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Abstract: Recurrent, metastatic disease represents the most frequent cause of death for patients
with thyroid cancer, and radioactive iodine (RAI) remains a mainstay of therapy for these patients.
Unfortunately, many thyroid cancer patients have tumors that no longer trap iodine, and hence are
refractory to RAI, heralding a poor prognosis. RAI-refractory (RAI-R) cancer cells result from the loss
of thyroid differentiation features, such as iodide uptake and organification. This loss of differentiation
features correlates with the degree of mitogen-activated protein kinase (MAPK) activation, which
is higher in tumors with BRAF (B-Raf proto-oncogene) mutations than in those with RTK (receptor
tyrosine kinase) or RAS (rat sarcoma) mutations. Hence, inhibition of the mitogen-activated protein
kinase kinase-1 and -2 (MEK-1 and -2) downstream of RAF (rapidly accelerated fibrosarcoma) could
sensitize RAI refractivity in thyroid cancer. However, a significant hurdle is the development of
secondary tumor resistance (escape mechanisms) to these drugs through upregulation of tyrosine
kinase receptors or another alternative signaling pathway. The sodium iodide symporter (NIS) is
a plasma membrane glycoprotein, a member of solute carrier family 5A (SLC5A5), located on the
basolateral surfaces of the thyroid follicular epithelial cells, which mediates active iodide transport
into thyroid follicular cells. The mechanisms responsible for NIS loss of function in RAI-R thyroid
cancer remains unclear. In a study of patients with recurrent thyroid cancer, expression levels
of specific ribosomal machinery—namely PIGU (phosphatidylinositol glycan anchor biosynthesis
class U), a subunit of the GPI (glycosylphosphatidylinositol transamidase complex—correlated with
RAI avidity in radioiodine scanning, NIS levels, and biochemical response to RAI treatment. Here,
we review the proposed mechanisms for RAI refractivity and the management of RAI-refractive
metastatic, recurrent thyroid cancer. We also describe novel targeted systemic agents that are in use or
under investigation for RAI-refractory disease, their mechanisms of action, and their adverse events.

Keywords: radioactive iodine-refractory; differentiated thyroid cancer; papillary thyroid cancer;
tyrosine kinase inhibitor; sodium/iodide symporter; braf

1. Introduction

Radioactive iodine I-131 (RAI) is a cornerstone in the routine adjuvant management in patients
with high-risk differentiated thyroid cancer (DTC) [1]; however, 5% to 15% of DTC and 50% of
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metastatic DTCs are refractory to RAI treatment [2–4]. Patients with RAI-refractory (RAI-R) thyroid
cancer have poor outcomes, with 5-year disease-specific survival rates of 60% to 70% [5]. Those with
RAI-R metastatic thyroid cancer have the worst outcomes, with a 10-year survival rate of 10% [6].
Hence, resensitizing RAI-R tumors to RAI can potentially improve survival for patients with DTC.

With recent advances and developments in understanding of the oncogenic pathways involved in
the development of thyroid cancers and the molecular basis of RAI refractoriness, targeted therapies are
being developed and are showing promising results [7–10]. Here, we review the molecular mechanisms
underlying RAI refractoriness, describe targeted therapies that may overcome these mechanisms, and
explore promising therapeutic regimens to improve outcomes in RAI-R thyroid cancers.

2. Definition of RAI-R Tumors

A major obstacle to standardizing the approach to RAI-R tumors is the lack of a consistent
definition for RAI-R. The following definitions for RAI-R tumors are used in the literature [11–13]:

i. Absence of RAI uptake at initial diagnosis of locoregional recurrence or distant metastasis;
ii. Absence or progressive loss of radioiodine uptake in the post-therapy scan several days after

RAI therapy;
iii. Presence of more than 1 metastatic lesion with at least one lesion without RAI uptake in the

post-therapy scan;
iv. Structural progression of tumors 12 to 16 months after RAI therapy despite the presence of iodine

uptake in the post-therapy scan;
v. Tumors in patients who have received 600 millicurie (mCi)/22.2 gigabecquerel (GBq) or more of

RAI cumulatively without signs of remission;
vi Significant uptake on 2-deoxy-2-[fluorine-18] fluoro-D-glucose positron emission tomography

integrated with computed tomography (F-18 FDG PET/CT).

None of the above criterion alone portends that a tumor is RAI-R, rather it predicts the likelihood
that a tumor will be RAI-refractory and should be used together for risk stratification of the tumors in
assessing for refractoriness. It is important for the RAI uptake scan to be standardized and an optimal
approach is required for patient preparation and choice of imaging modality [14].

Aggressive or poorly differentiated tumors on histology or tumors exhibiting aggressive genetic
profiles (such as BRAF and telomerase reverse transcriptase (TERT) promoter mutation) can also be
included for risk stratification of patients [15].

3. Molecular Mechanisms Driving Primary RAI Refractoriness

RAI refractoriness most frequently develops in the context of loss of thyroid differentiation
features. One hallmark of dedifferentiation is impairment of Na/I symporter (NIS) function [16,17].
NIS is a plasma membrane glycoprotein, a member of solute carrier family 5A (SLC5A5), located on the
basolateral surface of the thyroid follicular epithelial cells. NIS mediates active iodide transport into
thyroid follicular cells, and in the normal thyroid cells, Thyroid stimulating hormone (TSH) stimulates
NIS expression via the cyclic adenosine monophosphate (cAMP) pathway, binding to the NIS promoter
via paired box 8 (PAX8) [18]. The ability of follicular cells to concentrate iodine is exploited in thyroid
cancer therapy; RAI enters the cells via NIS and emits beta particles that destroy the follicular cell [16,19].
In a subset of DTCs, impaired targeting to the plasma membrane or impaired intracellular retention of
NIS results in NIS loss, producing RAI resistance [20]. Figure 1 summarizes the transcriptional and
translational pathways involved in regulation of NIS expression. By deconvoluting the mechanisms
involved in NIS downregulation or loss of function in thyroid cancer, it is possible to identify targets
that could potentially overcome RAI refractoriness in thyroid cancers [17,20].
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Figure 1. Redifferentiation of thyroid cancer. MAPK (mitogen-activated protein kinase) 
(RAS/RAF/MEK) and PI3K/AKT/mTOR are key signaling pathways in thyroid cancer pathogenesis. 
Signaling cascades can be blocked by new targeted therapies. The crosstalk between MAPK and PI3K 
through RAS is shown and represents a tumor escape mechanism from known multi-kinase inhibitors 
and selective inhibitors of BRAF. PI3K-AKT pathway activation leads to suppression of NIS 
(sodium/iodide symporter) glycosylation and surface translocation. The inhibition of mTOR 
promotes redifferentiation of thyroid cancer cells by upregulation of NIS mRNA and protein 
expression through increased transcription of TTF1. Another important positive regulator of NIS 
expression is PTEN. TSH (thyroid stimulating hormone) signals through the heterotrimeric G-protein 
complex, and through activation of cAMP increases transcription of the NIS gene. Aberrant activation 
of the MAPK signaling pathway inhibits PIGU expression and NIS basolateral transport. PTTG1 and 
PBF overexpression results in decreased NIS levels in thyroid cancer. 

Genetic and epigenetic alterations in the RTK/BRAF/MAPK/ERK and PI3K-AKT-mTOR 
pathways by acquired point mutations, chromosomal rearrangement, or aberrant gene methylation 
underly the diminished NIS signaling central to RAI refractoriness [21–23]. The most well-defined 
example of a point mutation aberrantly activating these signaling pathways is the activating hotspot 
BRAFV600E mutation. BRAFV600E represents the most frequent genetic aberration in thyroid cancers, 

Figure 1. Redifferentiation of thyroid cancer. MAPK (mitogen-activated protein kinase) (RAS/RAF/MEK)
and PI3K/AKT/mTOR are key signaling pathways in thyroid cancer pathogenesis. Signaling cascades
can be blocked by new targeted therapies. The crosstalk between MAPK and PI3K through RAS is shown
and represents a tumor escape mechanism from known multi-kinase inhibitors and selective inhibitors
of BRAF. PI3K-AKT pathway activation leads to suppression of NIS (sodium/iodide symporter)
glycosylation and surface translocation. The inhibition of mTOR promotes redifferentiation of thyroid
cancer cells by upregulation of NIS mRNA and protein expression through increased transcription
of TTF1. Another important positive regulator of NIS expression is PTEN. TSH (thyroid stimulating
hormone) signals through the heterotrimeric G-protein complex, and through activation of cAMP
increases transcription of the NIS gene. Aberrant activation of the MAPK signaling pathway inhibits
PIGU expression and NIS basolateral transport. PTTG1 and PBF overexpression results in decreased
NIS levels in thyroid cancer.

Genetic and epigenetic alterations in the RTK/BRAF/MAPK/ERK and PI3K-AKT-mTOR pathways
by acquired point mutations, chromosomal rearrangement, or aberrant gene methylation underly the
diminished NIS signaling central to RAI refractoriness [21–23]. The most well-defined example of a
point mutation aberrantly activating these signaling pathways is the activating hotspot BRAFV600E

mutation. BRAFV600E represents the most frequent genetic aberration in thyroid cancers, occurring in
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nearly 50% of DTCs. BRAFV600E mutations both inversely correlate with NIS expression and directly
correlate with dedifferentiation, recurrence, and metastasis [24,25]. BRAF activation has been found to
repress NIS expression via two defined pathways. First, BRAF activates TGFβ (Transforming growth
factor β)/Smad3 signaling, which directly impairs the ability of the thyroid-specific transcription factor
PAX8 (paired box gene 8) to bind the NIS promoter in follicular cells [26]. Second, BRAF epigenetically
regulates NIS by driving histone deacetylation of the H3 and H4 lysine residues of the NIS promoter,
directly preventing its transcription [27].

4. Management of RAI-R Thyroid Cancers

4.1. Monitoring and Watchful Waiting

RAI-R metastatic DTCs can be asymptomatic for several years [28]. Active surveillance and
watchful waiting with TSH suppression can be employed in patients with asymptomatic disease,
low tumor burden or tumor size less than 1 cm, and minimally progressive tumors [12,13,29,30].
Presence of small (<8 mm) and asymptomatic metastatic lymph nodes after RAI therapy with previous
neck compartmental dissection and small (<1 cm) metastatic pulmonary nodules can be followed up
for years with neck ultrasonography and axial imaging for the pulmonary nodules. Other imaging
modalities, such as F-18 FDG PET/CT, and thyroglobulin levels in TSH-suppressed patients can also
be used to assess disease progression [12,13,31–33]; these are used in conjunction with axial imaging
when growth of lesions is suspected [34].

4.2. Local Therapy

In locoregional relapse, surgery is still the most commonly used therapeutic approach, with
therapeutic compartmental central or lateral neck dissection to spare uninvolved vital structures,
or a more limited surgery in cases of prior comprehensive neck dissection [12,13]. External-beam
radiation therapy (EBRT) is commonly used alone or in combination with surgery in bone and central
nervous system (CNS) metastasis of thyroid cancers [35,36]. Some studies have demonstrated benefit
in locoregional control and good prognosis with surgery combined with EBRT in doses of 40 to
50 Gy in patients 45 years and older [37]. Limited outcome data are available on other locoregional
therapies, such as radiofrequency ablation, and ethanol ablation or embolization [13]. It is of note that
symptomatic patients with metastatic lung nodules or bone lesions are usually considered for local
therapies before systemic therapies [38].

4.3. Targeted Therapies Using Tyrosine Kinase Inhibitors

Targeted treatments for thyroid cancer have been increasingly developed over the last decade
along with increasing knowledge about the disease’s underlying molecular alterations. Most agents that
were tested in phase II and III trials were developed for treatment of advanced RAI-R thyroid cancer.

Cellular dedifferentiation in thyroid cancers causes tumor progression in the form of more
aggressive growth, metastasis, loss of iodide uptake, or unresponsiveness to RAI therapy, and correlates
with the degree of MAPK activation. Tyrosine kinases are involved in the MAPK signaling pathway
through phosphorylation/dephosphorylation of several intracellular proteins, which underlies the
rationale for the use of tyrosine kinase inhibitors (TKIs) in the treatment of thyroid cancer [21,39].

TKIs have been shown to significantly improve progression-free survival rates in advanced RAI-R
DTCs. Overall survival has been difficult to document in these trials, likely because patients cross
over to the drug arm once disease progression is documented in the control group [9,10]. An overall
survival benefit was observed with the use of lenvatinib in selected patients > 65 years of age with
RAI-R DTCs [40]. Two TKIs, lenvatinib and sorafenib, are currently used for the treatment of RAI-R
DTC (Table 1), and two others, vandetanib (NCT01876784) and cabozantinib (NCT03690388), are under
investigation in phase III trials for patients with progressive RAI-R DTCs and advanced RAI-R DTCs
unresponsive to previous VEGFR therapy, respectively [41,42].
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Table 1. Completed Phase III Clinical Trials of Agents Approved for the Treatment of Differentiated
Thyroid Cancer by the U.S. Food and Drug Administration [9,10].

Parameters DECISION Trial: Sorafenib SELECT Trial: Lenvatinib

Drug targets
Specific target: RAF

Other targets: VEGFR, c-Kit, RET,
PDGFR, FLT3

Specific target: FGFR
Other targets: VEGFR, c-Kit, RET, PDGFR,

RET-KIF5B, CCDC6-RET, NcoA4-RET rearrangement

Patient population N = 417, randomized 1:1
dose: 800 mg daily

N = 392, randomized 2:1
dose: 24 mg daily

Median progression-free
survival (months) 10.8 vs. 5.8 (p < 0.0001) 18.3 vs. 3.6 (p < 0.001)

Complete response 0% vs. 0% 1.5% vs. 0%

Partial response 12.2% vs. 0.5% 63.2% vs. 1.5%

Stable disease > 23 weeks 41.8% vs. 33.2% 15.3% vs. 29.8%

Grade 3 and 4 adverse effects Overall: 37.2% vs. 26.3% Overall: 75.9% vs. 9.9%

Hand-foot syndrome: 20.3% Hypertension: 42%

Hypertension: 9.7% Proteinuria: 10%

Hypocalcemia: 5.8% Thromboembolic effects: 6.5%
(arterial vs. venous: 2.7% vs. 3.8%)

Weight loss: 5.8% Acute Renal failure: 1.9%

Diarrhea, fatigue: 5.3% QT prolongation: 1.5%

Rash/desquamation: 4.8% Hepatic failure: 0.4%

Shortness of breath: 4.8%

Dose reduction 64.3% 67%

Treatment discontinuation 19% 14%

Although TKIs have revolutionized the field of targeted therapy in RAI-R DTC patients,
these agents are usually administered lifelong, and several drawbacks were associated with their
long-term application. TKIs’ adverse effect profiles have a great impact on quality of life and should be
taken into consideration by the clinician prior to treatment initiation. Also, a resistance to the treatment,
also called “escape”, can develop; hence, access and adherence to close monitoring with a continuous
assessment of adverse effects and the patient’s quality of life should be considered in the decision to
start the therapy [43]. In clinical settings with no preselection of patients, lenvatinib has been shown to
be useful in the management of RAI-R DTCs with implementation of good and specified management
protocols for toxicities and adverse events [44,45].

Potential targets are also transcriptional factors such as vascular endothelial growth factor (VEGF).
In response to intratumoral hypoxia, hypoxia inducible factor-1 alpha (HIF-1α) is activated and induces
VEGF transcription together with co-stimulation by growth factor signaling pathways, such as the
PI3K/AKT and MAPK pathways [46,47]. VEGF is a promoter of angiogenesis and is an attractive
target for therapy. Another target for HIF-1α is the MET oncogene, which is overexpressed in thyroid
cancers, especially medullary thyroid cancer (MTC), thereby promoting angiogenesis, cellular motility,
invasion, and metastasis [48,49].

4.4. Tumoral Escape Mechanisms from Targeted Therapies

As discussed above, thyroid cancers often become RAI-R by co-opting RAF and RAS signaling,
thereby repressing NIS and RAI uptake. Although targeted therapies such as BRAF inhibitors have
shown some success in resensitizing tumors to RAI, these tumors often escape RAI sensitivity via
aberrations in complementary pathways. In patients with documented response to targeted therapies,
after several months, the tumor escapes (i.e., it ceases to respond and starts growing again). Several
hypotheses and suggested mechanisms have been proposed to explain such escape, most of which
involve overactivation of alternative pathways to overcome the drug’s effect [50,51].



Cancers 2019, 11, 1382 6 of 15

Combining adjuvant therapies with TKIs has the potential to eliminate or delay the escape effect (i.e.,
resistance) and result in longer progression-free survival. Numerous genetic and signal transduction
alterations have been observed in RAI-R or advanced papillary thyroid cancer (PTC) [15,21,23], and
simultaneous targeting of these alterations might allow more durable tumor control when combined
with current TKIs.

One unique mechanism by which thyroid cancer drives RAI resistance may be via upregulation
of the human epidermal receptor (HER) family of receptor tyrosine kinases, which is present in more
than one-third of thyroid cancers and is positively correlated with local tumor invasiveness [52]. HER2
and HER3 are key players upstream of extracellular signal-regulated kinase (ERK) and AKT, and HER2
and HER3 activate these signaling pathways. Interestingly, overexpression of HER2 and HER3 may
provide a mechanism of RAI-R tumor escape for BRAF mutant cells treated with the BRAF inhibitor
vemurafenib [53]. Therefore, the addition of the HER2 inhibitor trastuzumab to vemurafenib treatment
may enable patients with RAI-R tumors to overcome the escape phenomenon and experience a more
durable effect from the targeted therapy [54].

Anaplastic lymphoma kinase (ALK) is a recently identified kinase with the potential to contribute
to aggressive disease in non-small-cell lung cancers. This kinase can undergo rearrangements—the
most common is EML4-ALK fusion with echinoderm microtubule–associated protein-like 4 (EML4)
gene—that were described in a subset of patients, who tend to be younger with more aggressive
disease [55]. ALK fusion proteins are known to activate various signaling pathways, such as the
PI3K/AKT pathway and the MAPK pathways [56,57], and aberrant activation of these ALK fusion
proteins promotes proliferation and survival in cancer cells [58]. ALK fusion has been demonstrated
in medullary thyroid cancer and anaplastic carcinoma [59]. In RAI-R DTC, EML4-ALK fusion and
several other ALK translocations were identified by whole genome sequencing [60]. A study of the
translocation profile of ALK in DTC found ALK translocations in 11 of 498 papillary thyroid cancers
(PTCs) (2.2%) and 3 of 23 diffuse sclerosing variant PTCs (13%). Combining specific ALK inhibitors
such as crizotinib with standard adjuvant therapies might offer durable response in patients with
ALK-positive tumors [61].

Alterations in the PI3K/AKT/mTOR cascade are well documented in thyroid cancer tumorigenesis
(Figure 1). The inhibition of mTOR promotes redifferentiation of thyroid cancer cells by upregulating
NIS mRNA and protein expression, resulting in elevated iodine uptake through increased transcription
at the level of thyroid transcription factor-1 (TTF1), which indicates TTF1 dependence for NIS
expression [62,63]. There is an inverse relationship between platelet-derived growth factor
receptor-alpha (PDGFR-α) activation and transcriptional activity of TTF1, with PDGFR-α blockade
restoring NIS expression [64]. Another important positive regulator of NIS expression is PTEN, which
is suppressed by oncogenic miR-21; antisense-miR-21 increases NIS expression [65]. Some clinical
trials have evaluated the mTOR inhibitor everolimus and the combination of sorafenib and the mTOR
inhibitor temsirolimus in the treatment of RAI-R thyroid cancer. However, these studies were not
designed to evaluate the change in RAI uptake or the effectiveness of combined RAI therapy with the
drugs [66,67]. Further clinical trials are needed to elucidate the role of mTOR inhibition in inducing
radioiodine avidity.

Downstream mechanisms in the signaling pathways involved in RAI refractoriness affect the
posttranslational modifications or shuttling of the transcribed NIS. Pituitary tumor transforming
gene 1 (PTTG1) and PTTG-1 binding factor overexpression in thyroid cancers results in decreased
NIS levels [68], likely through its retention in clathrin-coated vesicles or by repressing NIS mRNA
transcription [69]. PI3K-AKT pathway activation in thyroid carcinoma leads to suppression of
NIS glycosylation and surface translocation [70]. In a novel mechanism recently described by our
group, decreased expression of ribosomal machinery subunits (i.e., phosphatidylinositol glycan anchor
biosynthesis class U) resulted in improper NIS post-translational processing and deregulated trafficking
of the protein to the plasma membrane, resulting in increased RAI refractoriness in thyroid cancer
cells [71].
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4.5. Other Systemic Therapies

Phase II trials of the efficacy of various chemotherapy agents for recurrent and metastatic DTC
have been reported; in these, doxorubicin was the most frequently used agent [72]. No consensus has
been reached for the use of a specific cytotoxic regimen in RAI-R disease, and clinical trials of cytotoxic
chemotherapy, in addition to TKIs and other targeted therapies, are needed in patients with RAI-R
disease [1].

4.6. Targeted Therapies and Tumor Immune Microenvironment in RAI-R Thyroid Cancer

Characterizing the immune landscape following TKI treatment in various tumor types, including
thyroid cancer, has demonstrated dynamic alterations in the tumor immune microenvironment [73,74].
Using a TKI that targets the Vascular endothelial growth factor-A/Vascular Endothelial Growth Factor
Receptor (VEGF-A/VEGFR) axis affects regulatory T cell percentages and seems to increase PD-1
(Programmed cell death protein 1) expression, which leads to inhibition of cytotoxic T cells [73]. Immune
profiling of BRAF-V600E-positive DTC revealed high levels of PD-L1 (Programmed death-ligand 1)
(53% vs. 12.5%) and human leukocyte antigen G (41% vs. 12.5%) compared with BRAF wild-type
tumors. Furthermore, BRAF-V600E-positive tumors had a high level of suppressive T cell and
macrophage components [74]. These results show the inhibitory effects of the aberrant tyrosine kinases
on the immune system, indicating the potential of TKIs to reverse them, with the combination of TKIs
and immune checkpoint inhibitors seemingly an attractive regimen for patients with RAI-R DTC.

Ongoing trials are evaluating the role of TKIs in advanced RAI-R thyroid cancer, either alone
or in combination with immune checkpoint inhibitors or RAI therapy [75]. Sulfatinib is an oral TKI
targeting VEGFR, FGFR-1 (Fibroblast growth factor receptor 1), and CSF1R (colony-stimulating factor
1 receptor); therefore, it might play a dual antiangiogenic and immunomodulatory role. The early
results of NCT02614495, an open label, two-cohort, phase I and II trial of sulfatinib in RAI-R DTC,
were presented in 2017. In this trial, patients were assigned to sulfatinib. Partial responses were
confirmed in 3 of 12 patients with DTC; all others achieved stable disease [76]. An ongoing phase
IB/II trial (NCT02501096), is assessing the maximum tolerated dose of lenvatinib combined with the
PD-1 inhibitor pembrolizumab in patients with solid tumors, including thyroid cancer [77]. Another
ongoing trial, NCT01988896, is evaluating the PD-L1 inhibitor atezolizumab combined with the MAPK
inhibitor cobimetinib in patients with locally advanced or metastatic solid tumors [78].

4.7. Current Recommendations for Treatment of Symptomatic RAI-R Thyroid Cancer

Current American Thyroid Association (ATA) guidelines recommend high-risk metastatic
progressive (i.e., at least 20% increase in sum of longest diameter of lesions) RAI-R-DTCs not amenable
to conventional therapies be considered for TKIs in specialized centers. Since immunotherapies and
re-sensitization therapies are currently in the phase of clinical trials, the ATA recommends admittance
into these trials if RAI-R DTCs are progressive after use of approved TKIs, such as lenvatinib or
sorafenib. Molecular characterization of these lesions can help to identify and select the appropriate
clinical trials. The ATA endorses the use of EBRT or radiofrequency ablation or cryoablation over
surgery for symptomatic distant metastatic lesions or lesions with high risk of local complications prior
to initiation of TKIs. It also advocates their use for single or multiple progressive lesions while on TKIs
or other novel therapies [1].

5. Current and Future Perspectives with NIS Restoration in RAI-R Thyroid Cancer
Redifferentiation

Novel therapies with single kinase inhibitors have been shown to re-induce iodide uptake in RAI-R
thyroid cancer cells. The MEK 1/2 inhibitor selumetinib was found to reverse refractoriness to RAI in
patients with advanced or metastatic DTC [8]. Rothenberg et al. reported that dabrafenib, a selective
inhibitor of mutant BRAF, resulted in iodide re-uptake in patients with BRAF-V600E-positive RAI-R
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PTCs [79]. Sabra et al. showed that RAI therapy was ineffective against metastatic, RAS-mutated,
RAI-avid FTC, but pretreatment with an MAPK inhibitor improved responsiveness to RAI therapy [39].
A major advantage of this treatment with a single kinase inhibitor is its shorter treatment duration
(45 days) compared with long-term administration in TKIs; thus, associated adverse effects and the
development of resistance are minimized [13,80].

BRAF inhibitors (e.g., dabrafenib) and MEK inhibitors (e.g., selumetinib) activate PI3K and
MAP-K pathways by inducing HER3 gene expression. The HER3 inhibitor lapatinib prevents
this MAPK rebound and sensitizes BRAF-V600E-positive thyroid cancer cells to RAF or MAP/ERK
inhibitors [53]. Use of a HER inhibitor in combination with a BRAF/MEK inhibitor increased sensitivity
of BRAF-V600E-positive PTC to a BRAF/MEK inhibitor by preventing MAPK rebound and increased
NIS expression [81]. These findings show that HER3 signaling is accompanied by an increase in ERK
in the MAPK pathway and is a possible target for treating RAI-R thyroid cancer. Currently, a phase I
study (NCT01947023) is evaluating combination therapy with dabrafenib and lapatinib in patients
with BRAF mutated RAI-R DTC [82].

ERK rebound could be inactivated in a sustained manner with the use of a MEK inhibitor and by
thwarting RAF reactivation in BRAF-mutated thyroid cancer, resulting in restoration of RAI uptake
through increased NIS expression [83]. This concept is currently being evaluated in a phase II clinical
trial (NCT03244956) using combination of Trametinib (MEK inhibitor) and Dabrafenib (BRAF inhibitor)
in RAI-R DTC patients with two independent arms of RAS and BRAFV600E mutations [84].

6. Conclusions

Efficacy and toxicity should be considered in the choice of agents to treat RAI-R thyroid cancer.
These agents include axitinib, cabozantinib, pazopanib, sorafenib, sunitinib, and vandetanib, including
the selective BRAF inhibitors vemurafenib and dabrafenib (Table 2).

Table 2. Phase I and II Trials of Multi-Kinase Inhibitors for RAI-R Thyroid Cancers.

Drug Drug Targets Phase Type of Thyroid Cancer
Response Rate

(Complete or Partial
Response)

Median Progression
Free Survival

(Months)

Axitinib
(Locati et al. [85])

VEGFR, PDGFR,
c-Kit II Advanced DTC, MTC 35% 16.1

Axitinib
(Cohen et al. [86])

VEGFR, PDGFR,
c-Kit II Advanced and RAI-R

DTC, MTC and ATC 30% 18.1

Motesanib
(Sherman et al. [87])

VEGFR, PDGFR,
c-Kit II RAI-R DTC 14% 9.3

Sunitinib
(Carr et al. [88])

PDGFR. FLT3,
c-Kit, VEGFR, RET II RAI-R DTC and MTC 31% 12.8

Pazopanib
(Bible et al. [89])

VEGFR, PDGFR,
c-Kit II RAI-R DTC 49% 11.7

Dovitinib
(Lim et al. [90]) FGFR, VEGFR II Metastatic DTC and

MTC 20.5% 5.4

Selumetinib
(Hayes et al. [91])

MEK-1/2 (one of
MAPK), RAS,

BRAF
II RAI-R DTC 3% 8

Cabozantinib
(Cabanillas et al. [92]) VEGFR, RET, MET I Advanced DTC 53% NR

Cabozantinib
(Cabanillas et al. [93]) VEGFR, RET, MET II RAI-R DTC 40% 12.7

Cabozantinib
(Brose et al. [94]) VEGFR, RET, MET II RAI-R DTC,

Advanced DTC 54% NR

Sorafenib
(Schneider et al. [95])

VEGFR, PDGFR,
BRAF II RAI-R DTC 31% 18

Vandetanib
(Leuboulleux et al. [96])

VEGFR, EGFR,
RET II RAI-R DTC 8.3% 11.1

Dabrafenib
(Falchook et al. [97]) BRAF I BRAF-positive advanced

thyroid cancer 29% 11.3

Vemurafenib
(Brose et al. [98]) BRAF II BRAF-positive RAI-R

PTC 35% 15.6

Abbreviations: ATC, anaplastic thyroid cancer; DTC, differentiated thyroid cancer; MTC, medullary thyroid cancer;
PTC, papillary thyroid cancer; RAI-R, radioiodine-refractory.
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RAF and MEK inhibitors have shown promise in the redifferentiation of RAI-R DTC; verification
of these results could improve treatment options for patients with RAI-R DTC. New targeted agents,
immune checkpoint inhibitors, and combinations of agents for redifferentiation show promise and
could improve the efficacy of RAI therapy for patients with RAI-R thyroid cancer.

Funding: This research received no external funding.

Acknowledgments: We would like to thank Bryan Tutt in Scientific Publications Services, Research Medical
Library, for the editorial support.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

RTK receptor tyrosine kinase
VEGFR vascular endothelial growth factor receptor
PDGFR platelet-derived growth factor receptor
RET rearranged during transfection
HER human epidermal growth factor receptor
PI3K phosphoinositide 3-kinase
PTEN phosphatase and tensin homolog
AKT protein kinase B
mTOR mechanistic target of rapamycin
RAS rat sarcoma
RAF rapidly accelerated fibrosarcoma
MAPK mitogen-activated protein kinase
ERK extracellular signal-regulated kinase
PAX8 paired box gene 8
TSH thyroid stimulating hormone
TSHR thyroid stimulating hormone receptor
PTTG1 pituitary tumor transforming gene 1
PBF PTTG1 binding factor
PIGU phosphatidylinositol glycan anchor biosynthesis class U
NIS Sodium/Iodide symporter
GPI glycosylphosphatidylinositol
PKA protein kinase A
cAMP cyclic adenosine monophosphate
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