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Supporting Information Text12

SPCAM Setup. The SPCAM model source code along with our modifications, including the neural network implementation, is13

available at https://gitlab.com/mspritch/spcam3.0-neural-net (branch: nn_fbp_engy_ess).14

We use the Community Atmosphere Model 3.0 (1) with super-parameterization (2) as our training and reference model. The15

model has an approximately two-degree horizontal resolution with 30 vertical levels and a 30 minute time step. The embedded16

two-dimensional cloud resolving models consist of eight 4 km-wide columns oriented meriodinally, as in Ref. (3). The CRM17

time step is 20 seconds. Sub-grid turbulence in the CRM is parameterized with a local 1.5-order closure. Each GCM time step18

the CRM tendencies are applied to the resolved grid. Note that our SPCAM setup does not feed back momentum tendencies19

from the CRM to the global grid. While these might be important (4), our neural network also cannot capture momentum20

fluxes. Using global CRM data or augmented SP that includes 3D CRM domains with interactive momentum (or 2D SP21

equipped with a downgradient momentum parameterization after Ref. (5)) would prove beneficial for this purpose, especially22

towards ocean-coupled simulations in which cumulus friction is known to be important to the equatorial cold tongue/ITCZ23

nexus (6). After the SP update, the radiation scheme is called which uses sub-grid cloud information from the CRM. This is24

followed by a computation of the surface fluxes with a simple bulk scheme and the dynamical core. CTRLCAM uses the default25

parameterizations which includes the Zhang-McFarlane convection scheme (7) and a simple vertical turbulent diffusion scheme.26

The physical parameterization of NNCAM is 20 times faster than SPCAM and 8 times faster than CTRLCAM. This results27

in a total model speed-up of factor 10 compared to SPCAM and factor 4 compared to CTRLCAM. To generate the best28

possible training data for the neural network we run the radiation scheme every GCM time step for SPCAM and CTRLCAM.29

In CTRLCAM, therefore, the radiation scheme is much more computationally expensive than in the standard setup where the30

radiation scheme is only called every few GCM time steps.31

The sea surface temperatures (SSTs) are prescribed in our aquaplanet setup that follows Ref. (8). The reference state is32

zonally symmetric with a maximum shifted five degrees to the North of the equator to avoid unstable behaviors observed for33

equatorially symmetric aquaplanet setups:34

SST(φ) = 2 + 27
2 (2− ζ − ζ2), [1]35

where the SST is given in Celcius, φ is the latitude in degrees and36
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Additionally, we run simulations with a globally increased SSTs up to 4K in increments of 1K and a zonally asymmetric run38

with a wavenumber one perturbation added to the reference SSTs:39
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)
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30
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if − 25 ≤ φ ≤ 35, [3]40

where λ is longitude in degrees. The sun is in perpetual equinox with a full diurnal cycle. All experiments were started with41

the same initial conditions and allowed to spin up for a year. The subsequent five years were used for analysis. Training data42

for the neural network was taken from the second year of the SPCAM simulations.43

Neural network. All neural network code is available at https://github.com/raspstephan/CBRAIN-CAM44

We use the Python library Keras (9) with the Tensorflow (10) backend for all neural network experiments. Our neural45

network architecture consists of nine fully-connected layers with 256 nodes each. This adds up to a total of 567,361 learnable46

parameters. The LeakyReLU activation function max(0.3x, x) resulted in the lowest training losses. The neural network was47

trained for 18 epochs with a batch size of 1024. The optimizer used was Adam (11) with a mean squared error loss function.48

We started with a learning rate of 1× 10−3 which was divided by five every three epochs. The total training time was on the49

order of 8 hours on a single Nvidia GTX 1080 graphics processing unit (GPU).50

The input variables for the neural network were chosen to mirror the information received by the CRM and radiation scheme51

but lack the condensed water species and the dynamical tendencies. The latter are applied as a constant forcing during the52

CRM integration. We found, however, that they did not improve the neural network performance and trimmed the input53

variables for the sake of simplicity. Another option would be to include the surface flux computation in the network as well. In54

this option the fluxes are removed from the input and the surface temperature is added. This option yielded similar results but55

did not allow us to investigate column energy conservation.56

The input values are normalized by subtracting each element of the stacked input vector (Table S1) by its mean across57

samples and then dividing it by the maximum of its range and the standard deviation computed across all levels of the58

respective physical variable. This is done to avoid dividing by very small values, e.g. for humidity in the upper levels, which59

can cause the input values to become very large if the neural network predicts noisy tendencies. For the outputs, the heating60

and moistening rates are brought to the same order of magnitude by converting them to W kg−1 . The radiative fluxes and61

precipitation were normalized to be on the same order of magnitude as the heating and moistening rates (see Table S1 for62

multiplication factors). The magnitude of the output values determines their importance in the loss function. In our quadratic63

loss function differences are highlighted even further. Making sure that no single value dominates the loss is important to get64
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a consistent prediction quality. For a reasonable range (factor five) around our normalization values the results are largely65

unaffected, however.66

Deep neural networks appear to be essential to achieve a stable and realistic prognostic implementation. Similar to other67

studies which used shallow neural networks (12, 13) we encountered unstable modes and unrealistic artifacts for networks68

with two or one hidden layers (Fig. S1). A four layer network was the minimal complexity to provide good results for our69

configuration. Adding further layers shows little correlation between training skill and prognostic performance. We chose our70

network design to lie well withing the range of stable network configurations.71

Stephan Rasp, Michael S. Pritchard and Pierre Gentine 3 of 11



Table S1. Table showing input and output variables and their number of vertical levels Nz . For the output variables the normalization factors
are also listed. Cp is the specific heat of air. Lv is the latent heat of vaporization.

Input variables Unit Nz Output variables Unit Nz Normalization

Temperature K 30 Heating rate ∆Tphy K s−1 30 Cp

Humidity kg kg−1 30 Moistening rate ∆Qphy kg kg−1 s−1 30 Lv

Meridional wind m s−1 30 Shortwave flux at TOA W m−2 1 10−3

Surface pressure Pa 1 Shortwave flux at surface W m−2 1 10−3

Incoming solar radiation W m−2 1 Longwave flux at TOA W m−2 1 10−3

Sensible heat flux W m−2 1 Longwave flux at surface W m−2 1 10−3

Latent heat flux W m−2 1 Precipitation kg m−2 d−1 1 2 × 10−2

Size of stacked vectors 94 65

4 of 11 Stephan Rasp, Michael S. Pritchard and Pierre Gentine



Fig. S1. All figures show longitudinal and five year-temporal averages as in Fig. 1. Zonally and temporally averaged temperature relative to SPCAM for different network
configurations (Number of hidden layers x Nodes per hidden layer). 8x512 corresponds to the network in Ref. (14).
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Fig. S2. (A) Mean convective sub-grid moistening rates ∆Qphy. (B) Mean specific humidity Q and (C) zonal wind V of SPCAM and biases of NNCAM and CTRLCAM relative
to SPCAM. (D) Mean shortwave (solar) and longwave (thermal) net fluxes at the surface. The latitude axis is area-weighted.
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Fig. S3. (A) Zonally averaged temporal standard deviation of the convective sub-grid moistening rate ∆Qphy. (B, C) Snapshots of heating ∆Tphy and moistening rate
∆Qphy. Note that these are taken from the free model simulations and should, therefore, not correspond one-to-one between the experiments.
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Fig. S4. Mass-weighted temperature integrated over the troposphere from p0 = 1000 hPa to pt = 380 hPa for SPCAM reference and differences of NNCAM and CTRLCAM
with respect to reference for zonally perturbed simulations.
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Fig. S5. Zonally and temporally averaged (A, B) heating rate and (C, D) temperature relative to SPCAM. Panels A and C show reference SSTs while panels B and D show
global 4 K perturbation. Temperature panels show SPCAM reference and differences to reference for several experiments described in the text.
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Fig. S6. (A) Space-time spectrum of the equatorially symmetric component of 15S-15N daily precipitation anomalies. As in Fig. 1b of Ref. (15). (B) Space-time spectrum of
the equatorially symmetric component of 15S-15N daily precipitation anomalies divided by background spectrum. As in Fig. 3b of Ref. (15). Figure shows +4K SST minus
reference SST. Negative (positive) values denote westward (eastward) traveling waves.
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