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The hypothalamic–pituitary–adrenal (HPA) axis is a neuroendocrine system that regulates the circulat-

ing levels of vital glucocorticoid hormones. The activity of the HPA axis is characterized not only by a

classic circadian rhythm, but also by an ultradian pattern of discrete pulsatile release of glucocorticoids.

A number of psychiatric and metabolic diseases are associated with changes in glucocorticoid pulsatility,

and it is now clear that glucocorticoid responsive genes respond to these rapid fluctuations in a biologi-

cally meaningful way. Theoretical modelling has enabled us to identify and explore potential mechanisms

underlying the ultradian activity in this axis, which to date have not been identified successfully. We

demonstrate that the combination of delay with feed-forward and feedback loops in the pituitary–adrenal

system is sufficient to give rise to ultradian pulsatility in the absence of an ultradian source from a supra-

pituitary site. Moreover, our model enables us to predict the different patterns of glucocorticoid release

mediated by changes in hypophysial-portal corticotrophin-releasing hormone levels, with results that

parallel our experimental in vivo data.
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1. INTRODUCTION
Frequency of coding of intercellular signals is a well-

accepted mode of communication between neurons.

More than this, however, it is actually a common mechan-

ism of communication across a broad range of both

inter- and even intra-cellular systems (Goldbeter 1996).

Even an organism as primitive as the slime mould

(Dictyostelium discoideum) only aggregates in response to

external pulses of cyclic AMP delivered with a periodicity

of 5 minutes and not to constant stimuli or frequencies

greater than every 2 minutes (Darmon et al. 1975).

In mammals, the endocrine system is one of the

major signalling systems to use frequency encoding. In

addition to the vital metabolic hormone insulin (Lang

et al. 1979), the best described endocrine systems that

signal through ultradian rhythms are found in the

hypothalamic–pituitary neuroendocrine pathways.

Pulsatile gonadotropin-releasing hormone (GnRH)

release results in the concordant release of LH pulses

from the pituitary (Belchetz et al. 1978; Clarke 2002),

while modulation of GnRH pulse frequency can produce

differential LH and FSH secretion (Wildt et al. 1981) via

regulation of LH beta and FSH beta mRNA expression

(Papavasiliou et al. 1986). Interactions between hypo-

thalamic somatostatin and growth-hormone-releasing

hormone neuronal systems result in episodic release of

growth hormone (GH) (Plotsky & Vale 1985), which is

in turn an important factor in mediating GH-dependent

gene expression (Waxman et al. 1995).
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Another system that is characterized by an ultradian

rhythm is the hypothalamic–pituitary–adrenal (HPA)

axis (figure 1). This stress-responsive neuroendocrine

system is extremely well adapted to respond to homeo-

static challenge. The HPA axis governs the circulating

levels of vital glucocorticoid hormones (CORT), which

in turn have major regulatory effects on the cardiovas-

cular, metabolic, cognitive and immunological state of

the animal (Chrousos 1995; de Kloet et al. 2005;

McEwen 2007). The central regulator of this axis—the

paraventricular nucleus (PVN) of the hypothalamus—is

a major relay for afferent information from limbic areas

of the central nervous system that can detect cognitive

or emotional stressors, and also from brain stem struc-

tures that detect more physical stressors such as

inflammation or hypotension (Ulrich-Lai & Herman

2009). The PVN also receives a major input from the

hypothalamic suprachiasmatic nucleus (SCN) that coor-

dinates the body’s circadian rhythms (Reppert & Weaver

2002). The corticotrophin-releasing hormone (CRH)

and arginine vasopressin (AVP) containing parvocellular

neurons in the PVN project to the median eminence of

the hypothalamus from where they release CRH and

AVP into the hypothalamic–pituitary portal circulation

(Engler et al. 1989; Ixart et al. 1991). The CRH and

AVP pass along this vascular route to access their recep-

tors on corticotroph cells in the anterior pituitary.

These cells in turn are activated by occupation of their

CRH and AVP receptors to release corticotrophin

(ACTH) into the general circulation through which it

accesses the glucocorticoid-secreting cells in the cortex

of the adrenal gland. It is these cells that synthesize and

release the final product of HPA activation—the glucocor-

ticoid hormones. The final link in this circuit is that
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Figure 1. Regulation of HPA axis activity. The hypothalamic
PVN receives circadian inputs from the SCN and homeo-
static/stress inputs from the brain stem and limbic areas.

The PVN projects to the median eminence where it releases
CRH into the portal circulation. This passes to corticotrophs
in the anterior pituitary which release ACTH from pre-
formed granules into the venous circulation. This ACTH
reaches the adrenal cortex where it activates the synthesis

and secretion of CORTisol (in man) or CORTicosterone
(in the rodent). CORT in turn feeds back to inhibit the
release of ACTH from the anterior pituitary, and to a
lesser extent, CRH from the hypothalamus.
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Figure 2. Experimental data demonstrating the ultradian glu-
cocorticoid rhythm underlying the classic circadian profile.
Levels of blood corticosterone were recorded over a 24 h
period in two individual male Sprague–Dawley rats. Blood

samples were collected every 10 min using an automated
blood sampling system. Grey bars indicate the dark phase
(19.15–05.15 h). Adapted from Spiga et al. (2007).
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physiological levels of glucocorticoid hormones them-

selves feedback in a negative manner predominantly on

the pituitary gland—but also at the level of the PVN

and hippocampus—to inhibit further release of ACTH

(Jones et al. 1977; Dallman et al. 1987).

The HPA axis has a unique pattern of activity. Levels are

low during the periods of sleep inactivity and increase in

anticipation of waking, peaking in the morning in

man (Weitzman et al. 1971) and evening in the rodent

(Dallman et al. 1978), with the resultant classic circadian

rhythm. This rhythm, however, is not made up of a simple

smooth change in hormone levels over the 24 hours. The

circadian changes of glucocorticoids are a result of changes

in the activity of an underlying ultradian rhythm (Veldhuis

et al. 1989; Jasper & Engeland 1991; Windle et al. 1998a;

Spiga et al. 2007). Glucocorticoids are actually released

from the adrenal gland in discrete pulses that result in

rapidly changing levels of hormone, both in the blood and

within the tissues (figure 2). It is in fact the changes in

pulse amplitude, and to a lesser extent frequency,

that make up the circadian rhythm (Lui et al. 1987;

Iranmanesh et al. 1989; Veldhuis et al. 1989, 1990; Windle

et al. 1998b) and the changes of HPA activity that occur in

response to altered physiological and pathological con-

ditions. This pulsatility of glucocorticoid secretion is also

an important factor in determining the responsivity of the

HPA axis to stress (Windle et al. 1998a; Lightman et al.

2008) and the transcriptional responses of glucocorticoid

responsive genes (Stavreva et al. 2009).

We have good evidence that the SCN determines the

circadian activity of the HPA axis by modulating the
Proc. R. Soc. B (2010)
inhibitory gain to the PVN; however, we have no idea of

the mechanism responsible for the regulation of ultradian

activity. Although it is often simply presumed that there

must be some sort of hypothalamic pulse generator,

there is no good evidence for its existence. The only sup-

portive data come from studies with cultured explants of

the macaque hypothalamus (Mershon et al. 1992) and

from rat median eminence (Ixart et al. 1991) that show

episodic release of CRH. The relevance of this is unclear,

particularly in the absence of cyclic feedback of inhibitory

signals from circulating glucocorticoids that are now

known to have rapid inhibitory effects even on basal

HPA activity (Atkinson et al. 2008). Indeed, there is

good evidence for the lack of importance of a pulsatile

CRH signal for this ultradian rhythm from studies in

sheep that have had surgical disconnection of the hypo-

thalamus from the pituitary. These animals still

maintain pulsatile cortisol secretion, despite their loss

of a normal response to stress (Engler et al. 1990).

This clearly shows that even in the absence of the

stress-activatable hypothalamic input, the ultradian

rhythm of cortisol secretion is maintained.

Understanding the mechanisms underlying ultradian

HPA activity is very important. It is becoming increas-

ingly clear that glucocorticoid responsive genes respond

to these rapid fluctuations in a biologically meaningful

way (Stavreva et al. 2009) and that a number of psychia-

tric and metabolic diseases are associated with changes in

cortisol pulsatility (Young et al. 2004, 2007). Motivated

by recent accounts of feed-forward and feedback loops

supporting robust oscillations in a number of biological

contexts (Stricker et al. 2008; Tsai et al. 2008;
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Figure 4. Period of CORT pulses inside the pulsatile region.

Period of ultradian CORT rhythm computed for different
values of the adrenal delay Tlag (min) and different levels of
CRH drive (arb. units). For all four values of the delay, we
observe ultradian pulses with a physiological period. See

also the colour bar in figure 3a.
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Figure 3. Response of the pituitary–adrenal system to con-
stant CRH drive. Units of all hormone levels are arbitrary.
(a) Different combinations of constant CRH drive and
delay can lead to two qualitatively different responses. On
one side of the transition curve, the pituitary–

adrenal system responds with constant levels in ACTH and
CORT. On the other side of the transition curve, the
pituitary–adrenal system responds with pulsatile fluctuations
in the levels of ACTH and CORT, despite the fact that the

CRH drive is constant. In the region of pulsatile response,
the frequency of the pulses is indicated by the colour bar.
(b–d) Model predictions for ACTH (blue) and CORT
(black). Each time series was computed with the same
delay (10 min), but different levels of constant CRH drive,

as indicated by the three points in (a).
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Tigges et al. 2009), we hypothesized that the pituitary–

adrenal system (which contains a positive delayed

feed-forward connection between ACTH and CORT

(Papaikonomou 1977), as well as negative nonlinear

feedback of CORT on ACTH mediated by the glucocor-

ticoid receptor (GR) (Drouin et al. 1992)) could support

ultradian oscillations in the absence of a hypothalamic

pulse generator. To address this hypothesis, we con-

sidered a deterministic theoretical model characterizing

the principal interactions between the anterior pituitary

and the adrenal cortex (see figure 1, and also figure S7

in the electronic supplementary material). We employed

a powerful mathematical technique called numerical

continuation (Kuznetsov 1995; Engelborghs et al. 2001;

Krauskopf et al. 2007)—enabling us to systematically

characterize how the behaviour of the system depends
Proc. R. Soc. B (2010)
on the parameters of the system (see the electronic sup-

plementary material for more details)—to explain the

mechanisms giving rise to natural oscillatory rhythms in

the HPA axis.
2. RESULTS AND DISCUSSION
The aim of model development for the HPA axis was

to elucidate whether—using biologically motivated

approximations of each of the main compartments of the

axis—the system could support ultradian glucocorticoid

fluctuations in a similar manner to those observed

experimentally, and to explore mechanisms by which

these could occur. For this purpose, we adapted a recently

proposed model (Gupta et al. 2007) using ordinary

differential equations (ODEs) that provided a compromise

between analytical tractability and biological plausibility.

This approach allowed for the integration of experimentally

determined parameter values (where known), while permit-

ting a theoretical analysis using a simplified model with the

potential for refinement using experimental data. One of the

key assumptions made during the modelling process was

that the rapid inhibition of hypothalamic CRH by glucocor-

ticoids is not an important factor. This relates back to the

fact that the anterior pituitary is the major site for glucocor-

ticoid feedback (Keller-Wood & Dallman 1984) and the

relatively slow effect of glucocorticoids on CRH gene tran-

scription (Ma et al. 1997). Specifically, the model uses linear

mass action kinetics to describe the dynamic levels of

ACTH, GR and CORT, and incorporates a delay term to

account for the well-known delay in the CORT response

to ACTH that results from the lack of releasable pools of

CORT and the need to synthesize the hormone for

release (see the electronic supplementary material

for more details).

Using numerical simulations and continuation methods

(see the electronic supplementary material for more

details), we determined a range of values in both CRH

drive and delay for which ultradian activity was observed

in ACTH and CORT (figure 3a,c). It is important to

stress that these ultradian pulses are an intrinsic property

of the pituitary–adrenal system, since they occur in

response to a constant level of CRH drive. Furthermore,

the ultradian period of the pulses (figure 4 and the
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Figure 5. Response of the pituitary–adrenal system to circadian and ultradian patterns of CRH drive. Units of all hormone
levels are arbitrary. (a) Different combinations of constant CRH drive and delay can lead to two qualitatively different

responses. On one side of the transition curve, the pituitary–adrenal system responds with constant levels in ACTH and
CORT. On the other side of the transition curve, the pituitary–adrenal system responds with pulsatile fluctuations in the
levels of ACTH and CORT, despite the fact that the CRH drive is constant. In the region of pulsatile response, the frequency
of the pulses is indicated by the colour bar. (b) Experimental data demonstrating an increase in pulse amplitude during the
circadian peak. Adapted from Spiga et al. (2007). (c) Model prediction for a noisy circadian CRH drive close to (but

below) the pulsatile region, as indicated by the corresponding arrow in (a). Response demonstrates NICOs during the peak
of the circadian CRH drive. Computed with a delay of 9.4 min. (d) Model prediction for a circadian CRH drive in the pulsatile
region, as indicated by the corresponding arrow in (a). Response demonstrates increased pulse amplitude during the peak of the
circadian CRH drive. Computed with a delay of 15 min. (e) Model prediction for ultradian pulses of CRH drive in the pulsatile
region, as indicated by the corresponding arrow in (a). Response demonstrates a frequency in CORT governed by the

pituitary–adrenal system and not by the frequency of the CRH forcing. Computed with a delay of 12 min. ( f ) Model predic-
tion for ultradian pulses of CRH drive in the region of constant response, as indicated by the corresponding arrow in panel (a).
Response demonstrates a frequency in CORT that is governed by the frequency of the CRH forcing. Computed with a delay of
12 min.
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colour bar in figure 3a) is consistent with previous exper-

imental studies, which have reported an interpulse

interval range between 47.2 and 54.6 min (Windle et al.

1998a). Interestingly, our simulations demonstrated that

only intermediate values of the CRH drive resulted in

ultradian pulses, while high or low CRH drive resulted in

a constant response in ACTH and CORT levels

(figure 3a,b,d).

Experimental data demonstrate significant changes in

the amplitude of ultradian activity over the course of a

24 hour period (figure 5b). Theoretically, we considered

the effect of circadian modulation of the PVN by the

SCN by driving the pituitary–adrenal system with a circa-

dian (a period of 24 hours) CRH input. Our numerical

results parallel experimental observations (Windle et al.

1998b), whereby the amplitude increases markedly (and

the frequency increases slightly) during the high-drive

CRH input (figure 5a,d). Perhaps most significantly,

when we included stochastic effects as well as a circadian

modulation of the CRH drive, we observed so-called noise-

induced coherent oscillations (NICOs) (Wiesenfeld & Moss

1995; Gammaitoni et al. 1998) for values of the CRH drive
Proc. R. Soc. B (2010)
close to (but below) the transition curve (beyond which

ultradian pulses were observed in the noise-free scenario).

These NICOs closely resembled the experimental data

(figure 5b,c) providing evidence for the hypothesis that

feed-forward and feedback interactions within the pitu-

itary–adrenal system are the foundation of ultradian

activity observed experimentally (see also figure S8 in the

electronic supplementary material for more examples).

We also considered the effect of ultradian CRH pulses

on the response of the pituitary–adrenal system. Exper-

imental work has reported a pulsatile pattern of CRH

release from the median eminence of the hypothalamus

in the rat, with a mean frequency of three pulses per

hour (Ixart et al. 1991). Our numerical work shows that

the pituitary–adrenal system responds to ultradian CRH

pulses differently depending on the precise level of these

pulses. If their level lies within the region of constant

response (figure 5a), then the pituitary–adrenal system

responds with pulses of CORT at the same frequency as

the driving CRH pulses (figure 5f ). Alternatively, if the

level of the CRH pulses lies within the region of pulsatile

response (figure 5a), then the pituitary–adrenal system
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Figure 6. Effect of subchronic treatment with a GR antagon-
ist on the 24 h corticosterone profile. (a) Data points
represent mean levels of blood corticosterone measured

from individual male Sprague–Dawley rats injected twice a
day for 5 days with either the GR antagonist Org 34850
(10 mg kg21, subcut., n ¼ 7, grey dots) or VEH (5% mulgo-
fen in 0.9% saline, 1 ml kg21, subcut., n ¼ 7, black dots).

Blood samples were recorded over a 24 h period and col-
lected every 10 min using an automated blood sampling
system. Also shown are curves numerically fitted to the two
datasets, demonstrating an increase in amplitude during the
circadian peak under the influence of Org 34850. Grey bar

represents the dark phase (19.15–05.15 h). Adapted from
Spiga et al. (2007). (b) Model simulations show the response
of the system to circadian CRH both with (grey) and without
(black) a GR antagonist. Infusion of a GR antagonist
increases the amplitude of the ultradian glucocorticoid

rhythm during the peak of the circadian CRH drive together
with a minor increase in ultradian frequency (grey).
Computed with a delay of 15 min.
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responds with pulses of CORTat a frequency governed by

the intrinsic properties of the pituitary–adrenal system

(figure 5e).

Finally, we illustrate how this theoretical approach to

understanding the ultradian glucocorticoid rhythm can

aid the planning of both experimental and clinical trials.

One very important area of clinical medicine that has

been linked to both over- and under-activity of the HPA

axis is the mood disorders. Depression, in particular,

has been consistently associated with significant

elevations of HPA activity (Holsboer 2001; Pariante

2003), and many studies have shown that this increased

activity is associated with a diminution of sensitivity to

the negative feedback by endogenous glucocorticoids.

This has been demonstrated by data showing a blunting

of endogenous glucocorticoid inhibition following the

administration of the synthetic glucocorticoid dexametha-

sone, or an inhibition of the ACTH response in the

dexamethasone-CRH test (Nemeroff 1996; Holsboer

2000; Pariante & Miller 2001; Pariante 2004). Further-

more, glucocorticoid secretion patterns of transgenic

mice with reduced GR resemble those patterns seen in

subjects with major depression (Pepin et al. 1992).

Thus, the use of GR antagonists clearly has great poten-

tial as a therapeutic strategy in treating patients with

mood disorders linked to HPA axis dysfunction.

The model we employ here is the first to incorporate

the dynamics of the GR in the anterior pituitary (Gupta

et al. 2007), and therefore provides an ideal platform to

investigate the effects that GR antagonists/agonists have

on the dynamics of endogenous glucocorticoid secretion.

Model results demonstrate that infusion of a GR antagon-

ist (such as Org 34850) increases the amplitude of the

ultradian glucocorticoid rhythm during the peak of the

circadian CRH drive (figure 6b). Furthermore there is a

minor increase in ultradian frequency under the influence

of a GR antagonist. These theoretical observations are

consistent with experimental studies on the rat (Spiga

et al. 2007), where following 5 days of treatment with

the GR antagonist Org 34850, mean corticosterone

levels were elevated over the 24 hour cycle (figure 6a).

Furthermore, this general elevation was the result of an

underlying increase in both the amplitude and frequency

of the ultradian pulses. In the same study, analysis of the

corticosterone rhythm revealed that Org 34850 had its

greatest effect during the peak of the circadian rhythm.

Biological systems use rhythmic activity in many time

domains, from rapid electrical oscillations in the central

nervous system to daily, monthly or even yearly hormone

rhythms. Many hormones are also secreted in ultradian

patterns, which are important for the maintenance of

tissue responsiveness and the avoidance of receptor down-

regulation. The mechanisms underlying many of these

rhythms have been very unclear, and in this paper we

have been able to show that relatively simple feed-forward

and feedback interactions between the pituitary and adre-

nal cortex are sufficient to account for the glucocorticoid

rhythms we observe experimentally. These oscillations

will of course be modified by the gain from the CRH

and AVP input to the pituitary, which in turn can be

modified by the activity of suprapituitary feedback

mediated through both the GR and the mineralocorticoid

receptor. This theoretical approach, which simply

depends upon systems having delayed feed-forward and
Proc. R. Soc. B (2010)
feedback pathways, could also provide the basis for

understanding ultradian rhythmicity in many other

biological systems.
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