significant
large (strong interactions with an absolute value of
coefficients being greater than 0.15): both approaches
can infer the correct connections. For most cases, the
Granger causality approach performs with more stability
when the coefficients are larger than 0.15, and the
Bayesian network inference approach shows slightly
more oscillations around this point. Hence we conclude
that the Granger causality is less sensitive to the small
value of the connection when the data length is large
(see also the nonlinear case below).

We now compare the fitting accuracy of the two
approaches, as shown in Figure 3C. We use the average
mean-square error as a measurement of the fitting. Not
surprisingly, the dynamic Bayesian network approach
considerably outperforms the simple fitting algorithm in
the Granger approach [15,16], in particular when the
data length is short.

In conclusion, when the data is a reasonable fit to the
original model, the Granger causality works better. This
is due to the fact that the Granger causality approach is
more sensitive to a small value of the interactions. When
the data length is short, the Bayesian approach can fit the
data much more reliably and it outperforms the Granger
approach.

Synthesized data: non-linear case
In real situations, all data should be nonlinear and a
linear relationship as described above is only an
approximation. To address the nonlinear issue, we turn
our attention to kernel models. As we all know, any

Figure 2
Granger causality and Bayesian network inference
applied on data points of various sample sizes. The
grey edges in the inferred network structures indicate
undetected causalities in the toy model. For each sample size
n, we simulated a data set of 100 realizations of n time points.
The Bayesian network structure represents a model average
from these 100 realizations. High-confidence arcs, appearing
in at least 95% of the networks are shown. The Granger
causality inferred the structure according to the 95%
confidence interval constructed by using the bootstrap
method. (A) The sample size is 80. (B) The sample size is 60.
(C) The sample size is 20.
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Figure 3
Granger causality and Bayesian network inference applied on a stochastic coefficients toy model. The
parameters in polynomial equation are randomly generated in the interval [-1,1]. For each randomly generated coefficient
vector, we applied the same approach as example 1: bootstrapping method and 95% confidence interval for Granger causality;
95% high confidence arcs are chosen from Bayesian network inference. (A) We applied both approaches on different sample
size (from 20 to 900). For each sample size, we generated 100 different coefficient vectors, so the total number of directed
interactions for each sample size is 500. (a) The percentage of detected true positive causalities for both approaches. (b) Time
cost for both approaches. (B) For sample size 900, the derived causality (1 represents positive causality and 0 represents
negative) is plotted with the absolute value of corresponding coefficients. For visualization purpose, the figure for Granger
causality is shifted upward. (C) Linear model fitting comparison for both Granger causality and Bayesian networks. Using a
number of training data points to fit both linear models, one can calculate a corresponding predicted mean-square error by
applying a set of test data. And we can find that Bayesian networks inference approach works much better than the Granger
causality approach when the sample size is significant small (around 100). When the sample size is significant large, both
approaches converge to the standard error which exactly fits the noise term in our toy model.
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nonlinear relationship can be approximated by a series
of kernel functions.

Example 3 we modify the model in example 1 to a series
of nonlinear equations as follows:
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In this example, the center and variance of each time
series is chosen as the center and variance in the kernel
function. We use the fuzzy c-mean method to find the
center of each time series and then applied the same
approach as in Example 1. For the Granger causality
approach, we simulated the fitted VAR model to generate
a data set of 100 realizations of 1000 time points, and
applied the bootstrap approach to construct the 95%
confidence intervals (Figure 4Ca). According to the
confidence interval, one can derive the network structure
(Figure 4Cb) which correctly recovers the pattern of
connectivity in our non-linear model. For the Bayesian
network inference approach, we can infer a network
structure (Figure 4Da) for each realization of 1000 time
points. We can then obtain a simplified network
structure (Figure 4Dd).

For a small sample size (see Figure 5), worse results are
obtained for both approaches comparing to the previous
linear model. Both approaches start to miss interactions
when the sample size is smaller than 300. When the
sample size is 150, the Bayesian network inference
approach can detect one more true positive interaction
than the Granger causality. However, when the sample
size is 50, both approaches fail to detect all the
interactions.

In the next step, we extend our non-linear model to a
more general setting in which the coefficients in the
equations are randomly generated. Figure 6Aa shows the
comparison result of the percentage of true positive
connections derived from these two methods. It is very
interesting to see that a critical point around 500 exists in
the non-linear model, similar to the linear model before.

From Figure 6Ab, the computing time required for the
Bayesian network inference is still much larger than
the Granger causality. In Figure 6B, we compare the
performances on different coefficients (strength of
interaction) for a fixed sample size of 900. From the
five graphs, we can see that in general the Granger
approach is more sensitive to a small value of the
coefficients (see Figure 6B. X5 -> X4 and X4 -> X5).

Therefore, all conclusions in the linear case are con-
firmed in the nonlinear model. In the literature [23], the
result they obtained shows the same direction as we did
here, which finds that the Granger causality performs
better than the dynamic Bayesian network inference
concerning a nonlinear kernel model of genetic regula-
tory pathways and for a sufficiently large sample size
(2000 data points).

Experimental data
Finally we carry out a study on experimental data of
microarray experiments. The gene data were collected
from two cases of Arabidopsis Leaf: the mock (normal)
case and the infected case with the plant pathogen
Botrytis cinerea. A total of 31,000 genes were measured
with a time interval of two hours, with a total of 24
sampling points (two days) and four replicates. We test
the Granger causality approach and dynamic Bayesian
network inference approach on a well-known circadian
circuit. This circuit contains 7 genes: PRR7, GI, PRR9,
ELF4, LHY, CCA1 and TOC1. Figure 7A shows the time
traces of the 7 genes. From the time traces figure, it is
clearly to see that they exhibit a 24 hour rhythm. Note
that the total number of time points is only 24.
Compared to our previous toy model case, this sample
size is quite small. We therefore expect the Bayesian
network inference to be more reliable.

We first apply the dynamic Bayesian network inference
approach on these two data sets. The two network
structures for two cases are shown in Figure 7B. In the
next step, the conditional Granger causality approach is
applied. By using the bootstrapping method, we
construct 95% confidence intervals as shown in Figure
7Cc. Finally, we can also obtain two network structures
for two different cases shown in Figure 7Ca and Figure
7Cb. It is clearly seen that the globe patterns for the
mock case and the infected case are different.

From the literature, there are three well known connec-
tions among the whole structure for the mock case. (1) It
is known that GI alone is independent of the remaining
six genes in the circuit. There should be no connection to
and from the GI node (node 2 in the Figure 7) in our
derived network. From Figure 7Ba and Figure 7Ca, we
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Figure 4
Granger causality and Bayesian network inference approaches applied on a simple non-linear toy model. (A)
Five time series are simultaneously generated, and the length of each time series is 1000. They are assumed to be stationary.
(B) The five histogram graphs show the probability distribution for these five time series. (C) Assuming no knowledge of
MVAR toy model we fitted, we calculated Granger causality. Bootstrapping approach is used to construct the confidence
intervals. The fitted MVAR model is simulated to generate a data set of 100 realizations of 1000 time points each. (a) For
visualization purpose, all directed edges (causalities) are sorted and enumerated into the table. The total number of edges is 20.
95% confidence interval is chosen. (b) The network structure inferred from Granger causality method correctly recovers the
pattern of connectivity in our MVAR toy model. (D) Assuming no knowledge of MVAR toy model we fitted, we approach
Bayesian network inference. (a) The causal network structure learned from Bayesian network inference for one realization of
1000 time points. (b) Each variable is represented by two nodes; each node represents different time statuses, so we have 10
nodes in total. They are numbered and enumerated into the table. (c) The simplified network structure: since we only care
about the causality to the current time status, we can remove all the other edges and nodes that have no connection to the
node 6 to node 10 (five variables with current time status). (d) A further simplified network structure: in order to compare
with Granger causality approach, we hid the information of time status, and we obtained the same structure as Granger
causality method had.
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Figure 5
Granger causality and Bayesian network inference applied on insufficient number of data points for non-linear
model. The grey edges in the inferred network structures indicate undetected causalities in our defined toy model. For each
sample size n, we simulated a data set of 100 realizations of n time points. The Bayesian network structure represents a model
average from these 100 realizations. High-confidence arcs, appearing in at least 95% of the networks are shown. The Granger
causality inferred the structure according to the 95% confidence interval constructed by using the bootstrap method. (A) The
sample size is 300. (B) The sample size is 150. (C) The sample size is 50.
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Figure 6
Granger causality and Bayesian network inference applied on a stochastic coefficients non-linear model. The
parameters in polynomial equation are randomly generated in the interval [-2,2]. (A) We applied both approaches on different
sample size (from 300 to 900). For each sample size, we generated 100 different coefficient vectors, so the total number of
directed interactions for each sample size is 500. (a) The percentage of detected true positive causalities for both approaches.
(b) Time cost for both approaches. (B) For sample size 900, the derived causality (1 represents positive causality and 0
represents negative) is plotted with the absolute value of corresponding coefficients. For visualization purpose, the figure for
Granger causality is shifted upward.
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Figure 7
Granger causality approaches and Bayesian network inference approaches applied on experimental data
(small sample size). The experiment measures the intensity of 7 genes in two cases of Arabidopsis Leaf: mock (normal) and
infected. (A)The time traces of 7 genes are plotted. There are 4 realizations of 24 time points. The time interval is 2 hours.
(B) The network structures are derived by using dynamic Bayesian network inference. All the genes are numbered as shown.
Interestingly, after infection, the total network structure is changed. (a) The network structure for mock case. (b) the network
structure for infected case. (C) The network structures are derived by using Granger causality. (a) The network structure for
mock case. (b) the network structure for infected case. (c) Using bootstrapping method to construct a 95% confidence
intervals. For visualization purpose, all the directed edges are numbered and enumerate them into the table.
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find that the dynamic Bayesian network inference
method clearly picks this up, but the conditional
Granger causality approach fails to detect this property.
The Granger causality approach derived two false
positive arcs which were connected to a GI node as
shown in Figure 7Ca. (2) It is known that PRR7 and LHY
share a feedback loop. In other words, there should be
two directed arcs connected from node 1 (PRR7) to node
5 (LHY) and from node 5 to node 1. The network
structures derived from both approaches are in agree-
ment with this known relationship. (3) It is known that
ELF4 has some interactions with both LHY and CCA1.
There should be some connections between node 4
(ELF4) to node 5 (LHY), and between node 4 (ELF4) and
node 6 (CCA1). From our derived structures, both
approaches can detect these connections, which are in
agreement with the known structure in the literature
[24,25].

According these three known relationships in the
structure, we can find that the Bayesian network structure
is in agreement with all three rules, but the network
structure derived from the conditional Granger causality
is not: two more false positive interactions are found.
Again for a small sample size, the Bayesian network
inference approach could be more reliable than the
conditional Granger causality approach.

Discussion
A fair comparison
In our results presented here, one of the key issues which
is the cause of the critical point of the sampling size
between the dynamic Bayesian approach and the
Granger causality lies in the fact that a batch fitting
approach is used in the Granger causality approach. One
might argue that we could use the sequential fitting
approach as in the Bayesian network to improve the
performance of the Granger causality approach. This is
certainly the case. However, due to the thousand
publications in both topics [26], we simply adopted
the most common approaches in the dynamic Bayesian
network approach and the Granger causality. Developing
one of the approaches, for example the Granger
causality, so that it could always outperform the other
is an interesting future research topic.

How long is long enough?
Although we have found the critical point of the two
approaches, in practical applications, we have no certain
idea where the critical point is. Hence, we still have to
choose one of them to tackle the data. In molecular
biology, we have to deal with a very limited data size;
but in physiology, for example, neurophysiology, the
data we record is usually very long. Hence one could

argue that we use the dynamic Bayesian network in gene,
protein or metabolite data, and apply the Granger
causality to physiology data. The dynamic Bayesian
network is more often reported in molecular biology,
but the Granger causality has been very successfully
applied in neurophysiological data [27] and fMRI. The
result we chose to use was always chosen through
experimental validation, as we did here for the plant
data.

Frequency decomposition
As we emphasized at the beginning, the advantage of the
Granger causality over the dynamic Bayesian network is
the frequency decomposition, which is usually informa-
tive when we deal with temporal data. For example, in
neurophysiology data, we know the brain employs
different frequency bands to communicate between
neurons and brain areas [28,29]. We would expect a
similar situation to arise in genes, proteins and
metabolites, although we lack a detailed analysis due
to the limited data length. To this end, we have also
presented frequency decomposition results in Appendix
1 (see Additional files 1 and 2) for the dynamic Bayesian
network.

False positive
In our synthesized data, for both approaches, we did not
find any false positive links in our experiments.
However, there were a few false positive links found
when we applied the conditional Granger causality and
also partial Granger causality (data not shown, [21]) on
the gene data. One might ask why this is the case; there
are several different reasons. Firstly, the experimental
data is not strictly stationary: it is a natural process and
evolves with time. As a first approximation, we treat it as
stationary. Of course, we could use ARIMA rather than
ARMA model to fit the data in the Granger causality.
Secondly, the seven gene network is only a small
network embedded in complete and large network, so
there are latent variables. Using the partial Granger
causality [21] which was originally developed for
eliminating latent variables, GI still has links with the
other six genes. Whether the dynamic Bayesian network
could do a better job in the presence of latent variables is
another research topic.

The meaning of the found motifs
Two circuits are found: one with the mock plant and one
with the infected plant. The plant rewires its circadian
circuit after infection. Ignoring the issue of identifying
the molecular mechanisms which control circuit rewir-
ing, which is itself an interesting and challenging
problem, we intend to discuss the functional meaning
of the two circuits. To this end, we could assign a

BMC Bioinformatics 2009, 10:122 http://www.biomedcentral.com/1471-2105/10/122

Page 11 of 17
(page number not for citation purposes)



dynamics to the network and try to decipher the
implications of the rewiring. Interestingly, we found
that GI is recruited to save the network: if we leave GI as
it is in the mock case, the whole network will rapidly
converge to a fixed point state (a dead state). We will
publish the results elsewhere.

Reasons for short size data
In our synthesized data, we test both short and long data
samples and come to the conclusion that there is a
critical size, at which the two approaches behave
differently. In our experimental data, we only tested it
for the short data set. Of course, as we mentioned above,
in neurophysiological data, we have recordings of long
time traces and the Granger causality is widely used
there. However, we have to realize that all in vivo
recordings are very dynamic and stationary of data will
become a key issue once we apply both approaches to a
long dataset. Furthermore, when the dataset is long, both
approaches could do well and it is more difficult to find
the difference between the two. Hence we have only
compared the results for short data length in the
experimental setup.

Reasons for small size of variables
In our synthesized data, we only used 5 variables to
simulate a small interacting network; the number of
variables could affect the result we derived. As expected,
see also [23], the estimation of the Granger causality
becomes unfeasible when the number of variables is
large and the amount of the data sets is small. Hence, all
results in the literature on estimating Granger causality
are exclusive for small networks (around the order of
10), as we considered here. This is more or less true for
dynamic Bayesian network inference as well. Extending
the Granger causality and the dynamic Bayesian network
inference to large networks is a challenging problem,
even before we carry out the same comparison study on
these two approaches as we did here.

Conclusion
In this paper, we carried out a systematic and compu-
tationally intensive comparison between the two net-
work structures derived from two common approaches:
the dynamic Bayesian network inference and the Granger
causality. These two approaches are applied on both
synthesized and experimental data. For synthesized data
(both linear model and non-linear model), a critical
point of the data length is found, and the result is further
confirmed in experimental data. The dynamic Bayesian
network inference performs better than the Granger
causality approach, when the data length is short, and
vice versa.

Methods
Granger causality
Causal influence measurement notation for time series
was firstly proposed by Wiener-Granger. We can deter-
mine a causal influence of one time series on another, if
the predication of one time series can be improved by
incorporating the knowledge of the second one. Granger
applied this notation by using the context of linear vector
auto-regression (VAR) model of stochastic processes
[30-33]. In the AR model, the variance of the prediction
error is used to test the perdition improvement. For
instance, assume two time series; if the variance of the
autoregressive prediction error of the first time series at
the present time is reduced by inclusion of past
measurements from the second time series, then one
can conclude that the second time series have a causal
influence on the first one. Geweke [15,16] decomposed
the VAR process into the frequency domain, it converted
the causality measurement into a spectral representation
and made the interpretation more appealing.

The pairwise analysis introduced above can only be
applied to bivairate time series. For more than two time
series, a time series can have a direct or indirect causal
influence to other time series. In this case, pairwise
analysis is not sufficient or misleading for revealing
whether the causal interaction between a pair is direct or
indirect. In order to distinguish the direct and indirect
causal affect, one introduces the conditional causality
which takes account of the other time series' effect in a
multivariate time series. In this paper, we used condi-
tional causality to compare with the Bayesian network
inference introduced before.

Linear conditional Granger causality
The conditional Granger causality was defined by
Granger. It can be explained as following. Giving Two
time series Xt and Zt, the joint autoregressive representa-
tion for Xt and Zt by using the knowledge of their past
measurement can be expressed as
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and the noise covariance matrix for the system can be
represented as
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where var and cov represent variance and co-variance
respectively. Incorporating the knowledge of third time
series, the vector autoregressive mode can be represented
involving three time series Xt, Yt and Zt can be
represented as
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And the noise covariance matrix for the above system is
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where εit, i = 1, 2, ..., 5 are the prediction error, which are
uncorrelated over time. From above two sets of
equations, the conditional Granger causality form Y to
X conditional on Z can be defined as

F t

t
Y X Z→ =| ln(

var( )

var( )
)

ee
ee
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3
(8)

When the causal influence from Y to X is entirely mediated
by Z, the coefficient b2i is uniformly zero, and the two
autoregression models for two time series and three time
series will be exactly same, thus we can get var(ε1t) = var(ε3t).
We then can deduce FYÆX|Z = 0, which means Y can not
futher improve the prediction of X including past measure-
ments of Y conditional on Z. For var(ε1t) > var(ε3t) and
FYÆX|Z = 0, we can say that there is still a direct influence
from Y to X conditional on the past measurements of Z.

Non-linear conditional Granger causality
We can extend our Granger causality to a non-linear
model by using a series kernel functions [22,34]. Let X, Y
and Z be three time series of n simultaneously measured
quantities, which are assumed to be stationary. We are
supposed to quantify how much Y cause X conditional
on Z. The general expression for the nonlinear model is:
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Function F can be selected as the kernel function of X
and Z which has the following expression:

Φ j jX( ) exp( / )X X X= − −
2 22s (10)

Φ j jZ( ) exp( / )Z Z Z= − −
2 22s (11)

where X , Z are centers of X and Z, s X
2 , s Z

2 are
variances of X and Z. The covariance matrix of prediction
error can be expressed as
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A joint autoregressive representation has the following
expression:
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The covariance matrix of prediction error can be
expressed as
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Similarly, we can define the conditional causality as
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Bayesian network
Bayesian networks are probabilistic graphical models
initially introduced by [Kim & Pearl, 1987]. A Bayesian
network is the specific type of graphical model which is
directed acyclic graph [35,36]. Each arc in the model is
directed and there is no way to start from any nodes and
travel along a set of directed edges and get back at the
initial node. The set of nodes represent a set of random
variables [X1, X2, ..., Xn], and the arcs express statistical
dependence between the downstream variables and the
upstream variables. The upstream variables are also
called the parent variables of the downstream variables.
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Bayesian network inference yields the most concise
model, automatically excluding arcs based on depen-
dencies already explained by the model, which means
the arcs in the network can be interpreted as a
conditional causality. The edges in the Bayesian network
encode a particular factorization of the joint distribu-
tion. The joint probability distribution can be decom-
posed as following:

Ρ Ρ( , , , ) ( | ( ))X X X X X1 2

1

n i

i

n

iparents=
=

∏ (16)

That is, the joint probability distribution is the product
of the local distributions of each node and its parents. If
node Xi has no parents, its local probability distribution
is said to be unconditional, otherwise it is conditional.
This decomposition is useful for Bayesian networks
inference algorithm to deal with the uncertain situation
and incomplete data.

To learn the parameter of the Bayesian network is to
essentially estimate two kinds of probability distribu-
tions: the probability P(X) and the conditional prob-
ability P(X|Y). There are two kinds of approaches to
density estimation; the nonparametric method and the
parametric method. The easiest estimation for nonpara-
metric method is to use the histogram approach. The
distribution can then be a tabular conditional prob-
ability distribution, which is represented as a table.
However this approach requires a much larger sample
size to give us an accurate estimation, which is not
suitable for general experimental data. For parametric
method, one needs to make some assumptions about the
form of the distribution such as widely used Gaussian
distribution. For a D-dimensional vector X, the multi-
variate Gaussian distribution is in the form

N X X X| ,

| |

expmm SS

SS

mm SS mm( ) =

( )
− −( ) −( )⎧

⎨
⎩

⎫
⎬
⎭

−1

2 2

1
1
2

1
2

1

p
D

T

(17)

Where μ is a D-dimensional mean vector, Σ is a D × D
covariance matrix, and |Σ| denotes the determinant of Σ.
In this paper, we first consider every node's conditional
probability distribution as a conditional Gaussian
distribution for the following inferences. The distribu-
tion on a node X can be defined as follows:

-no parents: P N( ) ~ ( | , )X X mm ss (18)

-continuous parents : P N TY X Y y X W y( | ) ~ ( | , )= +mm ss

(19)

Where the T is the matrix transposition. W is the
connection weight vector between node X and its parents
Y. It can be represented by using the covariance matrix as
following:

W xy yy= SS SS (20)

The detailed inductions of parameter estimations are
given in the next chapter.

For learning the structure of the Bayesian network, one
needs to search the space of all the possible structures
and find out the best one which can be used to describe
the input data, which is to maximum the conditional
probability P(Data|θ, M) of data (Data) by give the
parameters (θ) and the network structure (M). In order
to balance the complex and concise of the structure, we
can use BIC (Bayesian Information Criterion) as a
scoring function, which includes an extra penalty term.

Parameter learning for linear Gaussian
The parameter learning part can be approached by fitting
a linear-Gaussian model. The goal of learning parameter
in Bayesian network is to estimate the mean and
covariance of the conditional Gaussian distribution,
thus we can deduce the parameters of μ, s and W in
the equation (19).

Suppose X is a D-dimensional vector with Gaussian
distribution N(X|μ, Σ), and one partition X into two
disjoint subsets Xa and Xb, To be easily illustration, one
takes the first M components of X to form Xa, and the
remaining components to form Xb, so that
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We also define mean vector μ and the covariance matrix
Σ given by
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Considering the quadratic form in the exponent of the
Gaussian distribution, we can get following equation by
a transformation.
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From these and regard Xb as a constant, we obtain the
following expressions for the mean and covariance of the
conditional probability distribution P(Xa|Xb).

mm mm SS SS mma b a ab bb b b| ( )= + −−1 X (24)

SS SS SS SS SSa b aa ab bb ba| = − −1 (25)

Thus the parameters in the Bayesian network can be
learned from above two equations.

Parameter learning for non-linear Gaussian
We can also extend our linear model to a non-linear
model like that for the Granger causality case. Suppose
we have two variables which can be expressed as in
equation (9). The kernel function is also chosen as
described in equation (10) and equation (11).

Our non-linear model, the probability distribution for Xt

is no longer a Gaussian distribution. From the expres-
sion in equation (9), we can find that the probability
distribution for Xt is a combined distribution of kernel
function distribution for the past measured values of X
and Z, and a Gaussian distribution for the noise term.
The kernel distribution is very difficult to derive, so one
can use a mixture of Gaussian models to approximate
the real distribution of kernel function. The mixture
Gaussian model is in the form:

P N( ) ( | , )X X=
=

∑p k k k
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mm SS
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Each Gaussian density N(X|μk, Σk) is called a component
of the mixture and has its own mean μk and covariance
Σk. The parameter πk are called mixing coefficients which
satisfies:
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=
=
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(27)

The conditional probability distribution for Xt condi-
tional on the past observation of X and Y in the
nonlinear model is still a Gaussian distribution which
can be easily obtained as following:

P N( | ) ( | ( ), )X Y = y X= + ∑mm w yi i

i

Φ s (28)

where w is the connection weights between node X and it
parents. It can be estimated by using the simple linear
regression method.

Structure learning
There are two very different approaches to structure
learning: one is constraint-based and the other is search
and score algorithm. For the constraint-based algorithm,
we start with a fully connected network and then remove
the arcs, which are conditional independent. This has the
disadvantage that repeated independence tests lose
statistical power. For the latter algorithm, we perform a
search on all possible graphs and select one graph which
best describes the statistical dependence relationship in
the observed data.

Unfortunately, the number of possible graphs increases
super-exponentially with the number of nodes, so some
search algorithms are required for overcoming this kind
of complex problem rather than doing a exhaustive
search in the space. There are several searching algo-
rithms that can be applied; such as annealing search,
genetic algorithm search and so on. The question could
become easier if we know the total order of the nodes.
The K2 algorithm allows us to find the best structure by
selecting the best set of parents for each node indepen-
dently. In the dynamic Bayesian networks, the order of
nodes can be interpreted as the sequence of time lags
represented for each node, so the K2 algorithm is applied
for Bayesian network structure learning in this paper (see
Appendix 2 in Additional file 1 for more details
descriptions). The K2 algorithm tests parent insertion
according to the order. The first node cannot have any
parent, for other nodes, we can only choose the parent
nodes which are behind it in this order. Then the scoring
function can be applied to determine the best parent set,
i.e. the one which gives the best score.

In addition to the search algorithm, a scoring function
must be defined in order to decide which structure is
the best (a high scoring network). There are two popular
choices. One is the Bayesian score metric which is
the marginal likelihood of the model, and the other
is BIC (Bayesian Information Criterion) defined as
following:

LogP Data
d

Log N( | ) ( )q −
2

(29)

Where Data is the observed data, θ is the estimated value
of the parameters, d is the number of parameters and N
is the number of data cases. The term of d Log N2 ( ) is
regarded as a penalty term in order to balance both
simple and accurate structure representation.

Suppose we observed a set of independent and identi-
cally distributed data Data = {Y1, Y2,..., YN}, each of
which can be a case of multi-dimensional data. Then the
log likelihood of the data set can be defined as
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Where j is the index of the nodes or variables in the
Bayesian network, pa(j) is the set of parents of node j,
and θj are the parameters that define the conditional
probability of Yj giving its parents.

In this paper, the Bayesian networks inference can then
be approached by following procedure: initially, K2
algorithm is applied to search the space of possible
graphs. For each possible structure, we can use the
parameter learning algorithm to estimate the parameters
of the networks. The BIC scoring function assigns a
corresponding score through the estimated parameters
and observed data set. The best network we can get is the
highest score structures among all the possible graphs
[37].
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