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ABSTRACT: Patients with chronic kidney disease (CKD) exhibit an elevated 
cardiovascular risk manifesting as coronary artery disease, heart failure, 
arrhythmias, and sudden cardiac death. Although the incidence and 
prevalence of cardiovascular events is already significantly higher in patients 
with early CKD stages (CKD stages 1–3) compared with the general 
population, patients with advanced CKD stages (CKD stages 4–5) exhibit a 
markedly elevated risk. Cardiovascular rather than end-stage kidney disease 
(CKD stage 5) is the leading cause of death in this high-risk population. CKD 
causes a systemic, chronic proinflammatory state contributing to vascular and 
myocardial remodeling processes resulting in atherosclerotic lesions, vascular 
calcification, and vascular senescence as well as myocardial fibrosis and 
calcification of cardiac valves. In this respect, CKD mimics an accelerated aging 
of the cardiovascular system. This overview article summarizes the current 
understanding and clinical consequences of cardiovascular disease in CKD.

Cardiovascular Disease in Chronic  
Kidney Disease
Pathophysiological Insights and Therapeutic Options

IN DEPTH

Richard Bright, a British physician, was the first to report the association of 
chronic kidney disease (CKD) with cardiovascular disease (CVD).1 Patients with 
CKD exhibit a pronounced risk for cardiovascular events: 50% of all patients 

with CKD stage 4 to 5 have CVD,2 and cardiovascular mortality accounts for ≈40% 
to 50% of all deaths in patients with advanced CKD (stage 4) as well as end-stage 
kidney disease (stage 5), compared with 26% in controls with normal kidney func-
tion3,4 (Figure 1). In addition to the high risk for fatal atherosclerosis-related compli-
cations such as myocardial infarction and stroke, cardiovascular death also results 
from heart failure (HF) and fatal arrhythmias, particularly in advanced CKD stages. In 
>70 studies in nondialyzed subjects with CKD, correction for classical and even less 
classical cardiovascular risk factors, such as hypertension, diabetes, and dyslipidemia, 
did not neutralize the impact of CKD on cardiovascular risk.6 This review summarizes 
the current knowledge of CVD in patients with CKD, clinical consequences, and 
treatment options of CVD in CKD (Figure 2). Given space limitations, we will not 
cover special situations such as extrarenal involvement in vasculitides or the associa-
tion of autosomal dominant polycystic kidney disease with vascular abnormalities 
such as intracranial, aortic, or coronary artery aneurysms as well as aortic dissection.7

EPIDEMIOLOGY AND PROGNOSIS
The definition and classification of CKD was introduced by the National Kid-
ney Foundation Kidney Disease Outcomes Quality Initiative in 2002,8 and the 



Jankowski et al Pathophysiology and Therapeutic Options

March 16, 2021 Circulation. 2021;143:1157–1172. DOI: 10.1161/CIRCULATIONAHA.120.0506861158

ST
AT

E 
OF

 T
HE

 A
RT

international guideline group Kidney Disease Improv-
ing Global Outcomes in 2004.9 Kidney damage refers 
to kidney abnormalities observed during clinical eval-
uation indicating a reduction in kidney function.9,10 
Chronic kidney disease is defined as abnormalities in 
kidney damage or glomerular filtration rate <60 mL/
min/1.73 m2 that have been present for >3 months 
and have an impact on health.8,11 Kidney damage in 
many kidney diseases can be ascertained by the pres-
ence of albuminuria, defined as albumin-to-creatinine 
ratio >30 mg/g (Figure 3). Because there is an increas-
ing evidence indicating a continuous relationship be-
tween albuminuria and cardiorenal risk in the renal and 
nonrenal population,13,14 albuminuria is considered a 
prognostic marker for cardiovascular or renal risk, or 
both.15 Higher levels of albuminuria indicate a graded 
increase in risk for mortality independent of eGFR.12,16

CKD is increasingly recognized as a global public 
health problem17 imposing huge medical and financial 
burdens on societies and health care systems with an 
estimated prevalence of 13.4% globally.18 The world-
wide rise in the prevalence of CKD is accompanied by 
an increase in patients reaching CKD stage 5 requiring 
kidney replacement therapy. Currently, about 3 million 
patients are receiving kidney replacement therapy for 
CKD stage 5D worldwide out of 10 million who would 
qualify for kidney replacement therapy; these numbers 
are expected to grow by 50% to 100% until 203019,20 
(Figure  4). Reasons for the increasing incidence and 
prevalence of advanced CKD, among others, include 
aging populations, increasing prevalence of type 2 dia-
betes and hypertension,22 and a low detection rate and 
therapeutic inertia in the early stages of CKD.8,23,24

Despite the fact that health care resources allo-
cated for the treatment of CKD have significantly 

increased in recent years, patients with CKD still ex-
hibit a dramatically reduced life expectancy, with a 
loss of 25 years of life at advanced stages compared 
with individuals with normal kidney function.25,26 
Worldwide, CKD accounted for 2 968 600 (1.1%) of 
disability-adjusted life-years and 2 546 700 (1.3%) 
of life-years lost in 2012.4 A meta-analysis of the as-
sociation between nondialysis-dependent CKD and 
the risk for all-cause and cardiovascular mortality 
involving 1 371 990 patients demonstrated an ex-
ponential increase in absolute risk for death with de-
creasing kidney function even after adjustment for 
other established risk factors.27 A meta-analysis of 
cohort studies involving >1.4 million individuals28,29 
yielded an association of not only low eGFR but also 
higher albuminuria with cardiovascular disease (Fig-
ure 5).30 Thus, the risk of developing CVD in patients 
with CKD surpasses the risk of reaching end-stage 
kidney disease, and therefore, CKD must be consid-
ered one of the strongest risk factors for the devel-
opment of CVD.27

PATHOPHYSIOLOGY OF CVD IN CKD
In general, in addition to traditional risk factors, 2 
major mechanisms are thought to contribute to the 
development of CVD in CKD. On the one hand, the 
kidney can release hormones,31–34 enzymes, and cy-
tokines35–37 in response to kidney injury or kidney in-
sufficiency, which leads to characteristic changes in 
the vasculature. On the other hand, CKD-associated 
mediators as well as hemodynamic alterations con-
tribute to cardiac damage,38 as discussed in the fol-
lowing sections.

Figure 1. Cardiovascular mortality in the 
general population and in patients with 
end-stage kidney disease.
In 25- to 34-year-old patients with end-stage 
kidney disease, annual mortality is increased 
500- to 1000-fold and corresponds to that of 
the ≈85-year-old general population. Adapted 
from Foley et al.5
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Traditional Risk Factors of Vascular 
Disease in CKD
Traditional cardiovascular risk factors are highly prev-
alent in patients with CKD, and their contribution to 
atherosclerotic vascular disease is particularly important 
in earlier CKD stages.39,40 Among others, hypertension, 
insulin resistance/diabetes, dyslipidemia, and smoking 
contribute not only to atherosclerotic cardiovascular 
and cerebrovascular sequelae (Table) but also to CKD 
progression because of their effect on large (eg, kidney 
artery stenosis) and smaller (eg, nephrosclerosis) kidney 
vessels.49,50 In addition, some of these effects also seem 
to contribute to the recently described association of 
CKD with abdominal aortic aneurysms.51

Hypertension
The elevated cardiovascular risk in CKD cannot solely 
be explained by the presence of traditional risk factors 
as shown by data from the ARIC (Atherosclerosis Risk In 
Communities) and CHS (Cardiovascular Health Study) 
trials.52 In addition, the specific aspects of CKD have not 

fully been addressed in studies targeting the modifica-
tion of these risk factors. However, treatment of hyper-
tension is beneficial in CKD, as recently corroborated by 
results of the SPRINT trial (Systolic Blood Pressure Inter-
vention Trial), but the optimal target blood pressure in 
patients with CKD has not yet been established.41

Diabetes 
Hyperglycemia is strongly associated with the develop-
ment of both CKD and CVD. However, improvement 
in glycemic control in type 2 diabetes mainly contrib-
utes to a reduction in microvascular events such as ne-
phropathy, although various studies failed to show a 
significant effect on macrovascular events; for example, 
the ADVANCE trial (Action in Diabetes and Vascular 
Disease: Preterax and Diamicron Modified Release Con-
trolled Evaluation”) demonstrated in ≈11 000 patients 
with type 2 diabetes that intensive glucose control 
compared with standard therapy leads to a reduction 
in the combined outcome of major macrovascular and 
microvascular events, but this effect was mainly driven 
by a reduction in nephropathy with no significant effect 

Figure 2. Interaction of cardiovascular disease (CVD) and chronic kidney disease (CKD).
Various mediators and mechanisms in vascular disease, heart failure, and CKD contribute to the progression of CVD and influence the prognosis of patients. PTM 
indicates post-translational modification.
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on macrovascular events43; the ACCORD trial (Action to 
Control Cardiovascular Risk in Diabetes)53 was not able 
to demonstrate that treatment targeting nearly nor-
mal glycemic control reduces the risk of cardiovascular 
events in ≈10 000 patients with type 2 diabetes, and in-
tensive versus standard glucose control in patients with 
poorly controlled type 2 diabetes had no significant ef-
fect on the rates of major cardiovascular events, death, 
or microvascular complications in VADT (Veterans Af-
fairs Diabetes Trial),54 including 1791 patients.

Moreover, data for lifestyle modifications are mostly 
observational and extrapolated from non-CKD trials. This 
fact has been clearly exposed by a recent meta-analysis re-
porting that randomized trials conducted between 2006 
to 2014 were less likely to exclude patients with CKD 
than those between 1985 to 2005 (46% versus 56%).55 
However, this apparently encouraging trend is not suf-
ficient to close the gap of evidence in patients with CKD.

Dyslipidemia
In addition, patients with CKD exhibit a character-
istic lipid pattern of hypertriglyceridemia and low 

high-density lipoprotein (HDL) cholesterol levels, but 
mostly normal low-density lipoprotein cholesterol 
levels. Recent clinical evidence suggests that vascu-
lar effects of HDL can be heterogeneous in different 
conditions, and that progressive kidney dysfunction 
dramatically changes the composition and quality of 
blood lipids, particularly HDL and triglyceride-rich li-
poproteins, in favor of a more atherogenic profile.42 
Adverse endothelial effects of HDL are also detect-
able in children with CKD, in whom cardiovascular risk 
factors such as smoking, hypertension, diabetes, and 
dyslipidemia were not yet present.56 Several factors 
modify the composition of the HDL particle in CKD, 
including uremic toxins, increased oxidative stress, and 
the proinflammatory microenvironment. These factors 
contribute to a pronounced remodeling of HDL parti-
cles, altering the proteome and lipidome composition 
of HDL and inducing posttranslational modifications 
of HDL’s protein cargo. Furthermore, the accumulation 
of uremic toxins such as symmetrical dimethylarginine 
in advancing CKD plays a key role in the functional 
changes of HDL.42

Figure 3. Classification and prognosis of chronic kidney disease (CKD) from 2012 KDIGO (Kidney Disease Improving Global Outcomes) guidelines.
GFR indicates glomerular filtration rate. Adapted from the Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group.12
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Last, increased albuminuria or proteinuria is a potent 
risk factor for CVD in both diabetic and nondiabetic 
patients with CKD (Figure 3), and the incidence of car-
diovascular events decreases with the institution of an-
tiproteinuric measures, in particular renin-angiotensin 
system (RAS) blockade. However, the pathomechanis-
tic link between albuminuria and CVD may not be a 
direct one, as systemic but particularly intrarenal he-
modynamic effects of RAS blockers affect progression 
of CKD and thus indirectly of CVD. Therefore, the data 

in support of RAS blockers in albuminuric patients are 
reasonably strong for preventing progression of CKD 
and less so for CVD protection.48

Nontraditional Risk Factors of Vascular 
Disease in CKD
Vascular Calcification
Vascular smooth muscle cells are the cellular compo-
nents of the medial layer of the vessels, which can 

Figure 4. Annual incidence rates of end-stage kidney disease in different countries.
Adapted from Jha et al.21
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Figure 5. Independent association of kidney 
function with cardiovascular mortality.
ACR indicates albumin-to-creatinine ratio; CKD, 
chronic kidney disease; CVD, cardiovascular 
disease; eGFR, estimated glomerular filtration 
rate; and HR, hazard ratio. Adapted and modi-
fied from Gansevoort et al.30
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switch from a contractile phenotype to a more synthetic 
phenotype caused by hemodynamic changes observed 
in CKD.57 Resulting cardiovascular calcifications are 
markedly accelerated in patients with CKD, and even 
children with advanced CKD frequently exhibit vascular 
calcifications.58 The histological prevalence of vascular 
calcifications in radial arteries was 45-fold greater in pa-
tients with CKD compared with those without CKD.59 
In addition to CKD, several common comorbidities, in 
particular diabetes, further enhance the progression of 
calcification.

Calcification of central arterial vessels contributes 
to increased pulse wave velocity, earlier reflection of 
the pulse wave, increased cardiac afterload, and thus 
HF.60 Resulting hemodynamic alterations induce left 
ventricular hypertrophy associated with a decrease 
in coronary perfusion.61,62 A particularly severe form 
of vascular calcification is uremic calcific arterio-
lopathy (calciphylaxis), which is caused by calcium 
deposition in the media of the dermo-hypodermic 
arterioles63 leading to skin necrosis and carries a high 
mortality rate.64 The exact mechanism of uremic cal-
cific arteriolopathy is unclear: previously, an increase 
in the calcium-phosphorus product was thought to 
cause calcification65 leading to uremic calcific arte-
riolopathy, but it becomes increasingly clear that 
calcification involves active cellular processes, not 
just passive mineralization, because of an increase 
in calcium-phosphorus concentrations.66 However, 
hemodynamic consequences of medial calcification 
seem to have an exacerbated risk for left ventricular 
hypertrophy.67

Calcification of cardiac valves, in particular the aortic 
valve, is a frequent cause of valvular stenosis requiring 
intervention. The extent and progression rate of vas-
cular calcifications in CKD herald a poor prognosis.68 
However, the first data raise the hypothesis that replet-
ing patients with vitamin K can retard the progression 
of valvular calcification46; still, negative trials have also 
been published on this topic.69

In addition, electrolyte imbalances like dysmagnese-
mia are common in patients with CKD70 and contribute 
to poor patient outcome,71 and therefore, electrolyte 
imbalances are potential targets for managing coronary 
artery calcification. In particular, magnesium, frequently 
reduced in serum in CKD,70 has recently gained inter-
est because of the inhibitory effect on vascular calci-
fication44,45: magnesium interferes with hydroxyapatite 
crystal formation and can halt vascular calcification 
progress in advanced CKD.72

Inflammation
Inflammation is a key process observed in patients with 
CKD, and CKD is considered a systemic inflammatory 
disease with many causes73,74 and has been shown to 
predict the long-term risk of developing CKD.74 Proin-
flammatory circulatory mediators progressively increase 
as kidney function declines.75 Proinflammatory process-
es in CKD patients comprise, among others, a variety 
of infections including periodontal disease, oxidative 
stress caused by accumulation of advanced glycation 
end products, metabolic acidosis, reduced cytokine 
clearance, insulin resistance, posttranslational modifi-
cations of blood-borne molecules such as lipoproteins, 
and epigenetic factors.73

In accordance, the CANTOS trial (Canakinumab Anti-
Inflammatory Thrombosis Outcome Study) focusing on 
≈10 000 stable postmyocardial infarction patients with 
high-sensitivity C-reactive protein demonstrated a ben-
efit of inhibition of proinflammatory effector molecule 
interleukin-1β (IL-1β) with the antibody canakinum-
ab, which was larger in patients with eGFR <60 mL/
min/1.73 m2 than in those with eGFR >60 mL/min/1.73 
m247 (Figure  6). However, further studies are needed 
to firmly establish the pathophysiological mechanisms 
and potential treatment options for inflammation in pa-
tients with CKD.

Myocardial Alterations in CKD
Patients with CKD exhibit characteristic changes in 
the myocardium with pathological myocardial fibrosis 
with collagen deposition between capillaries and car-
diomyocytes and cardiac hypertrophy the hallmarks of 
uremic cardiomyopathy.76 Left ventricular hypertrophy 
(LVH) is present in about one-third of all patients with 
CKD, increasing up to 70% to 80% in patients with 
end-stage kidney disease. The presence of LVH is an 

Table. Traditional and Nontraditional Risk Factors for CVD in CKD

Risk factors for 
CVD in CKD

Specific aspects/treatment options com-
pared with the non-CKD population Ref.

Traditional

 Hypertension Optimal target blood pressure has not yet 
been established

41

 Dyslipidemia Characteristic lipid pattern of hypertriglyc-
eridemia and HDL cholesterol levels

42

 Smoking —  

 Hyperglycemia Intensive glucose control beneficial to 
avoid microvascular complications

43

Nontraditional

  Vascular calcifi-
cations

Treatment of electrolyte imbalances with 
magnesium

44, 45

Vitamin K administration might be ben-
eficial

46

 Inflammation Inhibition of proinflammatory effec-
tor molecule interleukin-1ß (IL-1ß) with 
canakinumab after myocardial infarction

47

  Increased  
proteinuria

RAS blockade 48

CKD indicates chronic kidney disease; CVD, cardiovascular disease; HDL, 
high-density lipoprotein; and RAS, renin-angiotensin system.
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independent predictor of survival in patients with CKD, 
even in those with early-stage CKD. Three main mech-
anisms are considered to contribute to LVH in CKD: (1) 
afterload- and (2) preload-related factors as well as (3) 
nonafterload, nonpreload-related factors.77 Afterload-
related factors include abnormal arterial stiffness, 
increased systemic arterial resistance, and systolic hy-
pertension, leading to an initial concentric LVH.78 Con-
tinuous left ventricular overload subsequently leads to 
maladaptive changes and cardiomyocyte death, which 
in turn result in an eccentric hypertrophy and subse-
quent left ventricular dilatation, systolic dysfunction, 
and reduced ejection fraction (EF).79 Preload-related 
factors in the pathophysiology of LVH comprise the 
expansion of intravascular volume in CKD leading to 
volume overload, length extension of myocardial cells, 
and eccentric or asymmetrical left ventricular remod-
eling.78 Nonafterload, nonpreload-related factors in-
clude intracellular mediators and pathways contribut-
ing to progressive LVH.80 Essential mechanisms in this 
context are activation of peroxisome proliferator-acti-
vated receptors, stimulation of small G-proteins or the 
mechanistic target of rapamycin pathway, as well as 
metabolic changes such as decreased fatty acid oxida-
tion. The second hallmark of uremic cardiomyopathy 
besides LVH is the development of myocardial fibrosis 
occurring independently of LVH itself.76 Cardiac fibro-
sis in patients with CKD is characterized by diffuse 
collagen deposition between capillaries and cardio-
myocytes funneling into the maladaptive ventricular 
hypertrophy with subsequent dilatation of the heart.

Furthermore, there is an epidemiological collinear-
ity of the prevalence and incidence of CKD with aortic 
and mitral valve disease.81 Valve disease has a strong 
impact on the outcome in patients with CKD.82 Ear-
ly CKD stages 1 to 3 are associated with enhanced 
calcifications of valves and coronary arteries.83 Heart 
valve calcification occurs in stage 5 CKD in up to 88% 
to 99% of patients, increasing from 40% of patients 
in CKD stage 3,84 and the final destruction of valves 
occurs at a 10-fold higher rate in patients with CKD 

compared with patients without CKD. Valvular disease 
in patients with CKD is accelerated by comorbidities 
like diabetes, arterial hypertension, hyperlipidemia, 
anemia and ongoing infections of valves, and malnu-
trition, as well as hypercalcemia, hyperphosphatemia, 
and hyperparathyroidism.85

THERAPY OF CARDIOVASCULAR 
DISEASE IN CKD
Treatment of Vascular Disease in Patients 
With CKD
Control of traditional risk factors as well as antiplatelet 
therapy are cornerstones to reduce cardiovascular risk. 
As such, current guidelines recommend to lower sys-
tolic blood pressure to a range of 130 to 139 mm Hg in 
patients with diabetic or nondiabetic CKD, and renin-
angiotensin-aldosterone inhibitors are first-line agents 
in CKD.86 Given the only moderate effect of glucose 
control on macrovascular events, hemoglobin A1c tar-
gets should be individualized, and side effects such as 
hypoglycemia should be avoided, in particular in CKD, 
because hypoglycemic episodes are associated with an 
increase in mortality in this group of patients. Data from 
large cardiovascular outcome trials with glucose-lower-
ing sodium-glucose cotransporter 2 (SGLT2) inhibitors 
or GLP-1 receptor agonists have shown a significant 
reduction in cardiovascular events in patients with type 
2 diabetes at high cardiovascular risk. Thus, various 
guidelines recommend treatment with these agents in 
CKD and non-CKD patients with CVD or multiple car-
diovascular risk factors.

The effect of lipid-lowering strategies on CV risk re-
duction in CKD seems to be dependent on the severity 
of CKD. As such, the SHARP study (Study of Heart and 
Renal Protection)87 examined the effect of simvastatin 
20 mg/d versus simvastatin 20 mg/d plus ezetimibe in 
9438 patients with advanced chronic kidney disease 
without a history of myocardial infarction or coronary 
revascularization and found a significant 17% relative 

Figure 6. Independent association of kidney 
function with cardiovascular mortality.
ACR, albumin-to-creatinine ratio; and eGFR, 
estimated glomerular filtration rate. Adapted 
and modified from Gansevoort et al.30
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reduction of the primary end point of cardiovascular 
death, nonfatal myocardial infarction, nonfatal stroke, 
or coronary revascularization.88 In contrast, both the 
4D study (Deutsche Diabetes Dialysis Study)89 and the 
AURORA study (A Study to Evaluate the Use of Rosuv-
astatin in Subjects on Regular Hemodialysis: An Assess-
ment of Survival and Cardiovascular Events) failed to 
show a significant reduction of cardiovascular death, 
nonfatal MI, and nonfatal stroke by atorvastatin or ro-
suvastatin, respectively, versus placebo in patients with 
hemodialysis.90 These data suggest that the cardiovas-
cular benefit of lipid-lowering therapies is attenuated in 
subjects with low glomerular filtration rate and limited/
absent in patients with end-stage renal disease on he-
modialysis.91

In patients with coronary artery disease without 
CKD, antiplatelet therapy is well established to reduce 
cardiovascular risk, but in CKD, the prognostic benefit 
is less clear. Moreover, these drugs increase the risk of 
bleeding events in patients with CKD, possibly out-
weighing the potential benefit.92

The ISCHEMIA-CKD trial (International Study of 
Comparative Health Effectiveness with Medical and 
Invasive Approaches-Chronic Kidney Disease) assessed 
an invasive or conservative care approach in patients 
with stable CAD and CKD. A total of 777 patients with 
advanced kidney disease and moderate or severe isch-
emia on stress testing were randomly assigned to initial 
invasive strategy consisting of coronary angiography 
and revascularization (if appropriate) added to medi-
cal therapy or an initial conservative strategy consist-
ing of medical therapy alone and angiography reserved 
for those in whom medical therapy had failed. After 
a median follow-up of 2.2 years, there was difference 
for the primary composite end point of death or non-
fatal myocardial infarction between groups. However, 
the invasive strategy was associated with a significantly 
higher incidence of stroke than the conservative strat-
egy and with a higher incidence of death or initiation of 
dialysis.93 In addition, groups did not differ with respect 
to angina-related health status.94

Interestingly, a large registry study in patients with 
acute myocardial infarction showed that patients with 
CKD were less likely to receive statins, β-blockers, and 
antiplatelet therapy compared with those without CKD, 
suggesting that patients with CKD still receive fewer 
evidence-based therapies, which may as well contribute 
to substantially higher mortality rates.95

Treatment of Patients With HF and CKD
Current therapeutic options in patients with HF are 
largely on the basis of cardiovascular outcome trials, 
which assessed the effect of both medical and inter-
ventional therapy to reduce morbidity and mortality. 
However, patients with CKD have been excluded in 

most clinical HF studies, and recommendations for pa-
tients with CKD have to be extrapolated from subgroup 
analyses. There is to date no treatment option avail-
able that convincingly reduced morbidity and mortality 
in patients with HF and preserved EF (left ventricular EF 
≥50%) or moderately impaired left-ventricular function 
(left ventricular EF 40%–49%) in CKD.

However, at the stage of symptomatically reduced 
EF (HFrEF; left ventricular EF <40%), therapy with 
angiotensin-converting enzyme (ACE) inhibitors and 
β-blockers is recommended as first-line therapy. ACE 
inhibitors have been shown to reduce morbidity and 
mortality in numerous large randomized trials. A clear 
benefit of ACE inhibitors in patients with CKD stage 
1 to 3 has been suggested, but few data are available 
in patients with advanced CKD stages. In the Swedish 
Cardiac Insufficiency Registry, a total of 2410 patients 
with HFrEF and CKD (serum creatinine 2.5 mg/dL or 
creatinine clearance <30 mL/min) with or without RAS 
inhibitor were studied.96 Propensity score matching was 
used to compare 602 patients with and without angio-
tensin1-receptor blockers or ACE inhibitors. In patients 
with RAS inhibition, total mortality was significantly 
lower at 1 year compared with patients without RAS 
inhibition (hazard ratio, 0.76 [95% CI, 0.67–0.86]).96

On the basis of large randomized studies showing 
a reduction in total mortality, β-blockers are also rec-
ommended as first-line therapy in parallel to renin-an-
giotensin-aldosterone inhibitors to counteract sudden 
cardiac death and progression of HF in patients with 
HFrEF.97–99 A meta-analysis of intervention studies with 
β-blockers in patients with CKD stage 3 to 5 clearly 
demonstrated that these patients benefit from this 
therapy,100 suggesting that β-blockers are equally effec-
tive in patients with CKD as in non-CKD patients. Re-
cent data underline the benefits of a β-blocker therapy 
in patients with CKD  (CKD stages 3–4) with HF, left 
ventricular EF <50%, and sinus rhythm.101 If patients 
with HFrEF are still symptomatic despite treatment with 
ACE inhibitors and β-blockers, and if the left ventricular 
EF is ≤35%, administration of mineralocorticoid recep-
tor antagonists (MRAs) is indicated, but with particular 
caution in patients with advanced CKD. Spironolactone 
and eplerenone improved the prognosis of patients with 
HFrEF, and this therapy is effective in patients with HF 
and CKD stages 1 to 3.102 In the DOHAS study (Dialysis 
Outcomes Heart Failure Aldactone Study), 309 patients 
with CKD stage 5D were randomized to either 25 mg 
spironolactone per day or to standard of care only.103 
Compared with the control group, the combined prima-
ry end point of mortality and cardio- or cerebrovascular 
hospitalization was significantly reduced in the spirono-
lactone group (hazard ratio, 0.40 [95% CI, 0.20–0.81]). 
However, cardiovascular efficacy and safety of spirono-
lactone are still uncertain in CKD stage 5. In recent pla-
cebo-controlled trials, spironolactone appeared safe in 
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carefully monitored maintenance CKD stage 5 patient 
cohorts but it did not affect cardiovascular parameters 
like diastolic function104 or left ventricular mass, ambu-
latory blood pressure, left ventricular EF, 6-minute walk 
test distance, or New York Heart Association class.105 
Because spironolactone increased the frequency of 
moderate—albeit not severe—hyperkalemia in patients 
with CKD stage 4 to 5,104,105 MRAs formally are still con-
traindicated in advanced CKD. The ongoing ALCHE-
MIST trial (ALdosterone Antagonist Chronic HEModi-
alysis Interventional Survival Trial) examines the effect 
of aldosterone on cardiovascular outcome (including 
HF) in chronic hemodialysis patients. Novel therapeutic 
strategies with potassium binders may provide an ad-
ditional option for patients with hyperkalemia.

Diuretics are indicated at New York Heart Associa-
tion II stage with fluid retention, and generally in New 
York Heart Association stage III to IV patients, to re-
duce the risk of decompensation, but no data demon-
strating a prognostic benefit of diuretics on mortality 
are available.

If patients on combination therapy with ACE inhibi-
tors (or angiotensin1-receptor blockers), β-blockers, 
and MRAs continue to be symptomatic and the ACE 
inhibitor (or angiotensin1-receptor blocker) was well 
tolerated, the administration of an angiotensin recep-
tor/neprilysin inhibitor is recommended. Neprilysin 
inhibitors, such as sacubitril, a relatively new class of 
drugs, inhibit the enzyme neprilysin, thus prolonging 
the half-life of vasoactive peptides such as BNP (B-type 
natriuretic peptide); sacubitril is given in combination 
with valsartan. For this substance, LCZ 696 (sacubitril 
and valsartan), a reduction in overall mortality, cardio-
vascular mortality, and hospitalization compared with 
enalapril was demonstrated, and this effect was also 
seen in patients with CKD stages 3 to 5.106 Thus, an-
giotensin receptor/neprilysin inhibitors seem effective in 
patients with HF and CKD.

Therapy with the channel inhibitor ivabradine may 
be considered once maximally tolerated β-blocker ther-
apy is in place. The evidence for this recommendation 
is derived from the SHIFT trial  (Systolic Heart Failure 
Treatment with the I[f] Inhibitor Ivabradine Trial), which 
showed a significant reduction in the combined pri-
mary end point of cardiovascular mortality or heat fail-
ure hospitalization compared with placebo in patients 
treated with ivabradine.107 The incidence of the primary 
end point was similar in both patients with (CKD stages 
3–5) and without CKD.108

Prevention of Sudden Cardiac Death and 
Arrhythmias in CKD
More than two-thirds of mortality in advanced CKD 
stages are a result of sudden cardiac death109,110 (Fig-
ure 6). Sudden cardiac death refers to the unexpected 

natural death from a cardiac cause within 1 hour after 
onset of symptoms in a person who has no lethal un-
derlying disease. Sudden cardiac death is mainly caused 
by ventricular arrhythmias.111,112 The rate of sudden 
cardiac death is 59 deaths in 1000 patient-years in the 
CKD stage 5D population, whereas it is 1 death in 1000 
patient-years in the general population.113

Patients with CKD not only show an increased risk 
of sudden cardiac death but also have clear differences 
from the general population in terms of the patho-
physiology and cause of sudden cardiac death. In the 
general population, >80% of sudden cardiac deaths 
are associated with coronary heart disease.114 Despite 
the fact that patients with CKD stage 5D have a high 
incidence of coronary heart disease, the rate of sud-
den cardiac death is disproportionately high compared 
with the incidence of coronary heart disease in these 
patients (Figure 7). Moreover, even a complete revas-
cularization can only partially reduce the risk of sudden 
cardiac death in patients with CKD.116 According to the 
current state of knowledge, components of the myo-
cardium, the blood vessels, and the blood as a whole 
add up to the high risk in these patients. In addition, 
dialysis itself is a risk factor for sudden cardiac death, 
with the highest risk of sudden cardiac death within 
the first 12 hours after dialysis and after a long dialysis-
free interval. Potential mechanisms include volume and 
sudden electrolyte shifts after dialysis as well as volume 
overload and electrolyte disturbance.117 Accordingly, 
patients with peritoneal dialysis seem to exhibit a low-
er risk for sudden cardiac death. To date, noninvasive 
strategies such as assessment of heart rate variability, 
late potentials, QT dispersion, or wave alternans failed 
to adequately predict sudden cardiac death risk in pa-
tients with dialysis.118

Compared with drug therapies (eg, antiarrhythmic 
agents), implantable cardioverter-defibrillators (ICDs) lead 
to a significant reduction in mortality in cardiovascular pa-
tients as primary and secondary prevention, but patients 
with CKD were again mostly excluded in these studies. 
A meta-analysis of the effectiveness and importance of 
implantation of ICDs showed that ICD patients with CKD 
exhibit an increased mortality, and therefore the value of 
ICD implantation in this group has been questioned.119

Despite the small number of dialysis patients in 
clinical studies, current guidelines also recommend 
primary prophylactic ICD implantation if the EF is 
≤35%. To what extent dialysis patients with an EF 
>35% have an increased risk of arrhythmia and may 
benefit from primary prophylactic ICD implantation is 
also currently unclear.

Therapy of Valve Disease in CKD
Guideline recommendations for patients with CKD 
do not differ much from patients without CKD in 
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approaches to treat valve disease.81 In-hospital mortality 
can rise up to 21% in patients with CKD stage 5.120 CKD 
is a predictor for acute kidney injury and death after 
valve surgery.121 Therefore, the Society of Thoracic Sur-
geons Score, EuroSCORE-II  (European System for Car-
diac Operative Risk Evaluation), or logistic EuroSCORE 
have incorporated kidney function as 1 parameter.81 In 
patients with low perioperative risk (EuroSCORE-II <4% 
or logEuroSCORE <10%), surgical aortic valve replace-
ment is recommended.

Transcatheter aortic valve implantation is recom-
mended as a safe and effective treatment option in pa-
tients <75 years old at elevated operative risk (Society 
of Thoracic Surgeons Score >4%). Recent data suggest 
that in patients at low risk, the all-cause mortality after 
24 months decreases by 12% and stroke incidence by 
19% compared with surgical aortic valve replacement, 
which was independent of the preoperative risk be-
fore the intervention.122 Recently published prospective 
randomized trials comparing transcatheter aortic valve 
implantation and surgical aortic valve replacement in 
patients without CKD showed a superiority of interven-
tional valve treatment compared with operative valve 
treatment.123,124 However, impaired kidney function af-
fects mortality and risk for dialysis after transcatheter 
aortic valve implantation.125 Long-term risk for death 
and need for introduction of kidney replacement ther-
apy were increased by 51% and 56%, respectively.126 
Nevertheless, acute kidney injury after transcatheter 
aortic valve implantation (7%) was less prevalent than 
surgical aortic valve replacement (12%).127

Surgical treatment of mitral valve incompetence with 
valve reconstruction is superior to valve replacement.81 
Recently, reconstruction of mitral valves in functional 

mitral incompetence with the MitraClip system has 
shown superior results128 with a reduction of hospital-
ization caused by cardiac decompensation in 2 years 
(hazard ratio, 0.54; P<0.001) and extensive reduction 
of all-cause death129 compared with optimal medical 
treatment. CKD is associated with adverse outcomes in 
mitral valve interventions. In patients with CKD stage 
1 to 2, mortality was 13%; at CKD stage 3, 19%; and 
CKD stage 4 to 5, 33%.130 There was a slight improve-
ment of kidney function by 4.8 mL/min/1.73 m2 in CKD 
stage 4 to 5127 after valve replacement, indicating that 
valve improvement and improvement in myocardial 
performance might impact kidney function. This im-
provement was associated with decreased therapy cost 
and in-hospital treatment duration.127

Because valve disease is a common comorbidity in 
patients with CKD, after echocardiographic evaluation, 
the decision to treat valve disease with surgery or inter-
vention should be on the basis of the temporary guide-
lines of the American Heart Association, American 
College of Cardiology, and European Society of Cardi-
ology. In general, the degree of CKD is associated with 
increased adverse outcomes risk after interventions and 
surgery as well as bearing an enhanced intermediate 
and long-term risk, in particular in patients >75 years of 
age. In the latter group, aortic valve transfemoral aortic 
valve implantation should be considered the superior 
method to be used.

NOVEL THERAPEUTIC APPROACHES
Although CKD is one of the most common comorbidi-
ties in CVD, few specific treatment options are available 
for the high-risk population of patients with advanced 

Figure 7. Cause-specific mortality according 
to varying levels of kidney dysfunction.
For the 3 categories of kidney dysfunction, 
cause-specific mortality is depicted. Sudden 
cardiac death was the major cause of death in 
patients with end-stage renal disease (ESRD) on 
dialysis (50.0% vs 10.1% [glomerular filtration 
rate {GFR} <60 mL/min] vs 10.3% [GFR ≥60 mL/
min], χ2 P=0.010). Number at the top of each 
bar is the mortality rate; number within the 
bar is the n per group. The unknown category 
was reserved for those patients whose cause of 
death could not be determined. Adapted from 
Cheema et al.115 
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CKD.131 Finding a balance between the optimization of 
clinical outcomes in CKD and CVD still requires valida-
tion in large prospective, multicenter clinical studies. 
SGLT2 inhibitors, currently used to treat patients with 
type 2 diabetes, have shown unprecedented cardiovas-
cular as well as kidney protective effects. In cardiovas-
cular outcome studies such as EMPA REG OUTCOME 
([Empagliflozin] Cardiovascular Outcome Event Trial in 
Type 2 Diabetes Mellitus Patients) with empagliflozin in 
>7000 cardiovascular type 2 diabetic patients, the pri-
mary end point and cardiovascular mortality were sig-
nificantly reduced in the SGLT2 group.132 A positive ef-
fect on cardiovascular morbidity was also demonstrated 
in cardiovascular outcome studies with canagliflozin 
and dapagliflozin.133,134

In these studies, the secondary outcome of “HF-relat-
ed hospitalizations” was less frequent, suggesting a class 
effect of SGLT2 inhibitors. The use of canagliflozin (CAN-
VAS)133 and empagliflozin (EMPA REG OUTCOME),132 in 
patients with type 2 diabetes, both confirmed the reduc-
tion of albuminuria progression by 27% to 38% and the 
preservation of eGFR, even in advanced CKD stages. Re-
cently, CREDENCE became the first phase III study with 
an SGLT2 inhibitor in type 2 diabetic patients with CKD 
(n=4400) with a combined primary kidney end point135: 
within 2 and a half years, canagliflozin significantly re-
duced the risk of kidney replacement therapy, doubling 
serum creatinine and death caused by kidney insufficien-
cy by 33%. In addition, most recently, DAPA-CKD, a ded-
icated trial in patients with CKD (with or without type 
2 diabetes), was published. In this placebo-controlled 
trial, dapagliflozin led to a significant reduction in the 
primary composite end point of sustained ≥50% eGFR 
decline, renal or cardiovascular death, hospitalization for 
heart failure, as well as a reduction in all-cause mortality 
independent of the presence of diabetes.136 Initial find-
ings indicate that SGLT2 inhibitors improve kidney func-
tion by regulating kidney sodium reabsorption, the re-
sulting glomerular hyperfiltration, and hypertension. On 
the basis of the promising effects of SGLT2 inhibitors on 
HF-related end points, various cardiovascular outcomes 
trials directly assess the efficacy of these agents in HF 
populations. DAPA-HF  (Dapagliflozin in Patients with 
Heart Failure and Reduced Ejection Fraction)—the first 
study among them to reports results—examined the ef-
fect of dapagliflozin in HFrEF patients with or without 
diabetes enrolling patients with an eGFR down to 30 mL/
min/1.73 m2. Dapagliflozin significantly reduced HF hos-
pitalization, cardiovascular death, and all-cause mortality 
in patients with and without diabetes.137 In EMPEROR-
reduced  (Empagliflozin Outcome Trial in Patients With 
Chronic Heart Failure With Reduced Ejection Fraction), 
a trial enrolling HFrEF patients with or without diabe-
tes with an eGFR down to 20 mL/min/1.73 m2, empa-
gliflozin significantly reduced the composite end point of 
time to first event of adjudicated cardiovascular death or 

adjudicated hospitalization for heart failure.138 Potential 
mechanisms explaining the beneficial effects of SGLT2 
inhibitors in patients with HF or CKD include hemody-
namic as well as metabolic effects.139 In addition, SGLT2 
inhibitors may selectively reduce interstitial fluid, and this 
may limit the reflex neurohumoral stimulation that oc-
curs in response to intravascular volume contraction with 
traditional diuretics.140

MRAs reduce the aldosterone-mediated proinflam-
matory effects that are involved in the fibrotic remod-
eling processes. The new selective nonsteroidal MRA 
finerenone also blocks the damaging effects of the 
overactivated aldosterone system. In contrast with the 
MRAs spironolactone and eplerenone, finerenone is 
equally distributed in myocardial and kidney tissue. Fi-
nerenone binds to the same ligand domain but to dif-
ferent amino acids, leading to a different expression 
pattern of cardiac genes compared with spironolactone 
and eplerenone. Finerenone also reduced cardiac fibro-
sis and inflammation more than eplerenone in animal 
experiments at a comparable dose.

In the phase II ARTS trial (Arterial Revascularization 
Therapies Study)  with >450 patients with CKD and 
congestive HF, finerenone reduced the urinary albumin-
creatinine ratio and NT-proBNP (N-terminal pro-BNP) as 
potently as spironolactone with significantly lower rates 
of deteriorating kidney function and hyperkalemia.141 
Similarly, in phase IIb, with >800 patients with type 2 
diabetes, finerenone reduced albumin—creatinine ratio 
in urine by up to 38% and was well tolerated.142 The 
incidence of severe adverse events, including a 30% 
glomerular filtration rate decrease, was similar to pla-
cebo. Study cessation because of hyperkalemia was 
rare. In the phase III trials FIDELIO (Efficacy and Safety 
of Finerenone in Subjects With Type 2 Diabetes Mellitus 
and Diabetic Kidney Disease) and FIGARO (Finerenone 
in Reducing CV Mortality and Morbidity in Diabetic 
Kidney Disease), >13 000 type-2 diabetic patients with 
CKD are currently being tested to determine whether 
finerenone can reduce cardiovascular morbidity and 
mortality or prevent progression of kidney disease. The 
completion of the studies is expected in May 2020 (FI-
DELIO) and July 2021 (FIGARO), respectively.

CONCLUSIONS
Patients with CKD have high cardiovascular risk, with car-
diovascular death being the leading cause of death. Sev-
eral novel therapies to decrease the risk of cardiovascular 
diseases in CKD are in clinical development or have been 
already established, raising the hope that cardiovascular 
risk in patients with CKD may be modifiable in the fu-
ture. Still, the lack of data from large cardiovascular out-
come trials in the high-risk group of patients with CKD 
should be a call for action to ensure that novel therapeu-
tic options are assessed in dedicated trials in the CKD 
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population, in particular in those with advanced CKD, 
thus paving the way toward a more evidence-based ap-
proach to reduce cardiovascular risk in CKD.
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