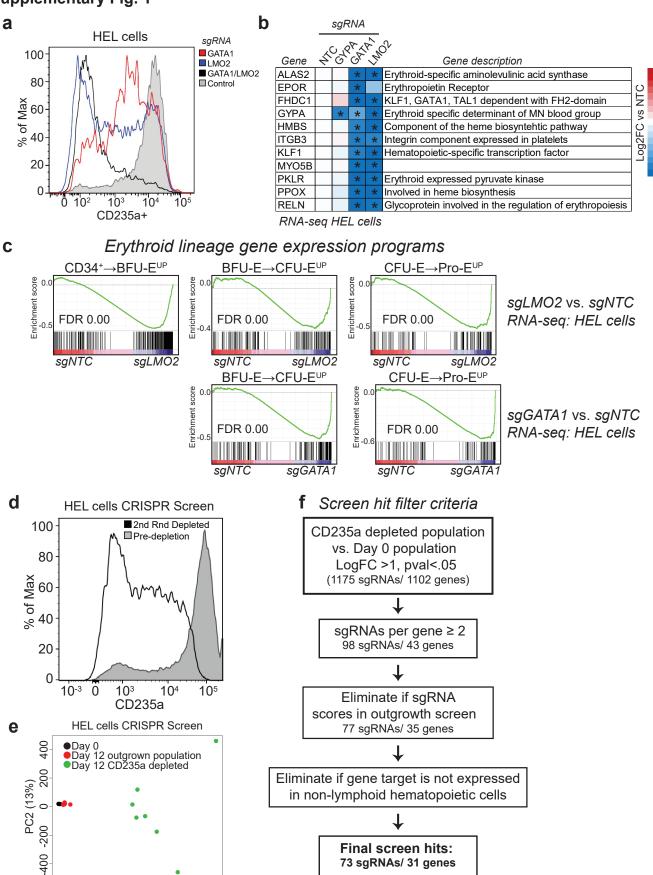
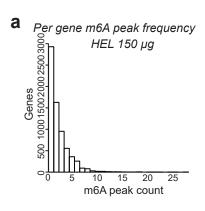
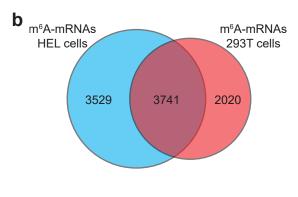
N⁶-methyladenosine mRNA marking promotes selective translation of regulons required for human erythropoiesis

Kuppers et al.

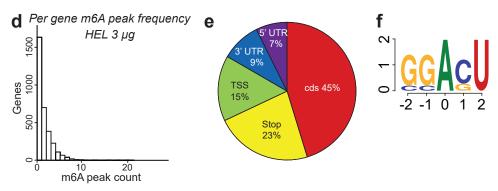

Supplementary Information

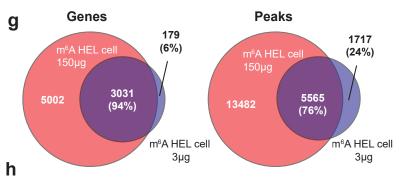
Supplementary Fig. 1


-100


100 200 300 400

PC1 (17%)

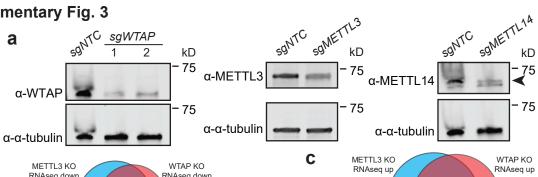

Supplementary Fig. 1: Validation of HEL cells as a surrogate model of erythropoiesis and whole genome CRISPR screening a, Flow cytometry for CD235a expression in HEL cells 10 days post-transduction with Iv-sgRNA-KO for LMO2, GATA1 or the two combined. **b**, Gene expression changes for select GATA1 transcriptional targets (as defined by Yu et al. 1) in HEL cells following sqLMO2-KO or sqGATA1-KO as quantified by RNA-seq (n=3). *Indicates significant changes relative to non-targeting control (sgNTC) (FDR<.05). c, Gene expression changes in HEL cells following GATA1-KO or LMO2-KO are negatively correlated with erythroid stage-specific genes up-regulated during normal erythropoiesis by GSEA analysis (detailed in Methods). These gene sets can be found in (Supplementary Data 7). **d**, A representative example of HEL cell enrichment, on day 12 post-transduction with the whole genome CRISPR-Cas9 library, for CD235a-/low cells following two rounds of magnetic bead depletion of CD235a high cells (see Methods for details). e, Principal component analysis for altered sgRNA representation in the seven replicates of Day 12 post-transduction CD235a-/low HEL cells, as shown in Fig. 1a, versus all outgrown cells at Day 12 post-transduction and the Day 0 samples (Day 5 post-transduction) for the initial representation of sgRNAs within the transduced cells (n=7). **f**, The filter criteria used to define the screen hits arising in the CD235a-/low population and retested in Fig. 1b.

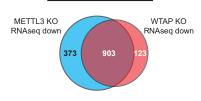


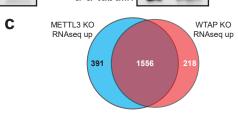
Top 5 GO: Human Phenotype - Shared 293T and HEL unique m⁶A-mRNAs

ID	Name	FDR B&H	Genes from Input	Genes in Annotation
HP:0000252	Microcephaly	1.52E-12	223	766
HP:0000347	Micrognathia	3.65E-11	166	536
HP:0001263	Global developmental delay	1.01E-09	354	1454
HP:0001249	Intellectual disability	4.92E-08	317	1305
HP:0000431	Wide nasal bridge	1.07E-07	118	378

Sample	Lineage Marker	Unique m6A genes	Total m6A genes	% overlap HEL
All		413	2060	78.1
HSC	lin-CD38-CD34+	113	674	81.8
CMP	CD34+CD38+IL-3Ra ^{lo} +CD45RA-	76	815	88.1
GMP	CD34+CD38+IL-3Ra ^{lo} +CD45RA+	55	326	81
CD14	FSC ^{hi} SCC ^{low} CD14+	232	928	74.1
MEP	CD34+CD38+IL-3Ra ^{lo} -CD45RA-	37	268	81.1
MEG	CD34-CD61+	87	391	77.2
ERY1	CD34+CD71+CD235a-	45	869	92.3
ERY2	CD34-CD71+CD235a-	42	357	84
ERY3	CD34-CD71+CD235a+	74	213	63.9


Supplementary Fig. 2: meRIP-seq in HEL cells and human adult BM cells a, A histogram of the per gene frequency of m⁶A peaks in methylated genes from HEL meRIP-seq using 150 μg of total RNA (HEL 150 μg). **b,** Venn diagram of m⁶A mRNAs identified by meRIP-seq in 293T cells² and in HEL 150 µg cells. **c**, ToppGene GO analysis of m⁶A genes overlapping the HEL 150 µg and 293T² data sets. **d**, A histogram of the per gene frequency of m⁶A peaks in methylated genes from HEL 3 µg, showing a similar pattern to HEL 150 µg meRIP-seq data (compare to Supplementary Fig. 2a). e, Pie chart displaying the frequency of m⁶A peaks, from HEL 3 µg, within different transcript regions: TSS, centered around translation start ATG, Stop, centered around the stop codon. The distribution is consistent with the HEL 150 µg data (Fig. 2b) f, The enriched m⁶A methylation site motif detected by meRIP-seq in HEL cells using 3 µg of total RNA (HEL 3 μg). **g**, Venn diagrams for m⁶A mRNAs and peaks identified by MeRIP-seq in HEL 150 µg and in HEL 3 µg cells, showing significant agreement between the data sets, but clear undersampling in the HEL 3 µg data. h, A summary of the surface marker criteria used to isolate hematopoietic populations from adult human BM for meRIP-seq, as well as the total number of m⁶A containing genes identified for each population and the number of unique methylated genes detected in each population. Supplementary Data 2 contains the complete data set.


Supplementary Fig. 3


b

d

e

GO: Molecular Function

				Genes from	Genes in
ID	Name	p-Value	FDR B&H	input	Annotation
GO:0005344	oxygen carrier activity	6.01E-07	9.36E-04	7	14
GO:0008201	heparin binding	7.38E-06	5.74E-03	21	167

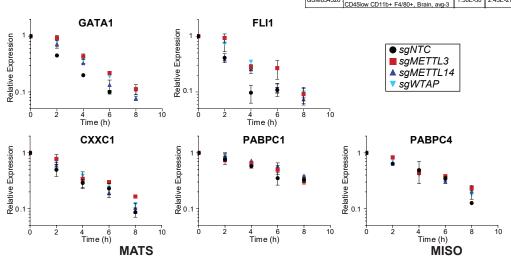
GO: Biological Process

				Genes from	Genes in
ID	Name	p-Value	FDR B&H	input	Annotation
GO:0009205	purine ribonucleoside triphosphate metabolic process	1.32F-12	7.28F-09	40	263

Coexpression Atlas

	Ocerpression raids					
				Genes from	Genes in	
ID	Name	p-Value	FDR B&H	input	Annotation	
	PP MEP top-relative-expression-					
PP MEP 1000 K1	ranked 1000 k-means-cluster#1	3.49E-16	2.70E-12	34	161	
	PP RBC top-relative-expression-					

GO: Molecular Function


				Genes from	Genes in
ID	Name	p-Value	FDR B&H	input	Annotation
GO:0005102	signaling receptor binding	3.81E-11	7.28E-08	181	1601
GO:0003700	DNA-binding transcription factor activity	4.46E-07	1.70E-04	135	1264
GO:0019955	cytokine binding	5.57E-07	1.78E-04	23	103
GO:0032395	MHC class II receptor activity	4.79E-06	1.31E-03	7	12

GO: Biological Process

				Genes from	Genes in
ID	Name	p-Value	FDR B&H	input	Annotation
GO:0006955	immune response	2.31E-22	1.72E-18	214	1572
GO:0007155	cell adhesion	1.42E-15	2.64E-12	190	1530
GO:0050776	regulation of immune response	3.07E-14	4.56E-11	126	899

Coexpression Atlas

	000/10/00/01/7 (11/10/0					
				Genes from	Genes in	
ID	Name	p-Value	FDR B&H	input	Annotation	
PP GMP 100	PP GMP top-relative-expression-ranked	1 02F-34	8.28F-31			
	1000	TOLL OF	O.EOE O.	174	987	
	Myeloid Cells, DC.103-11b+F4/80lo.Kd,					
GSM854273	CD45+ CD11c+ I-A/I-E+ CD11b+	1.94E-33	7.83E-30			
	F4/80lo, Kidney, avg-3			102	406	
CSW6E4336	Myeloid Cells, MF.Microglia.CNS,	1 505 20	2.43E-27			
G3101034320	OD451 OD441 E4/00 - D1 0	1.30L=30	2.43L*21	0.0	407	

m6A associated alternative splicing with WTAP KO

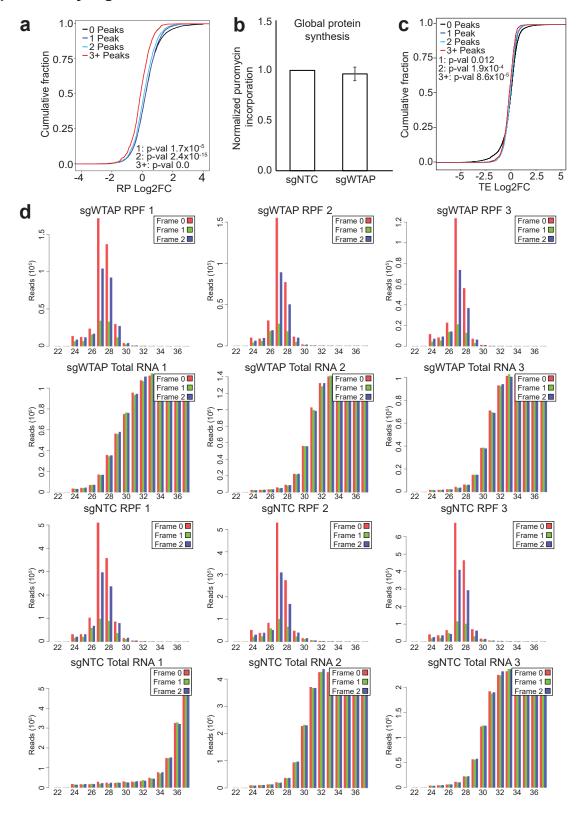
	. •				
Splicing	No of events in	Overlap of m6A site	Hypergeometric	Unique m6A	
Group	splicing group	& splicing group	test p-value	genes	
All Groups	5045	1018	1	708	
a3ss	543	97	1	87	
a5ss	362	83	0.999961334	74	
mxe	492	111	0.99990771	96	
se	2929	614	1	473	
ri	719	113	1	101	

m6A associated alternative splicing with METTL3 KO

			0	
Splicing	No of events in	Overlap of m6A site	Hypergeometric	Unique m6A
Group	splicing group	& splicing group	test p-value	genes
All Groups	5110	1086	1	739
a3ss	533	91	1	82
a5ss	381	89	0.999690865	81
mxe	541	135	0.998453052	112
se	3001	663	1	496
ri	654	108	1	95

m6A associated alternative splicing with WTAP KO

				5	_
ſ	Splicing	No of events in	Overlap of m6A site	Hypergeometric	Unique m6A
	Group	splicing group	& splicing group	test p-value	genes
	All Groups	337	141	0.444642995	106
I	a3ss	37	17	0.340500032	16
	a5ss	25	11	0.468211377	11
	mxe	50	25	0.135307379	20
	se	137	53	0.294689426	43
Į	ri	88	35	0.427583431	28

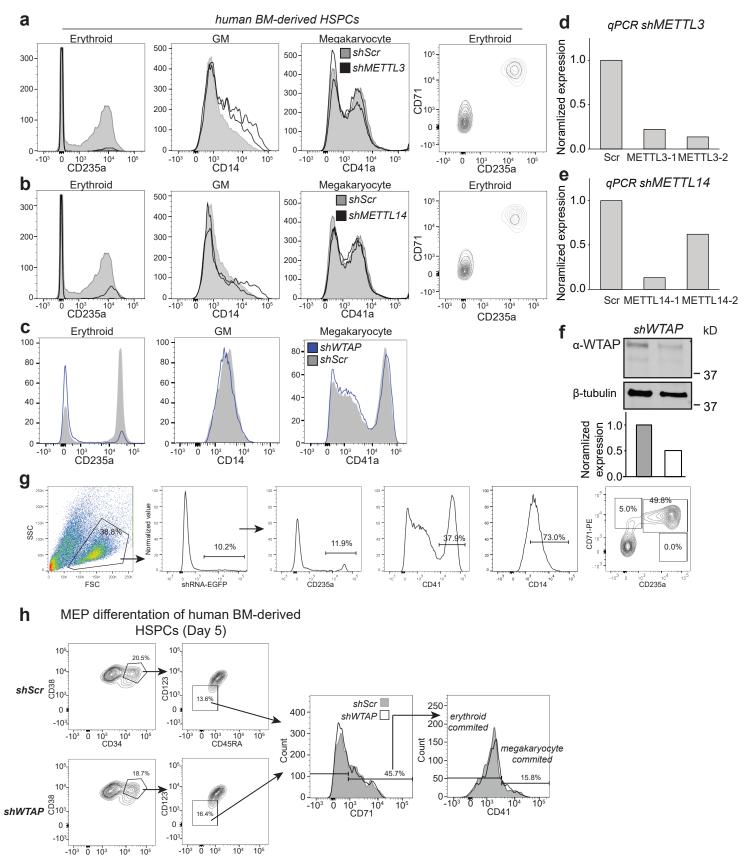

m6A associated alternative splicing with METTL3 KO

	mon associated alternative splicing with METTES NO						
Splicing	No of events in	Overlap of m6A site	Hypergeometric	Unique m6A			
Group	splicing group	& splicing group	test p-value	genes			
All Groups	453	186	0.473269073	141			
a3ss	51	21	0.550968289	20			
a5ss	41	13	0.136515773	12			
mxe	77	37	0.139280956	27			
se	196	84	0.356746685	69			
ri	88	31	0.145129112	23			

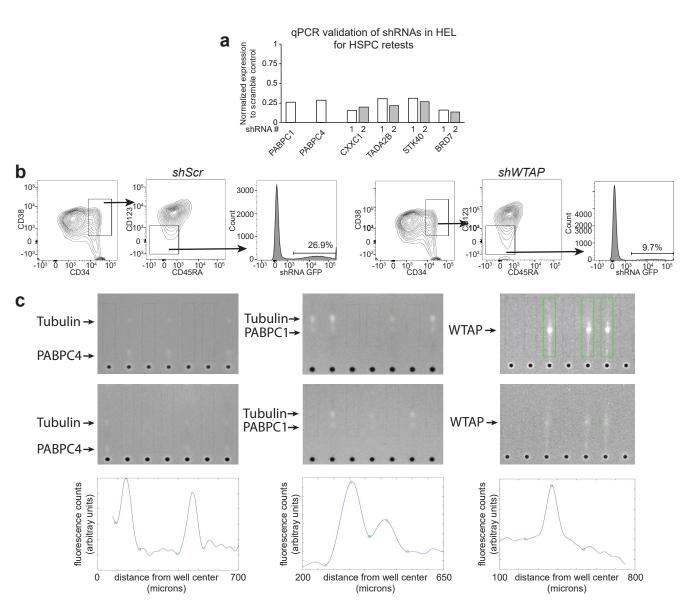
Supplementary Fig. 3: WTAP-KO in HEL cells disrupts the erythroid

transcriptional program but does not affect splicing in cis a, Western blot validation of WTAP-KO, METTL3-KO and METTL14-KO in HEL cells by CRISPR-Cas9. Cell were transduced with lentiCRISPRv2 as either single sgRNAs (WTAP) or pools of 3 sgRNAs (METTL3 and METTL14), as described in the Methods. Source data are provided as a Source Data file. **b**, Venn diagram defining a core profile of up regulated transcripts following METTL3-KO and WTAP-KO in HEL cells. Top GO terms for the core transcripts up regulated in HEL cells following m⁶A loss. Supplementary Data 3 contains the complete results. **c**, Venn diagram defining a core profile of down regulated transcripts following METTL3-KO and WTAP-KO in HEL cells. Top GO terms for the core transcripts down regulated in HEL cells following m⁶A loss. Supplementary Data 3 contains the complete results. d. Actinomycin D mRNA stability results. Plots of qPCR quantified mRNA levels relative to pre-treatment. None of the genes showed a significant difference in mRNA half-life between sgNTC and sgKO samples. (mean ± SEM, Student's t-test) e, Summary of splicing analysis of sgWTAP-KO and sgMETTL3-KO HEL for enrichment in m⁶A genes utilizing MISO and MATS. No significant enrichment was observed for any splicing event type. Supplementary Data 4 contains the complete data set. (n=4, WTAPand METTL3-KO included splicing events were present in at least 6 pair-wise comparisons for MISO, Hypergeometic test)

Supplementary Fig. 4



Supplementary Fig. 4: Translational changes following *WTAP*-KO a, Cumulative distribution plots, separated based on the number of m⁶A peaks within a transcript, for changes in the frequency of ribosome binding in *sgWTAP*-KO compared to *sgNTC* HEL cells. A leftward-shift indicates reduced translation (n=3, Kolmogorov-Smirnov, 1-peak: P value 1.7x10⁻⁵; 2-peaks: P value 2.4x10⁻¹⁵; 3+peaks: P value < 1.0x10⁻²⁰). b, Global protein synthesis quantified by Western blot for puromycin incorporation in *sgWTAP*-KO HEL cells compared to sgNTC HEL cells. No significant change was observed (n=3, s.e., P value = 0.695, t-test). c, Cumulative distribution plots, separated based on the number of m⁶A peaks within a transcript, for changes in translational efficiency (TE) in *sgWTAP*-KO HEL cells compared to *sgNTC* HEL cells (n=3, Kolmogorov-Smirnov, 1-peak: p-value 0.012; 2-peaks: p-value 1.9x10-4; 3+peaks: p-value 8.6x10-5). d,
Periodicity plots for *sgWTAP* and *sgNTC* HEL cells ribosome protected fraction (RPF) and RNA input sample replicates.


Supplementary Fig. 5

CD34

CD45RA

Supplementary Fig. 5: Characterization of WTAP-KD, METTL3-KD and METTL14-KD in HSPCs a, Flow cytometry of METTL3-KD hBM HSPCs differentiated in liquid culture reveals a block to erythropoiesis with no impact on megakaryopoiesis (n=3, 54.9±3.4 vs. 52.5±2.9) and an increase in myelopoiesis (n=3, 52.3±5.0 vs. 37.5±1.8). b, Flow cytometry of METTL14-KD hBM HSPCs differentiated in liquid culture reveals a block to erythropoiesis with no impact on megakaryopoiesis (n=3, 54.2±0.9 vs. 52.5±2.9) or myelopoiesis (n=3, 37.6±6.3 vs. 37.5±1.8). **c,** Flow cytometry of WTAP-KD hBM HSPCs differentiated in liquid culture reveals a block to erythropoiesis with no impact on megakaryopoiesis (n=3, 55.5±4.0 vs. 57.7±6.5) or myelopoiesis (n=3, 93.3±1.5 vs. 89.6±2.6). **d**, Quantification by qPCR of lv-shMETTL3-KD in HEL cells for two unique shRNAs. e, Quantification by qPCR of lv-shMETTL14-KD in HEL cells for two unique shRNAs. **f**, Western blot validation in HEL cells of lv-shWTAP-KD. Quantification is normalized to β -actin. Source data are provided as a Source Data file. \mathbf{g} , Representative gating for Fig. 6a,b. h, Representative flow cytometry of the lineage committed progenitors within the MEP population of cultured hBM CD34+ HSPCs transduced with lv-shWTAP or lv-shNTC and cultured in 4-factor cocktail for 5 days shows no impact of WTAP-KD on lineage choice at the MEP stage. Megakaryocyte progenitors are defined as being CD41+ while erythroid progenitors are CD41- (n=3).

Supplementary Fig. 6 m 6 A regulation of erythropoiesis. **a**, Quantification by qPCR of Iv-shRNA-KD in HEL cells 4 day post-transduction for one or two shRNAs targeting the nonessential m6A translational targets retested in Fig. 6e-g. (n=1) **b**, The flow cytometry sorting profile for MEP from shScr or shWTAP transduced hBM CD34+ HSPCs cultured for 5 days and used for single cell Western blot (scWB) analysis in Fig. 6g. **c**, Representative lanes and signal intensities on the scWB chip for WTAP, PABPC1, PABPC4 and α -Tubulin. Plots for representative peak calling using the Scout software are shown.

Supplementary References

- 1. Yu, M. *et al.* Insights into GATA-1-mediated gene activation versus repression via genome-wide chromatin occupancy analysis. *Molecular cell* **36**, 682-695 (2009).
- 2. Meyer, K.D. *et al.* Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. *Cell* **149**, 1635-1646 (2012).