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Deficits in the interpretation of others’ intentions from gaze-direction or other social

attention cues are well-recognized in ASD. Here we investigated whether an EEG brain

computer interface (BCI) can be used to train social cognition skills in ASD patients. We

performed a single-arm feasibility clinical trial and enrolled 15 participants (mean age 22y

2m) with high-functioning ASD (mean full-scale IQ 103). Participants were submitted to

a BCI training paradigm using a virtual reality interface over seven sessions spread over

4 months. The first four sessions occurred weekly, and the remainder monthly. In each

session, the subject was asked to identify objects of interest based on the gaze direction

of an avatar. Attentional responses were extracted from the EEG P300 component. A

final follow-up assessment was performed 6-months after the last session. To analyze

responses to joint attention cues participants were assessed pre and post intervention

and in the follow-up, using an ecologic “Joint-attention task.” We used eye-tracking to

identify the number of social attention items that a patient could accurately identify from

an avatar’s action cues (e.g., looking, pointing at). As secondary outcome measures

we used the Autism Treatment Evaluation Checklist (ATEC) and the Vineland Adaptive

Behavior Scale (VABS). Neuropsychological measures related to mood and depression

were also assessed. In sum, we observed a decrease in total ATEC and rated autism

symptoms (Sociability; Sensory/Cognitive Awareness; Health/Physical/Behavior); an

evident improvement in Adapted Behavior Composite and in the DLS subarea from

VABS; a decrease in Depression (fromPOMS) and inmood disturbance/depression (BDI).

BCI online performance and tolerance were stable along the intervention. Average P300

amplitude and alpha power were also preserved across sessions. We have demonstrated
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the feasibility of BCI in this kind of intervention in ASD. Participants engage successfully

and consistently in the task. Although the primary outcome (rate of automatic responses

to joint attention cues) did not show changes, most secondary neuropsychological

outcome measures showed improvement, yielding promise for a future efficacy trial.

(clinical-trial ID: NCT02445625—clinicaltrials.gov).

Keywords: autism, clinical trial, brain-computer interface, EEG, virtual reality, social attention

INTRODUCTION

Autism spectrum disorder (ASD) is a set of pervasive
and sustained neurodevelopmental conditions characterized by
persistent deficits in social communication and social interaction,
alongside restricted, repetitive patterns of behavior, interests,
or activities (American Psychiatric Association, 2013). This
condition has a significant economic and social impact due to
its high prevalence [estimated at ∼1.5% in developed countries
around the world (Baxter et al., 2015; Christensen et al., 2016;
Lyall et al., 2017) and ∼10 per 10,000 children in Portugal
(Oliveira et al., 2007)]. It is associated with high morbidity and
impact on daily family life (Karst and Van Hecke, 2012; Boshoff
et al., 2016; Harrop et al., 2016; Jones et al., 2016; Schlebusch et al.,
2016).

Joint attention (JA) is an early-developing social
communication skill defined by the non-verbal coordination
of attention of two individuals toward a third object or event
(Bakeman and Adamson, 1984). People with ASD show severe
deficits in JA abilities (Baron-Cohen, 1989; Baron-Cohen et al.,
1997; Swettenham et al., 1998; Leekam and Moore, 2001; Klin,
2002; Dawson et al., 2004) which plays a critical role in the
development of their social and language capabilities (Charman,
1998, 2003).

Electroencephalography (EEG) based brain-computer
interfaces (BCI), represent widely studied communication
technologies (Farwell and Donchin, 1988; Kleih et al., 2011; Mak
et al., 2011; Wolpaw andWolpaw, 2012). Virtual reality (VR) has
been increasingly used in neuro-rehabilitation, in particular of
motor control and has shown promising results (Larson et al.,
2011, 2014; Astrand et al., 2014; Tankus et al., 2014; Salisbury
et al., 2016). However, concerning cognitive applications in
the field of neuro-rehabilitation the use of combined VR and
BCIs has only been used with children with attention deficit
hyperactivity disorder (which includes the presence of frequent
inattentive, impulsive, and hyperactive behaviors; American
Psychiatric Association, 2013).

The review provided by Friedrich et al. (2014), grounded
on a series of neurofeedback training studies, postulates that
quantitative EEG-based neurofeedback training is viable as a
personalized therapeutic approach in ASD. They also suggest the
development of a game platform that includes social interactions
and specific feedback based on behavior, neurophysiological,
and/or peripheral physiological responses of the users. The
ultimate goal is to reinforce significant behaviors, such as
social interactions using neurobehavioral signals to promote

behavioral, cognitive, and emotional improvement in ASD
people. Along this line several studies do advocate (Wainer and
Ingersoll, 2011; Bekele et al., 2014; Georgescu et al., 2014) that the
use of ecological, realistic, and interactive virtual environments
may be the solution for the well-known generalization problem
of the rehabilitation of social skills in ASD subjects to real
life settings. Golan and Baron-Cohen (2006) suggested that
the use of computerized intervention in ASD individuals
enables the development of skills in a highly standardized,
predictable, and controlled environment, while simultaneously
allowing an individual to work at his own pace and ability
level.

Based on these suggestions, we propose a virtual reality
P300-based BCI paradigm (which technical implementation
is described in Amaral et al., 2017) that tries to couple
the advantages of ecological, realistic and interactive virtual
environments with the attention related nature of the P300 brain
waveform to create a cognitive training tool for ASD. The P300-
based paradigm that we present here consists on an immersive
environment were the subject must follow a non-verbal social
agent cue (head turn) and direct his/her attention to the target
object. The attentional mental state of the subject is monitored
through the detection of oddballs, which leads to a P300 signal
which allows giving feedback about his/her attentional focus.
The P300 signal is a well-known neural signature of attention
processes for detection of rare items in a stimulus series—oddball
paradigm—(for a review see Patel and Azzam, 2005; Polich,
2007; Duncan et al., 2009). We decided to couple the training
of joint attention skills to the P300 signal because the latter
is widely used in focused attention studies, and is related to
integration of information with context and memory (Halgren
et al., 1995). Moreover, with the automatic detection of P300
signals one can provide direct feedback about the participant’s
attentional focus. This provides information that the subject
can use to self-monitor his/her performance about where to
look and subsequently allow ASD subjects to adjust behavior.
Given the repetitive nature of this type of oddball paradigm,
and its operant learning properties, our motivation for the
construction of this paradigm is based on the hypothesis that
ASD subjects can assimilate joint attention skills by automating
the response to the social cue that is given during the task we
created. The current trial set out to assess the feasibility and
potential clinical effects of the use of this type of technology
in ASD and attempts to assess the use of neurophysiologic-
based rehabilitation tools for improving social behavior in
ASD.
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APPARATUS AND METHODS

This was a single-arm clinical feasibility trial study conducted in
Portugal.

Prior to subject recruitment, ethical approvals were obtained
from the Ethics Commission of the Faculty of Medicine of
the University of Coimbra (Comissão de Ética da Faculdade
de Medicina da Universidade de Coimbra), the INFARMED-
Autoridade Nacional do Medicamento e Produtos de Saúde,
I.P. (Portuguese Authority of Medicines and Health Products)
and CEIC—Comissão de Ética para a Investigação Clínica
(Portuguese Ethics Committee for Clinical Research).

This study and all the procedures were approved and was
conducted in accordance with the declaration of Helsinki.
All subjects agreed and signed a written informed consent
prior to screening procedures and recruitment (clinical-trial ID:
NCT02445625-clinicaltrials.gov).

This study and all the procedures were approved and was
conducted in accordance with the declaration of Helsinki.

All subjects agreed and signed a written informed consent
prior to screening procedures and recruitment (clinical-trial ID:
NCT02445625—clinicaltrials.gov).

Participants
Study included 15 adolescents and adults (mean age = 22
years and 2 months, ranging from 16 to 38 years old) with
high-functioning ASD (Full-Scale Intelligent Quotient [FSIQ]
(Wechsler, 2008): Mean= 102.53; SD= 11.64).

These participants met the inclusion criteria: positive
diagnostic results for ASD assigned on the basis of the gold
standard instruments: parental or caregiver interview—Autism

Diagnostic Interview-Revised (Le Couteur et al., 2003); direct
structured subject assessment—Autism Diagnostic Observation
Schedule (Lord and Rutter, 1999); and/or the current diagnostic
criteria for ASD according to the Diagnostic and Statistical
Manual of Mental Disorders, Fifth Edition (DSM-5) (American
Psychiatric Association, 2013).

All diagnostic and neuropsychological assessments were
performed by a psychologist (SM or IB) under the supervision
of a medical doctor—a neurodevelopmental pediatrician (GO)
in a face to face standardized situation in our clinical research
institute.

Participants were excluded if they had intellectual disability,
with a FSIQ inferior to 80 (Wechsler, 2008) and associated
medical conditions such as epilepsy, neurocutaneous, or other
genetic known syndromes, or other usual comorbidity in ASD
samples.

Intervention and Apparatus
The baseline visit was used to obtain consent and collect
baseline data. Collected baseline data included demographics,
medication, neuropsychological measures related to the
ASD diagnosis [ADI-R (Le Couteur et al., 2003); ADOS
(Lord and Rutter, 1999); and DSM-5 (American Psychiatric
Association, 2013) criteria] and intellectual ability (IQ measured
by WAIS-III; Wechsler, 2008) and the outcome measures
detailed below.

The intervention comprised seven BCI sessions spread over
4 months. The first four sessions weekly and the remaining
monthly. Adherence and compliance were evaluated using the
following definitions: Adherence was defined as attending all
seven BCI sessions. Compliance was assessed based on the

FIGURE 1 | Representation of the used scenarios. (A) Cafe scenario; (B) Classroom scenario; (C) Kiosk scenario; (D) Zebra crossing scenario.
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percent of subjects who have performed the scheduled number
of interventional sessions.

Participants outcome assessments were performed at baseline
(session 0), post-training (session 7), and follow-up (6 months
post-training).

The baseline visit was in the same day of the session 1. The
7 sessions included BCI intervention, before and after which the
participants were asked to complete a questionnaire about how
were they feeling in themoment—Profile ofMood States (POMS)
(McNair et al., 1992; Faro Viana et al., 2012).

The Primary outcome measure was a customized ecologic
“Joint-attention assessment task” (JAAT), assessing the detection
of initiation of joint attention cues (from avatars—gazing
or pointing cues). We recorded (using eye-tracking) the
number of items of social attention that a patient could
accurately identify from an avatar’s action cues (e.g., looking at,
pointing at).

JAAT consisted in four virtual scenarios. The scenarios were
as follows:

Cafe: interior of a cafe with a maid (avatar) inside the balcony.
The viewer’s position is in front of the balcony. Several common
objects in a cafe (packets of chips, several drinks, chewing gums,
bottles, and a lamp) are distributed the around the avatar’s
position. (Figure 1A);
Classroom: standing in front of a table with a professor (avatar)
and with a ruler, a book, a notebook, a protractor, a pencil, and
an eraser on top of the table (Figure 1B). The scenario also has
another tables and chairs;
Kiosk: standing in front of a street kiosk with the employee
inside and several newspapers and magazines scattered on the
kiosk, around the employee position (Figure 1C);
Zebra crossing: standing in one side of a street, waiting to cross
the zebra crossing, with one person on the other side. The other

side of the street has a traffic light, a traffic signal, a garbage can,
and a map in a bus stop (Figure 1D).

Participants were sat in an adjustable rotary office chair wearing
theOculus Rift DK 2 headset. Eyemovements were recordedwith
Eye Tracking HMD package from SMI embedded in the Oculus
Rift itself, with sampling rate of 60Hz, and accuracy of 0.5–1◦.
The scenes had a 360◦ perspective and a real-time fully immersive
experience. JAAT started with the eye-tracker calibration and
validation (5-point validation method built in-house). Next, the
presentation of each scenario was done. The order by each
scenario was presented was random. The task started with a 30 s
free-viewing period followed by a series of avatar animations
spaced by between 2 and 2.5 s. The animations were divided
in joint attention animations and control animations. The joint
attention animations comprise the head turning of the avatar or
pointing to one object of interest in the scene.

The animations were repeated two times in a random order
which gives a total of 18 joint attention animations in the café
scenario, 10 in classroom scenario, 16 in kiosk, and 10 joint
attention animations in zebra crossing scenario. The overall
joint attention events were 54, and control (no joint attention)
animations 32. Control animations included the avatar coughing,
rolling the head, scratching the head and yawning. Participants
were instructed to act naturally. They were not aware that their
eye movements were being recorded.

The number of items of social attention that a patient could
accurately identify from an avatar’s action cues were obtained by
defining areas of interest (AI) with 3D boxes. These AI overlap
with objects in the scenes that were relevant in the context. For
example, the drinks in the cafe, the notebook and the ruler in
the classroom, the magazines in the kiosk and the traffic lights
on the zebra crossing scenario. AI in each scenario are shown in
Figure 2.

FIGURE 2 | Areas of interest in each scenario of JAAT.
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The number of items of social attention were defined as
eye fixations inside the AI after the start of the joint attention
animation and until between 2 and 2.5 s. We assumed a fixation
duration as a fixation with more than 300ms (based on the
range of mean fixation duration in scene perception presented in
Rayner, 2009). Inside the JA responses we considered two types
of responses:

JAAT_No face—Fixation on the target object of the joint
attention animation after the animation starts.
JAAT_Face—Fixation on the target object of the joint attention
animation after the animation beginning that is preceded by a
fixation on the face of the avatar.

As secondary outcome measures we included the Autism
Treatment Evaluation Checklist (ATEC) (Rimland and
Edelson, 1999), specifically designed to measure treatment
effectiveness, and Vineland Adaptive Behavior Scales (VABS),
which focuses on adaptive functioning (Sparrow et al., 1984).
Other neuropsychological measures related to mood, anxiety
and depression were also assessed: Profile of Mood States
(POMS) (McNair et al., 1992; Faro Viana et al., 2012); Hospital
Anxiety & Depression Scale (HADS) (Zigmond and Snaith,
1983; Pais-Ribeiro et al., 2007) and Beck Depression Inventory
(BDI) (Beck, 1961; Vaz-Serra and Abreu, 1973; Beck and Steer,
1990).

FIGURE 3 | BCI apparatus overview. (Top) Person wearing Oculus Rift and g.Nautilus EEG system (part of the virtual reality P300-based BCI) and the observer’s

viewing window on the screen. (Bottom) Block design of the system. Informed consent was obtained from the individual for the publication of this image.
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The experimental apparatus used for the BCI interventions is
shown in Figure 3.

BCI sessions were carried out in a spacious and quiet room
with minimal electrical interference and participants were seated
in an adjustable office chair in front of a table.

The virtual reality P300-based BCI paradigm used comprises
an immersive virtual environment presented to the participants
via the Oculus Rift Development Kit 2 headset (from Oculus
VR) which participants wear in front of the eyes during the
intervention sessions. An EEG cap was also placed in participants

FIGURE 4 | Sequence of events of the trials in the BCI online phase.
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head. The cap had 16 active electrodes that do not require
abrasive skin treatment and with completely wireless signal
transmission (g.Nautilus from gTEC, Austria). The EEG data

TABLE 1 | Baseline demographic data.

n % or Mean (SD)

Age 15 22 years and 2 months (5 years and 6 months)

Gender 15 100% Male

Education 15 Junior Highschool (9 years) 6.67%

Incomplete Highschool (11 years)13.33%

Highschool (12 years) 66.67%

Bachelor 6.67%

Master 6.67%

TABLE 2 | Baseline outcome measures.

n Mean (SD) Data

completeness %

CORE OUTCOMES

ADIR_Social interaction 14 16.14 (4.56) 93

ADIR_Communication 14 12.14 (5.39) 93

ADIR _Repetitive and restricted

behavior

14 6.14 (2.41) 93

ADIR_Developmental delay 14 2.21 (1.89) 93

ADOS _Communication 15 3.20 (0.86) 100

ADOS_Social interaction 15 6.27 (1.34) 100

ADOS_Total 15 9.47 (1.92) 100

DSM_5 Criteria 15 5.73 (0.59) 100

WAIS-III (FSIQ) 15 102.53 (11.64) 100

WAIS-III (VIQ) 15 102.33 (16.63) 100

WAIS-III (PIQ) 15 102.47 (10.97) 100

HADS_Total 15 10.93 (5.78) 100

BDI_Total 15 9.13 (6.56) 100

POMS_Tension 15 6.40 (3.23) 100

POMS_Depression 15 7.53 (6.13) 100

POMS_Anger 15 4.00 (3.46) 100

POMS_Vigour 15 12.53 (6.80) 100

POMS_Fatigue 15 4.47 (3.96) 100

POMS_Confusion 15 6.80 (2.68) 100

POMS_Total 15 116.67 (18.54) 100

STUDY SPECIFIC OUTCOMES

JAAT_NoFace 15 16.33 (9.36) 100

JAAT_Face 15 10.67 (9.35) 100

ATEC_SPEECH/LANGUAGE/

COMMUNICATION

15 4.07 (1.82) 100

ATEC_SOCIABILITY 15 12.64 (6.20) 100

ATEC_SENSORY/COGNITIVE

AWARENESS

15 9.50 (5.13) 100

ATEC_HEALTH/PHYSICAL/BEHAVIOR 15 9.36 (6.25) 100

ATEC_Total 15 35.57 (12.53) 100

VABS_COM_S1 15 68.27 (21.53) 100

VABS_DLS_S1 15 77.53 (14.05) 100

VABS_SOC_S1 15 65.80 (16.79) 100

VABS_ABC_S1 15 65.73 (15.56) 100

were acquired from 8 electrodes positions (C3, Cz, C4, CPz,
P3, Pz, P4, POz), the reference was placed at the right ear and
the ground electrode was placed at AFz. Sampling rate was set
at 250Hz. EEG data were acquired notch filtered at 50Hz and
passband filtered between 2 and 30Hz.

The virtual environment consists in a bedroom with common
type of furniture (shelves, a bed, a table, a chair, and a dresser)
and objects (frames, books, lights, a printer, a radio, a ball, a door,
a window, and a laptop). The BCI task was divided in 3 phases.
The first two were part of the calibration process of the BCI, and
the last one the online phase. In the first phase the participants
were directly and explicitly instructed to attend the target object
in order to remove potential errors identifying the target object
related with social attention deficits present in ASD. In the second
phase the participants were asked about which object was chosen
by the avatar (after avatar’s animation) to guarantee the user
learned to read the social joint attention cue of the avatar and
use this information correctly. In the third phase the participants
were asked to respond to the head cue of the avatar in the center
of the scene, looking to the object of interest. In all the three
phases of BCI, after the redirection of attention of participant in
each trial, they were asked to mentally count the blinks of the
object of interest. Each trial consisted in 10 sequential runs, and
each such run consisted of flashing all the 8 objects in the scene
(green flashes) in a randomized order: 1. a wooden plane hanging
from the ceiling; 2. a printer on a shelf; 3. a corkboard on the wall;
4. a laptop on a table; 5. a ball on the ground; 6. a radio on top of a
dresser; 7. a picture on the wall; 8. books on a shelf. The highlight
(flash) of each object occurred with an inter-stimulus interval of
200ms. Each flash had the duration of 100ms. This gives a total of
80 flashes per trial. Participants performed a total of 70 trials (10
in the first phase, 10 in the second, and 50 in the online phase).

The data recorded from the first 20 calibration trials stores
the P300 responses that occurs when the object of interest
flashed, and statistical classifiers are used to identify this response.
These classifiers are then used in the online phase to identify
whether participants were counting the flashes of avatar’s object
of interest. If it was done properly by the participant the BCI gave
a positive feedback (object of interest turns green at the end of the
trial). If not, the object turned red. This mechanism is shown in
Figure 4. The overall functioning of BCI is explained in detail in
Amaral et al. (2017), where we tested the best setup to use in this
BCI and also performed pilot tests in ASD participants.

TABLE 3 | Primary outcome—feasibility.

% (n/n)

Recruitment/Consent 100

Retention (primary end point) 100

Retention (secondary end point) 100

Intervention uptake 100

Adherence/Completion 100

Compliance 100

Intervention delivery 100

Acceptability 100
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Statistical Analysis
Our initial sample size was calculated using the G∗Power
tool (Faul et al., 2007). Based in other effects described in
the literature, the effect size considered is 0.8 (the mean
difference is 0.8 standard deviations). In these conditions,

for power of 0.8 the estimated sample size is 15. Without
the normality assumption of the distribution of the means
differences, we would also need 15 subjects, considering
a non-parametric test. However, these calculations were
used only as a guide for sample size and in keeping with

TABLE 4 | Outcomes (for complete baseline and primary follow-up dataset).

Baseline/Session 1 Primary follow-up time point

(Session 7—post intervention)

Mean difference and 95% CI

n Mean (SD) n Mean (SD) Mean difference 95% CI

CORE OUTCOMES

HADS_Total 15 10.93 (5.78) 15 9.13 (4.22) 1.80 (−0.40, 4.00)

BDI_Total 15 9.13 (6.56) 15 6.67 (5.25) 2.47 (0.38, 4.56)

POMS_Tension 15 6.40 (3.23) 15 5.20 (5.51) 1.20 (−2.06, 4.46)

POMS_Depression 15 7.53 (6.13) 15 3.80 (5.20) 3.73 (0.49, 6.97)

POMS_Anger 15 4.00 (3.46) 15 2.93 (6.12) 1.07 (−2.47, 4.60)

POMS_Vigour 15 12.53 (6.80) 15 12.87 (7.97) −0.33 (−3.67, 3.00)

POMS_Fatigue 15 4.47 (3.96) 15 4.67 (5.92) −0.20 (−3.20, 2.80)

POMS_Confusion 15 6.80 (2.68) 15 6.07 (3.60) 0.73 (−1.26, 2.72)

POMS_Total 15 116.67 (18.54) 15 109.80 (25.77) 6.87 (−7.20, 20.93)

STUDY SPECIFIC OUTCOMES

JAAT_NoFace 15 16.33 (9.36) 15 13.73 (8.19) 2.60 (−2.20, 7.40)

JAAT_Face 15 10.67 (9.35) 15 7.80 (8.77) 2.87 (−0.07, 5.80)

ATEC_SPEECH/LANGUAGE/COMMUNICATION 15 4.07 (1.82) 15 2.93 (1.64) 1.07 (−0.23, 2.37)

ATEC_SOCIABILITY 15 12.64 (6.20) 15 8.50 (5.30) 4.33 (2.32, 6.35)

ATEC_SENSORY/COGNITIVE AWARENESS 15 9.50 (5.13) 15 6.14 (4.93) 3.47 (0.90, 6.03)

ATEC_HEALTH/PHYSICAL/BEHAVIOR 15 9.36 (6.25) 15 6.57 (5.39) 2.80 (0.65, 4.95)

ATEC_Total 15 35.57 (12.53) 15 24.29 (12.90) 11.53 (5.33, 17.74)

VABS_COM 15 68.27 (21.53) 15 71.33 (21.62) −3.07 (−8.37, 2.24)

VABS_DLS 15 77.53 (14.05) 15 81.60 (14.46) −4.07 (−6.40, −1.73)

VABS_SOC 15 65.80 (16.79) 15 67.67 (16.18) −1.87 (−4.44, 0.70)

VABS_ABC 15 65.73 (15.56) 15 69.00 (15.20) −3.27 (−5.48, −1.06)

TABLE 5 | Outcomes for complete baseline and secondary follow-up dataset.

Baseline Secondary follow-up time

point (post intervention)

Mean difference and 95% CI

n Mean (SD) n Mean (SD) Mean difference 95% CI

STUDY SPECIFIC OUTCOMES

JAAT_NoFace 15 16.33 (9.36) 15 15.00 (10.02) 1.33 (−4.47, 7.14)

JAAT_Face 15 10.67 (9.35) 15 7.53 (8.11) 3.13 (−2.00, 8.27)

ATEC_SPEECH/LANGUAGE/COMMUNICATION 15 4.07 (1.82) 14 1.79 (1.42) 2.29 (0.94, 3.63)

ATEC_SOCIABILITY 15 12.64 (6.20) 14 6.57 (5.14) 6.07 (3.23, 8.91)

ATEC_SENSORY/COGNITIVE AWARENESS 15 9.50 (5.13) 14 5.21 (4.28) 4.29 (1.31, 7.26)

ATEC_HEALTH/PHYSICAL/BEHAVIOR 15 9.36 (6.25) 14 4.86 (4.35) 4.50 (2.65, 6.35)

ATEC_Total 15 35.57 (12.53) 14 18.43 (11.77) 17.14 (10.38, 23.91)

VABS_COM 15 68.27 (21.53) 14 73.14 (17.29) −7.36 (−12.53, −2.18)

VABS_DLS 15 77.53 (14.05) 14 86.29 (14.02) −10.14 (−12.58, −7.71)

VABS_SOC 15 65.80 (16.79) 14 71.14 (16.11) −6.79 (−10.13, −3.44)

VABS_ABC 15 65.73 (15.56) 14 72.00 (13.65) −8.21 (−10.66, −5.77)
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the feasibility design no explicit hypothesis testing was
used.

The specific aim of the study was to assess the feasibility and
effects of the use of virtual reality P300-based BCI paradigm in
ASD. Based on this aforementioned aim, 95% confidence interval
for differences in means are presented.

The assumptions of the statistical techniques used were
validated. All statistical analysis was realized with the support of
the version forMicrosoftWindows R© of the Statistical Package for
Social Sciences, version 19 (SPSS R©, Chicago, IL, USA).

Brain Computer Interface Evaluation of Signal

Stability
We tested the stability across the seven sessions of three
parameters: the BCI’s balanced accuracy (see definition below)
of target object detection, the average P300 maximum amplitude
across trials and the mean alpha power variation in the band
[8 12] Hz per trial. For the latter two, a cluster of the 8
channels was formed. For each subject, a linear regression was
computed using the value of each parameter across sessions.
The first order coefficient of the linear regressed model was
extracted, and its distribution was tested against the hypothesis
that its median value was equal to zero, using a Wilcoxon
signed rank test. Graphical illustration of the stability of measures
across sessions is provided. The tests were performed in Matlab
2014a.

RESULTS

Demographic data are provided in Table 1. Fifteen adolescents
and adults (mean age = 22 years and 2 months, ranging
from 16 to 38 years old) with high-functioning ASD (Full-
Scale Intelligent Quotient [FSIQ] (Wechsler, 2008): Mean =

102.53; SD = 11.64) participated in the study between February
2016 and January 2017. Five patients were medicated (three

FIGURE 5 | Balanced accuracy of target object detection on online phase

across sessions.

with a neuroleptic, one with a psychostimulant and another
with an antidepressant). We recruited 17 patients, because of
two dropouts, which meets the target sample size. Dropouts
were due to an eye abnormality in one patient, not reported
during the recruitment, and a misdiagnosis of ASD in another
patient.

Table 2 depicts the basic statistics related to core baseline and
study specific outcome measures.

Concerning measures of feasibility, they are reported in
Table 3.

Although an effect was not found for our primary measure of
choice (JAAT), most secondary measures demonstrated a change
(Table 4).

Table 4 shows the analysis of the clinical outcomes for
complete baseline and primary follow-up. The analysis revealed
no noticeable change in the total number of social attention
items that a patient can accurately identify from avatar’s action
cues (JAAT_NoFace and JAAT_Face). On the other hand, there
was variation in total ATEC scores, as well as in Sociability,
Sensory/Cognitive Awareness, and Health/Physical/Behavior.
Significant effects in Adapted Behavior Composite and in DLS
(total and a subarea from VABS) were also observed. The
depression subscale from POMS scores (POMS_Depression)
showed a difference between the baseline and the primary
follow-up time point. The mood disturbance/depression (BDI)
scale also showed a change after the intervention.

In sum, we observed a 32% average decrease
in total ATEC, rated autism symptoms (34% in
Sociability; 37% in Sensory/Cognitive Awareness; 29% in
Health/Physical/Behavior); 5% average improvement in Adapted
Behavior Composite and 5% in DLS, subarea from VABS; 50%
average decrease in Depression subscale from POMS and 27%
average decrease in mood disturbance/depression (BDI).

Table 5 shows the analysis of the clinical outcomes
for complete baseline and secondary follow-up.
JAAT_NoFace and JAAT_Face scores also revealed

FIGURE 6 | Average P300 maximum amplitude across sessions.
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no differences between baseline and the secondary
follow-up time point. There were positive effects in all
subscales (Speech/Language/Communication, Sociability,
Sensory/Cognitive Awareness, and Health/Physical/Behavior)
from ATEC and in ATEC total scores. There were also changes
in Adapted Behavior Composite and in all subareas from VABS
(COM, DLS, SOC).

No serious adverse events were reported.

Brain Computer Interface Evaluation of
Signal Stability
We analyzed whether the signal quality and performance of our
brain computer interface remained stable across intervention
sessions. Figure 5 shows across session balanced accuracy of our
online classifier.

The unbalanced nature of the data set (the non-target objects
flashes are 8 times more than the target ones, because of the
different occurrence probability) makes the balanced accuracy
the more reliable metric for assessing the classifier performance
(Brodersen et al., 2010). Balanced accuracy is calculated following
the formula: (Specificity + Sensitivity)/2. This value did not vary
greatly across sessions. Although the overall trend decreased
very slightly from session 1 to 7, our system retained stable
performance across visits.

Concerning the P300 signal, which is pivotal for decoding
attention related information, it also remained stable across
sessions, as shown in Figure 6. Average P300 maximum
amplitude was calculated averaging the maximum amplitude
values (between 250 and 500ms after the flashes onset) of the
averaged event-related potentials of the target object flashes in
the third phase of BCI (online).

In Figure 7 it is possible to observe the P300 waveform across
sessions.

Accordingly, P300 maximum amplitude did not vary and was
statistical verified, demonstrating the presence of stable attention
related signals across visits. Stability of neurophysiological
patterns was further examined by investigating changes in alpha
modulation (Figure 8), and remained around similar levels
across sessions.

DISCUSSION

In this study we assessed a virtual reality P300-based BCI
paradigm in ASD. Our device coupled an interactive virtual
environment with the attention signature of the P300 brain
waveform, featuring a cognitive training tool for ASD.
Participants had to follow a non-verbal social agent cue. As
a cautionary note, the fact that a P300 signal can be detected with

FIGURE 7 | Grand-average of event-related potentials in each BCI session of Cz channel.
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FIGURE 8 | Average alpha power across sessions.

high accuracy does not necessarily imply that the stimulus is
suitable and well tolerated. Nevertheless, the current trial proved
the feasibility and potentially useful clinical effects of the use of
this type of technology in ASD.

Although the main goal of the study was not to test efficacy
measures, some relevant effects were observed, even in spite
of the fact that our eye-tracking based assessment tool did not
show a change in the total number of social attention items
that a patient can accurately identify from avatar’s action cues
(JAAT_NoFace and JAAT_Face, only a small non-significant
trend is visible possibly due to familiarity).

However, in the primary follow-up time point, there was an
effect on total ATEC scores, which translates to a decrease in
the severity of autism symptoms (specifically the ones related to
Sociability and Sensory/Cognitive Awareness) as wells as the ones
reported as more general symptoms (Health/Physical/Behavior).
Effects in Adapted Behavior Composite and in DLS (subareas
from VABS) were observed. The daily living skills (DLS) are one
of the most compromised areas in ASD and an improvement in
this area translates in a better integration in the daily routines,
and improved self-sufficiency.

In the secondary follow-up time point, analysis replicated the
maintenance of positive changes observed at the in the primary
follow-up time point, which is noteworthy, because a decay of
effects did not occur, and significance was still present.

JAAT_NoFace and JAAT_Face scores did not alter between
baseline and the secondary follow-up time point.

There were positive effects in all subscales from ATEC and in
ATEC total scores. There were also changes in Adapted Behavior
Composite and in all subareas from VABS.

Our study suggests a long term beneficial effect in patient’s
mood/mental state. This effect cannot at this stage be causally
attributed to specific mechanisms related the intervention, but
gives a good insight about the structure of the intervention, the
compliance and reliability of the measures used, which show long
term significant effects.

Strengths and Limitations
As strengths, we can list the high compliance, low/null dropout
rates, and signal to noise stability and decoding accuracy of our
BCI system across all seven sessions. Moreover, and in spite of
the fact that our custom primary outcome measure failed to
show improvement, most secondary clinical outcome measures
(ATEC and VABS) suggested improvement. This improvement
was maintained in the 6-months follow-up assessment, which
reinforces the potential utility of these kind of interventions and
the validity of this measures.

As limitations, we note the customized nature of our chosen
primary outcomemeasure, which had no prior clinical validation,
unlike the secondary measures. Moreover, in spite of the
relatively realistic nature of our VR environment it can further
be improved to train in a more effective way social attention
skills.

Implications for Practice and Research
Given the very low rate of dropouts and the good classification
accuracy over sessions, with stable neurophysiological signals,
the system proves to be feasible as a tool in future efficacy
trials. Given that several of the secondary clinical outcome
measures showed improvement, we propose to use one of
them (ATEC, VABS) or a combination of scores as the
primary outcome measure in a future Phase 2 b clinical
trial.
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