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Abstract: Many studies have been undertaken to reveal how tobacco smoke skews immune responses
contributing to the development of chronic obstructive pulmonary disease (COPD) and other lung
diseases. Recently, environmental tobacco smoke (ETS) has been linked with asthma and allergic
diseases in children. This review presents the most actual knowledge on exact molecular mechanisms
responsible for the skewed inflammatory profile that aggravates inflammation, promotes infections,
induces tissue damage, and may promote the development of allergy in individuals exposed to ETS.
We demonstrate how the imbalance between oxidants and antioxidants resulting from exposure to
tobacco smoke leads to oxidative stress, increased mucosal inflammation, and increased expression of
inflammatory cytokines (such as interleukin (IL)-8, IL-6 and tumor necrosis factor α ([TNF]-α). Direct
cellular effects of ETS on epithelial cells results in increased permeability, mucus overproduction,
impaired mucociliary clearance, increased release of proinflammatory cytokines and chemokines,
enhanced recruitment of macrophages and neutrophils and disturbed lymphocyte balance towards
Th2. The plethora of presented phenomena fully justifies a restrictive policy aiming at limiting the
domestic and public exposure to ETS.
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1. Introduction

Despite many efforts to reduce its prevalence, approximately six million people worldwide
die due to tobacco use each year [1]. About 600,000 of them die from the effects of second-hand
smoke. Apart from contributing to the pathogenesis of chronic obstructive pulmonary disease
(COPD), hypertension, cardiovascular disease and cancer, cigarette smoking is a recognized risk
factor for many chronic systemic diseases with inflammatory components such as atherosclerosis,
Crohn’s disease, rheumatoid arthritis, psoriasis, Graves’ ophthalmopathy, and noninsulin-dependent
diabetes mellitus [2,3]. Furthermore, smokers show increased susceptibility towards microbial
infections (respiratory tract infections [RTI], bacterial meningitis and periodontitis) and poorer wound
healing [2–4]. For these reasons, the capacity of cigarette smoke (CS) to distort immune homeostasis
has gained much attention recently.

In particular, great steps have been taken in the recent years to understand how cigarette
smoke induces changes in the immune cell function in COPD patients. However, cigarette smoke
induced alternations in immune responses in children, the most vulnerable population, remain an
understudied area of focus. Current estimates are that 40–50% of all children across the world are
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exposed to second-hand smoke [5,6]. While cigarette smoke exposure (CSE) has been linked with an
increased prevalence of childhood allergic diseases, the exact molecular mechanisms behind a skewed
inflammatory profile that promote the development of allergy in smoke-exposed children are not
completely understood. This review will focus on the effects of cigarette smoke on innate and adaptive
immunity that can contribute to the development and exacerbation of allergic diseases in children.
Due to the relative paucity of research in this area, the majority of reviewed mechanisms are based on
the results of smoker and/or COPD patient studies and experimental models.

2. Exposure to Cigarette Smoke and Allergy

Several separate lines of evidence suggest a positive association between cigarette smoke exposure
and the development of allergy (Figure 1). In particular, exposure to parental smoking, both pre- and
post-natally, can contribute to allergic disorders later in life. Second-hand smoke (SHS) is a well-known
contributor to respiratory tract infections, otitis media, sudden infant death syndrome, as well as
behavioral and cognitive problems in children [7,8]. SHS exposure is associated with increased
incidence and severity of respiratory tract infections, such as respiratory syncytial virus (RSV) infection
in neonates or pneumonia in younger children [9]. While early RSV infection is an important risk
factor for recurrent wheezing or childhood asthma, SHS is estimated to contribute to 165,000 annual
deaths from pneumonia in children under the age of 5 years [6,10].
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Mechanistically, it appears plausible that exposure to tobacco smoke can skew immune
responses by impairing Th1-type and augmenting Th2-dependent responses, mainly by altering
the immune functions of a variety of immune cells and aggravating the allergic inflammation and
sensitization [3,11–19]. In line with this paradigm, Bozinovski et al. has recently demonstrated that
cigarette smoke exposure promotes the release of interleukin (IL)-17A, a proinflammatory cytokine
implicated in the pathogenesis of asthma, from nonconventional T-cell sources, such as natural killer
(NK), natural killer T-cells (NKT) and γδ T-cells [20].

A vast body of evidence supports the linkage between parental smoking and markers of atopy in
children, such as serum IgE level, eosinophilia, and positive skin-prick tests [21–23]. Of note, adult
active smokers were also shown to display elevated serum IgE level [24]. Although systematic review
from 1998 by Strachan and Cook on relationship between ETS exposure and allergic sensitization
did not provide conclusive evidence, our more recent report demonstrated a positive correlation
between exposure to cigarette smoke and increased levels of IgE concentrations and positive
skin prick sensitization in children [25,26]. Recently, cigarette smoke exposure was significantly
associated with IgE sensitization to cockroaches, grass pollen, and certain food allergens in children,
and dose-dependent relationships were suggested [27]. Furthermore, children of smoking parents
have been shown to have increased risk of wheeze, asthma, airways hyperresponsiveness, and allergic
rhinitis [28–32].

In particular, epidemiological data link smoking with the development and the severity of
asthma [33,34]. Active smoking worsens symptoms of asthma, precipitates decline in lung function and
impairs therapeutic response to corticosteroids [33,35–37]. Of note, early changes in the airways were
observed already in active smokers among adolescents with a short smoking history [38]. Concurrently,
ETS exposure early in life is related to reduced lung function, asthma in childhood, and adult-onset
asthma [39]. According to Burke et al., passive smoking increases the incidence of wheeze and asthma
in children by at least 20% [40]. Further to this, exposure to tobacco smoke in early childhood impairs
lung development, thus establishing an increased lifelong risk of poor lung health [41,42]. As in case
of other smoke-induced diseases, however, an individual susceptibility to develop impaired lung
function as a consequence of ETS exposure seems to have a non-negligible impact. Indeed, recently
published results of the first genome-wide gene-by-ETS interaction study underlie three pathways
through which exposure to cigarette smoke may potentially contribute to asthma development, namely
the apoptosis, p38, mitogen-activated protein kinase (MAPK) and TNF pathways. All of them have
been already implicated in impaired lung function in COPD [43].

Much ambiguity remains surrounding the association of cigarette smoke exposure and allergic
rhinitis. While passive cigarette smoke exposure was associated with increased nasal congestion
and current symptoms of rhinitis and rhinoconjunctivitis in children, other studies yielded counter
results [44–47]. In adults, smoking worsens the symptoms of allergic rhinitis and increases the
incidence of nasal polyposis in patients with perennial allergic rhinitis [48]. Cigarette smoke
exerts cytotoxic and both proinflammatory and anti-inflammatory effects on nasal epithelial cells
leading to increased reactive oxygen species (ROS) production, Toll-like receptor (TLR) 4 expression,
lipopolysaccharide (LPS) and IL-17A synthesis [49–51]. Subsequent changes in sinonasal composition
of immune cells include increased counts of neutrophils and monocyte-derived dendritic cells (DCs)
demonstrated in nasal epithelium exposed to CS as well as increased eotaxin-1 immunoreactive cells
and eosinophils observed in children and adolescents with perennial allergic rhinitis [50,52,53]. Priming
of monocyte-derived DCs may further contribute to the development of allergic disease, since this
subset of DCs has been shown to play a critical role in driving Th2 inflammation [54,55]. Furthermore,
cigarette smoke exposure increases a host susceptibility to pathogen infection through disrupting the
secretion of antimicrobial peptides already in nasal epithelium. Primary human nasal epithelial cells
exposed to cigarette smoke secreted less chemokine ligand (C-C motif) 20, SLPI, and β-defensin 1 [56].
Importantly, cigarette smoke exposure has been recently associated with blunted nasal host defense
against Streptococcus pneumonia, which facilitated invasive pneumococcal disease [57].
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Active and passive smoking are significantly associated with atopic dermatitis in children and
adults [58,59]. Moreover, SHS exposure in childhood has been shown to be associated with the
development of adult-onset atopic dermatitis [60]. A variety of chemicals present in cigarette smoke
enhances transepidermal water loss, upregulation of matrix metalloproteases (MMP) MMP-1 and
MMP-3 implicated in collagen and elastic fibers degradation which, together with induced oxidative
stress, contribute to the degeneration of connective tissue and premature aging in the skin [61].
Benzopyrene, a major polyaromatic hydrocarbon constituent of cigarette smoke, has been recently
shown to regulate Langerhans cell migration and Th2- and Th17-profile cytokine production during
epicutaneous sensitization response [62]. This Th2/Th17 polarization emphasizes the capacity of
cigarette smoke to promote the development of atopic dermatitis. Furthermore, cigarette smoke is
strongly associated with contact dermatitis [63]. It is attributable to the metal constituents of smoke
fume, which act as an adjuvant in immune response to allergens and stimulate sensitization [64].

Prenatal Exposure to Cigarette Smoke and Allergy

In utero tobacco exposure remains common, occurring in circa 1 in 10 pregnancies [65]. A number
of studies associates prenatal (maternal) smoking and ETS exposure in early childhood with decreased
lung function, increased susceptibility to upper and lower respiratory tract infections (common
cold, otitis media, bronchitis, pneumonia), sudden infant death syndrome, wheeze and asthma
(Figure 2) [4,66–70]. While maternal smoking in pregnancy increases the risk of wheeze and asthma,
according to recent meta-analyses it has no effect on the risk of allergic rhinitis, atopic dermatitis,
and food allergy in the offspring [71].
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Figure 2. Effects of cigarette smoke exposure during prenatal life and early childhood.

However, prenatal nicotine exposure was reported to alter normal lung development through
upregulation of nicotinic acetylcholine receptors (nAChRs) expressed in the lung and brain during
early fetal life [42]. In particular, increased expression of a7 receptors in airway bronchial, cartilage
and endothelial cells of fetal lung may potentially lead to enhanced differentiation of embryonic stem
cells into fibroblasts, impaired lung growth and alveolar development associated with decreased
lung function and lung hypoplasia in the offspring. This may, at least in part, explain why exposed
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neonates are at increased risk for reduced lung function, altered central and peripheral respiratory
chemoreception, and increased asthma symptoms throughout childhood.

Additionally, maternal smoking during pregnancy affects immune responses in the offspring.
Altered cytokine profile is detectable already in cord blood of neonates of smoking mothers,
with decreased IFN-γ and increased IgE and IL-13 levels underpinning the capacity of prenatal
cigarette smoke exposure to increase the risk of infections and to potentially induce a proclivity
for allergy in early life [72,73]. Furthermore, neonates of smoking mothers appear to display an
altered immune cells profile. Hinz et al. has proven that passive smoking during pregnancy
contributes to reduced Treg-cell numbers in cord blood, which may result in higher prevalence
of neonatal atopic dermatitis and food allergy [74]. Alternations in lymphocyte subsets in response
to cigarette smoke exposure in utero remains, however, a matter of debate. While maternal smoking
was shown to be associated with stronger neonatal lymphoproliferation, no significant differences
in lymphocyte subpopulations between newborns of smoking and nonsmoking mothers were
observed [75,76]. Nevertheless, in utero cigarette smoke exposure was correlated with impaired
Th1 responses to polyclonal stimulation and augmented Th2 differentiation along with enhanced
Th2-type cytokine production, a known contributors to allergic inflammation [73,77]. In animal
studies prenatal secondhand cigarette smoke exposure increased allergen-induced airway resistance,
activated the Th2-polarizing pathway, impaired mucociliary clearance and blunted Th1 responses in
the offspring [78]. This has implications for allergic risk, as impaired Th1 function in the perinatal
period has been associated with allergic risk in many studies [79,80]. Additionally, Th1/Th2 imbalance
may account for the observed increased risk of respiratory infections in children of smoking mothers.
Consistent with these observations are findings by Noakes et al., who demonstrated attenuated
cytokine responses following TLRs activation in infants of smoking mothers [81]. Since TLR activation
is crucial in Treg cells activation, which account for the suppression of Th2 immune responses, blunted
TLR-mediated responses could further contribute to increased allergic risk.

Although both prenatal and early postnatal exposures to cigarette smoke are recognized risk
factors for atopy and respiratory infections early in life, in utero exposure appears to carry a higher risk.
In a study conducted on allergic asthmatic mice it has been demonstrated that prenatal but not postnatal
exposure to tobacco smoke exacerbates airway reactivity, strongly upregulates allergen-induced Th2
cytokine expression, and increases total serum IgE levels [78]. Similarly, an increased risk of wheezing
among children within the Generation R cohort was sustained for longer time in those exposed
prenatally [82].

Once again, debilitating effects of prenatal tobacco smoke exposure are derivatives of exposure,
individual genetic susceptibility, and altered epigenetic mechanisms including histone acetylation,
expression of microRNA, and DNA methylation. Children with the glutathione S-transferase
GSTM1-null genotype born to smoking mothers have an increased risk of early-onset and persistent
asthma compared with children with protective GST genotype or those not exposed to tobacco
smoke during fetal life [83,84]. Intriguingly, smoke-related epigenome modifications appear to
have longitudinal consequences, as exemplified by grandmaternal effect on asthma risk observed
in Children’s Health Study in southern California [31]. Although this American case-control study
has demonstrated that grandmaternal smoking during the mother’s fetal period was associated with
increased asthma risk in grandchildren, more recent data from Avon Longitudinal Study of Parents
and Children failed to support this hypothesis. However, some evidence of an increase in asthma
risk with paternal prenatal exposure was noticed [85]. A better understanding of transgenerational
changes in lung development is warranted given its remote consequences.

To sum up, the relationship between cigarette smoking and asthma and other allergic disorders is
complex and still not completely elucidated. Therefore tobacco smoke-induced allergic sensitization
continues to be the subject of many investigations. Hopefully, tobacco control policies will have a
capacity to improve the well-being of children with asthma, and potentially other allergic diseases [86].
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3. Molecular Aspects of Tobacco Smoke Toxicity

Cigarette smoke consists of more than 7000 different chemical compounds, most of which exert
adverse effects on the cells of respiratory tract. Apart from over 50 known human carcinogens
(methylcholanthrene, benzo-α-pyrenes, acrolein) tobacco smoke contains toxins (carbon monoxide,
ammonia, acetone, nicotine, hydroquinone), chemically reactive solids, and oxidants (superoxide,
hydrogen peroxide, nitrogen oxides) [87,88].

Tobacco smoke compounds can directly influence functioning of the lung cells, demonstrating
pro-inflammatory, cytotoxic, mutagenic and carcinogenic properties. In particular, inhalation of
oxidants results in direct lung damage and activation of inflammatory responses leading to further
tissue injury. Oxidative stress plays a pivotal role in the pathogenesis of many inflammatory lung
disorders such as asthma, COPD, idiopathic pulmonary fibrosis (IPF), cystic fibrosis (CF) and adult
respiratory distress syndrome (ARDS) [89–92]. An increased oxidative burden in smokers results from
both reactive oxygen and reactive nitrogen species (RNS) derived from inhaled tobacco smoke and
released into the milieu of the lungs by activated inflammatory cells—macrophages, epithelial cells,
neutrophils, and T lymphocytes. The interaction between the cigarette smoke and the epithelial lining
fluid (ELF) enables further production of ROS in the airways, since both cigarette smoke and ELF
contain metal ions, such as iron, which catalyze the production of free radicals [93].

The imbalance between oxidants and antioxidants in favor of the former results in direct
damage to lipids, proteins, nucleic acids and components of the lung matrix (e.g., elastin and
collagen). Other consequences of oxidative stress include increased apoptosis, impairment of
skeletal muscle function, mucus hypersecretion, and decreased binding affinity and translocation
of steroid receptors [93]. Increased levels of ROS contribute to inactivation of antiproteases (such
as a1-antitrypsin) and activation of metalloproteases (MMPs), resulting in protease/antiprotease
imbalance in the lungs, which directly contributes to the degradation of the lung matrix [94].
Additionally, cigarette smoking depletes the level of glutathione (GSH), a major antioxidant of the
lung [95]. Changes in the redox status within the cell initiate the lung inflammatory responses
through enhancement of the respiratory burst in phagocytic cells, regulation of intracellular
signalling, chromatin remodeling (histone acetylation/deacetylation) and activation of redox-sensitive
transcription factors, such as nuclear factor-κB (NF-κB) and activator protein-1 (AP-1). The latter are
critical to gene expression of pro-inflammatory mediators such as interleukin (IL)-8, IL-6, and tumor
necrosis factor-α (TNF-α) which links cigarette smoke exposure with altered cytokine production [90].

Other pathophysiological mechanisms by which cigarette smoke can alter cytokine gene
transcription rely on smoke-induced changes to the epigenome, such as DNA methylation, expression
of microRNA and histone modification [96,97]. CSE-associated epigenetic modifications underlying
allergic and respiratory diseases are, however, beyond the scope of this review and are discussed in
detail elsewhere [98].

4. Effects of Cigarette Smoke Exposure on the Immune System

The lung is directly exposed to environmental antigens including pathogens, allergens and
toxins, such as tobacco smoke. A wide range of host defense mechanisms involving both innate
and adaptive immune responses has been developed to provide protection against noxious agents.
The weight of evidence indicates that chronic exposure to tobacco smoke alters the immune and
inflammatory processes in the lung causing changes in humoral and cell-mediated immune responses
(Figure 3) [99]. The influence of cigarette smoke on the immune system is, however, diverse and of
dual nature—pro-inflammatory and immunosuppressive. Owing to the differences in smoking pattern
(how the cigarette is smoked, number of puffs, puff volume, puff duration, etc.) as well as the age,
sex, origin and socioeconomic status, the effects of tobacco smoke on the immune system can vary
between the smokers and passively exposed individuals. Our understanding of CSE-induced effects is
further complicated by sometimes contradictory results of human studies and experimental set-ups,
probably due to the chemical heterogeneity of cigarette smoke, individual genetic susceptibility,
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and the variability in experimental methodologies (e.g., time, frequency and mode of exposure).
Further to this, it seems that the amount of inhaled total particulate matter (TPM) has a great influence
on the extension and nature of response to cigarette smoke. Indeed, Dvorkin-Gheva et al. has
recently demonstrated that cigarette smoke-induced inflammation is a function of TPM with low TPM
concentrations activating xenobiotic and detoxification mechanisms and high TPM concentrations
driving additional inflammatory response potentially triggering tissue damage [100]. Therefore it
must be noted, that the majority of available and reviewed here reports are based on animal models
and cell lines studies. It is worth to emphasize that, the effects of passive smoking in experimental
set-ups cannot be directly translated into the consequences of environmental tobacco smoke exposure
in children.

The pro-inflammatory properties of cigarette smoke are well documented [101–103]. Cigarette
smoke promotes inflammation by inducing the production of pro-inflammatory cytokines, such a TNF-α,
IL-1, IL-6, IL-8 and granulocyte-macrophage colony-stimulating factor (GM-CSF), and increasing the
accumulation of immune cells in the airway [104,105]. On the other hand, the results of many in vitro
studies provide evidence for its immunosuppressive properties [2,106,107]. Specifically, the inhibitory
effects of cigarette smoke have been related, among others, to nicotine. Nicotine was shown to decrease
IL-6, IL-8, and IL-10 production [108]. One of the potential nicotine-induced immunosuppressive pathways
is associated with the activation of its α7 nicotinic acetylcholine receptor on macrophages, T cells and B cells.
Importantly, this activation was shown to suppress Th1 and Th17 responses with reciprocal shift towards
the Th2 lineage [107]. This is further complicated by compounds demonstrating both pro-inflammatory
and immunosuppressive properties, such as acrolein - another major component of tobacco smoke. While
inhalation of acrolein promotes airway hypersensitivity responses, it may stimuli neutrophil accumulation
in the airway, thereby contributing to immune tolerance [109].
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4.1. Effects of Cigarette Smoke Exposure on Innate Immunity

The innate defense mechanisms of the airways and lungs encompass structural components,
cough reflex, mucociliary clearance, epithelial barrier, humoral factors (surfactant proteins, complement
proteins, antimicrobial peptides), and cells that elicit immune responses (epithelial cells, macrophages,
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monocytes, dendritic cells, neutrophils, natural killer cells, and mast cells). On the one hand, studies
by Botelho et al. and D’Hulst et al. demonstrated that innate immune mechanisms are sufficient
for driving cigarette smoke-induced inflammation in the airway [12,110]. There is several fold
increase in the number of neutrophils, macrophages and dendritic cells in the airways of smokers and
smoke-exposed animals in comparison to controls [14,111,112]. This influx of inflammatory cells leads
to the aggravation of inflammatory processes, release of oxygen species, cytokines and chemokines,
and activation of proteases. On the other hand, cigarette smoke suppresses local innate host defense in
the airway as exemplified by a decrease in surfactant proteins SP-A and SP-D production. While SP-A
and SP-D stimuli the phagocytosis of certain microorganisms by leukocytes, down-regulation of their
synthesis clearly contributes to smoke-induced immunosuppression [113].

4.1.1. Epithelial Cells

The respiratory epithelium is the first line of defense against environmental insults, in particular
pathogens, inspired noxious particles, and allergens. However, airway epithelium does not
merely serve as a physical barrier impeding the penetrance of potentially injurious materials but
plays a pivotal role in the regulation of fluid balance, the metabolism and clearance of inhaled
agents, and the regulation of immunological and inflammatory responses by secreting inflammatory
mediators and recruiting immune cells [114]. In regard to allergic sensitization to inhaled antigens,
airway epithelium is capable of recognizing allergens through expression of pattern recognition
receptors (PRRs) and mounting innate immune responses [115].

Airway epithelium is composed of a variety of specialized epithelial cell types such as ciliated,
mucous, goblet, Clara, and basal cells in the bronchial epithelium, and Type I and Type II cells in
the alveolar epithelium [116]. To form a relatively impermeable barrier these cells are joined by
tight and adherent junctions which form the apical junctional complex (AJC). Physical barrier is also
maintained by mucociliary barrier comprising cilia, a periciliary fluid layer (sol), and a mucus layer
(gel). Mucociliary clearance is provided by organized ciliary movements which remove pollutants
and inhaled particulate material from the distal airway toward the pharynx [117]. CSE distorts the
structure and function of the ciliary epithelium in a number of mechanisms. The results of in vitro
and animal model studies show increased airway resistance and thickening of airway walls, increased
number of mucous secreting goblet cells and mast cells. A concurrent decrease in number of Clara
and ciliary cells leads to suppressed secretion of numerous anti-inflammatory, immunomodulatory,
and antibacterial molecules that are vital to the host defense against pathogens [118–125].

Other smoking-induced changes include increased permeability of the respiratory epithelium
and impaired mucociliary clearance resulting from mucous overproduction, decreased ciliogenesis,
cilia shortening and decreased ciliary beat frequency [117,118,120,126–129]. The increase in epithelial
permeability is associated with alterations in cytoskeletal and AJC structure and function as well as
with changes in ion transport and lower trans-epithelial resistance [121,126–130]. In addition, genes
involved in tight junctions formation, intraflagellar transport gene and cilia-related genes are markedly
down-regulated in the airway epithelium of healthy smokers when compared with nonsmokers [131].
Smoking was also associated with higher MUC5AC-core gene expression [132]. MUC5AC is one
of the predominant forms of mucin in the human airway that may represent an acute response
to environmental insults [116]. Increased expression of MUC5AC in smokers may lead to mucus
hypersecretion and subsequent mucociliary clearance impairment. Recently, cigarette smoke has
been shown to increase TLR3-stimulated MUC5AC production in airway epithelial cells, mainly via
extracellular signal-regulated kinases (ERK)-signaling [133]. The effect was partially attributed to the
oxidative stress.

Cigarette smoking alters the inflammatory responses generated by the respiratory epithelial cells
by modulating the production of a number of potent pro-inflammatory cytokines and chemokines
with consecutive recruitment of macrophages and neutrophils and further damage to the lung tissue.
This pro-inflammatory response of epithelial cells to CSE is achieved by altering a variety of signaling
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pathways involved in cellular activation, primarily protein kinase C (PKC), mitogen-actived protein
kinase (MAPK), NFκB and activatory protein-1 (AP-1) pathways [102,134–136]. For example, exposure
to cigarette smoke of human bronchial epithelium cell lines augmented the release of neutrophil
chemoattractant IL-8, IL-1β, monocyte chemoattractant protein 1(MCP-1), TNFα, soluble intercellular
adhesion molecule 1 (sICAM-1), and GM-CSF [101,102,104,137,138]. While IL-8 is one of the most
potent neutrophil chemoattractants, IL-1β induces the activation of macrophages and the release
of neutrophils from bone marrow via promoting GM-CSF production, and thus may play a role in
enhancing oxidative burst and sustaining tissue inflammation in the airways [139]. Destruction of
lung tissue is further facilitated by the accumulation of neutrophils, monocytes and NK cells in the
airway during smoke-induced inflammation and increased expression of MMPs [140,141]. Although
cigarette smoke is a potent inducer of neutrophilic inflammation, it was also shown to induce in the
airway epithelial cells the synthesis of thymic stromal lymphopoetin (TSLP), a known activator of
dendritic cells promoting Th2 polarization [142]. Airway epithelial cells are the main source of TSLP,
IL-25, and IL-33, which govern upstream of the canonical Th2 cytokines: IL-4, IL-5, and IL-13 and thus
induce a THh2-type immune response [143]. Therefore, increased production of TSLP is a potential
mechanism by which cigarette smoke may prime allergic inflammation in the airway [142,144].

Epidemiological data clearly show that cigarette smoke exposure facilitates upper and lower
respiratory tract infections. The identification of exclusive microbial molecules, pathogen-associated
molecular patterns (PAMPs), is mediated through PRRs expressed on the surfaces of epithelial cells,
macrophages and dendritic cells. PPRs families include Toll-like receptors (TLRs), purinergic receptors
(e.g., P2X and P2Y), cytosolic nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs),
and receptor for advanced glycation end products (RAGE). While PRRs are required for elaboration
of inflammatory response to invading pathogens, they are also activated by endogenous molecules
released from injured or dying cells called damage-associated molecular patterns (DAMPs), such as
double-stranded DNA, high-mobility group box 1, heat shock protein 70, mitochondrial DNA, and ATP.
Cigarette smoke is a known inducer of necrotic and apoptotic cell death with subsequent DAMPs
release [145]. Recently, cigarette smoke-induced epithelial necroptosis and DAMPs release have been
shown to augment the release of CXCL8 and IL-6, in a myeloid differentiation primary response gene
88-dependent fashion [146]. It seems plausible, that cigarette smoke induces airway inflammation by
direct oxidative damage to the epithelium as well as by activation of a variety of PRRs through DAMPs
released following cell injury. Indeed, even short exposure to cigarette smoke is sufficient to increase
the secretion of pro-inflammatory cytokines and the expression of several TLRs (e.g., TLR-2 and TLR-4)
in epithelial cells [105,137,139,147,148]. Mortaz et al. demonstrated that cigarette smoke-induced
release of CXCL8 is mediated through TLR4, TLR9 and inflammasome activation, and that P2X7
receptors and reactive oxygen species are involved [149]. In addition, the activation of purinergic
receptor P2X7 plays a central role in NLRP3 inflammasome and caspase 1 activation, which facilitate
the release of IL-1β and IL-18 [150,151]. Despite these results, much ambiguity remains surrounding
the impact of cigarette smoke on the expression of TLRs. In particular, TLR-5 has been shown to be
downregulated in the airways of smokers, which may account for the smoking-related susceptibility
to airway infection by flagellated bacteria [152].

On the other hand, CSE exerts immunosuppressive effects on antimicrobial defense mechanisms
of the airway epithelium. The stimulation of smoke-exposed epithelial cells with PAMPs, such as
lipopolysaccharide (LPS) or dsRNA as well as exposure to human rhinovirus, nontypeable Haemophilus
influenzae (NTHI), Staphylococcus aureus and Moraxella catarrhalis attenuated the in vitro production
of potent pro-inflammatory mediators, in particular pathogen-induced neutrophil-mobilizing
cytokines [136,153–156]. GM-CSF and IL-8 protein release from epithelial cells in response to LPS,
a component of the outer membrane of Gram-negative bacteria, has been decreased following cigarette
smoke exposure [136]. Similarly, stimulation of epithelial cells with poly (I:C), a viral double-strand
RNA (dsRNA) mimic, led to a dose-dependent decrease in initiating an antiviral response and
interferon production [153]. Additionally, the ability of epithelial cells to synthetize antimicrobial
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peptides, such as CCL20, β-defensin 1 and 2, and SLPI is suppressed in the presence of cigarette
smoke [56,157]. This decrease in innate immune responses contributes to impaired defense against
bacterial and viral infections, delayed pathogen clearance and chronic colonization of the lower airways
by pathogens [158,159]. Recently, an enhanced adhesion of bacteria to the airway epithelium was
demonstrated for Streptococcus pneumoniae [160]. Furthermore, blunted antimicrobial response seems
to be associated with CS-induced modulation of cytoskeleton organization and inflammatory cell
profiles during infections, which may contribute to further destruction of the lung tissue [161,162].
However, the exact mechanisms underlying cigarette smoke-induced impairment of defense against
bacterial and viral agents are not completely understood and further research is warranted.

In aggregate, epithelial cells act as a first line defense against the deleterious effects of cigarette
fume. Exposure to cigarette smoke leads to increased permeability of the respiratory epithelium,
mucous overproduction, impaired mucociliary clearance, enhanced release of pro-inflammatory
cytokines and chemokines with consecutive recruitment of macrophages and neutrophils, as well as
altered pathogen sensing and clearance.

4.1.2. Alveolar Macrophages

Alveolar macrophages (AMs) represent the most abundant immune cell type in the healthy
airspaces. They are the most prominent phagocytes and antigen-presenting cells in the lung,
and together with epithelial cells constitute the first line defense against infections and noxious agents.
Apart from immune surveillance, responses to infections and microbial clearance, their functions
comprise removal of cellular debris, maintenance of pulmonary tissue homeostasis and orchestrating
the resolution of inflammation.

Numerous studies to date have proved that the exposure to cigarette smoke increases the number
of alveolar macrophages in the airway by several fold and induces changes in their morphology and
phenotype [163,164]. Distinctive morphologic changes of AMs caused by cigarette smoke include an
increase in cell size as well as an increase in the number of Golgi vesicles, endoplasmic reticulum,
and residual bodies, which contain distinctive fiber-like inclusions [165]. An increase in cell size can
be partially attributed to intracellular lipid accumulation. Shortly after exposure to cigarette smoke
AMs accumulate lipid droplets, presumably due to surfactant lipid oxidation. This leads to augmented
IL-1β and GM-CSF production and initiates lung inflammation [166,167].

Cigarette smoke alters the expression of adhesion molecules on the surface of AMs obtained
from smokers [164,168]. AMs in induced sputum of smokers expressed CD11b, CD14, CD54 and
CD71 to a greater extent than AMs from nonsmokers, and the expression of CD11b and CD14
was associated with severe airflow limitation [164]. These alternations may possibly affect the
metabolic activity, inter-cellular communication, adhesion, proliferation and maturation of alveolar
macrophages [169]. Indeed, alveolar macrophages of smokers display higher resting metabolism,
increased lysozyme secretion and lactate dehydrogenase, esterase and protease activity when compared
with nonsmokers [165,170,171].

Macrophages show a significant phenotypic plasticity allowing them to adapt to the environment
to which they are exposed. According to their activation status, macrophages have been broadly
classified as either classically activated M1 macrophages or alternatively activated M2 macrophages,
in parallel with T helper cells polarization [172]. TLR signaling and cytokines secreted by Th1
lymphocytes, such as interferon-γ (IFN-γ), induce M1 phenotype. M1 macrophages exhibit enhanced
antimicrobial properties, release pro-inflammatory cytokines such as TNF-α, IL-6 and IL-12, and thus
promote a Th1 environment [173]. The switch towards M2 polarization is generally induced by IL-4
and IL-13 [174]. M2 macrophages display an anti-inflammatory profile and produce anti-inflammatory
cytokines such as IL-10 and transforming growth factor-β (TGF-β). M2 macrophages are involved
in the encapsulation and destruction of parasites, immunoregulation, matrix deposition and tissue
remodeling. It has been shown that the exposure to cigarette smoke induces a unique macrophage
polarization pattern marked by a suppression of M1 and an induction of M2-related genes
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signatures [175–177]. The impact of cigarette smoke on macrophage polarization is multifaceted
and not limited to changes in the lung cytokine milieu. The secretion of protease serine member
S31 (Prss31) from bone marrow-derived mast cells was associated with macrophage infiltration and
increased M2 polarization [178]. Moreover, cigarette smoke can change not only the phenotype of
macrophages but can also direct blood and bone marrow monocyte polarization [179,180]. This skewed
macrophage polarization finds its reflection in recently demonstrated heterogeneous airway deposition
of macrophages in smokers and COPD patients [181]. A predominance of pro-inflammatory M1
cells was found in the small airways, whereas M2 macrophages dominated in the luminal areas.
Both healthy smokers and COPD patients presented increased levels of M2 phenotype cytokines in
bronchoalveolar lavage fluid (BAL) corresponding to M2 profile of luminal macrophages. The impact
of cigarette smoke on macrophage phenotype polarization has implications well beyond COPD. Indeed,
M1 and M2 macrophages contribute to the pathogenesis of asthma [173]. M1 macrophages release
IL-23 and IL-1β that promote Th1 and Th17 responses implicated in airway neutrophilia and acute
airway hyper-responsiveness. IL-14 and IL-13, key asthma cytokines, induce macrophage polarization
towards M2 profile, which further promotes Th2 environment and airway remodeling. In a mouse
model of house dust mite (HDM)-induced asthma, macrophage phenotypes reflected the changes in
the severity of allergic airway inflammation [182]. Higher numbers of M1 macrophages were observed
in mice with less severe asthma while increased numbers of M2 macrophages after HDM exposure
correlated with higher eosinophil count. Apparently M1 macrophages play a dual role in asthma,
preventing allergic sensitization on the one hand, but contributing to the development of severe
phenotype in already established disease on the other.

Alveolar macrophages are potent inducers of inflammation and tissue degradation. Lung
inflammation in smokers is perpetuated by protease/antiprotease imbalance and direct and indirect
cell damage associated with the release of activated O2 intermediates. Smoking induces the production
and activity of MMPs responsible for extracellular matrix degradation, and alters the production
of their biological inhibitors, tissue inhibitors of MMPs (TIMPs) released by alveolar macrophages.
Levels of MMP-9 and MMP-12 were shown to be increased in BAL samples from smokers and both
MMP-9 and MMP-12 were shown to account for most of the elastase activity driven by alveolar
macrophages [183–186]. In aggregate, the imbalance between MMPs and TIMPs leads to insufficient
lung tissue repair and contributes to the pathogenesis of emphysema in smokers. Furthermore, AMs of
smokers display increased release of oxidants such as superoxide anion and H2O2 than macrophages
of nonsmokers [187]. For example, the smokers’ macrophages are capable of oxidizing the active site
of alpha 1-antitrypsin, the major anti-neutrophil elastase of the human lower airway, which leads to its
inactivation and contributes to further lung injury [188].

Although the number of alveolar macrophages is increased in BAL of smokers, a vast body of
evidence suggests that these cells are functionally impaired [189–194]. Specifically, the ability to release
pro-inflammatory cytokines (e.g., Il-1, IL-5, Il-6, IL-8, IL-12, TNF-α, IP-10, MCP-1, MIP-1α, and VEGF)
seems to be substantially reduced following CSE and oxidative stress appears to be implied [195,196].
This explains, at least in part, why AMs from smokers elaborate a blunted inflammatory response after
LPS stimulation, which results in increased susceptibility to infections [193,197–199]. Indeed, the ability
of alveolar macrophages to phagocytose bacteria and apoptotic cells is substantially compromised
by cigarette smoke [159,197,200–203]. Reduced rate of bacterial clearance was demonstrated for
such important airway pathogens as H. influenzae, L. monocytogenes, L. pneumophila, P. aeruginosa,
S. pneumoniae and C. albicans [159,197,200–202]. The mechanisms underlying this well-recognized
suppression of phagocytosis encompass smoke-induced alternations in the ability to sense PAMPs
and to kill bacteria. In particular, a disturbed expression of PRRs on alveolar macrophages
may affect the recognition of bacterial agents and modify subsequent intracellular signaling and
downstream effector mechanisms. Recently, cigarette smoke was shown to reduce the abundance
of NLRP3 protein, a nucleotide-binding oligomerization (NOD)-like receptor (NLPR), through
facilitating its ubiquitination [204]. In parallel, CSE was associated with an impairment of TLR-2
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and TLR-4-associated signaling pathway activation in alveolar macrophages in response to agonists
(e.g., LPS) and Aspergillus infection [205–207]. In short, TLR2 plays a role in recognition of lipoproteins
and lipopeptides from Gram-positive bacteria, Mycoplasma, and mycobacteria, whereas TLR-4 is
a key receptor for LPS from Gram-negative bacteria [208,209]. However, other results indicate,
that cigarette smoke does not simply suppress AMs’ immune responses but rather skews their
inflammatory profile [210]. Alveolar macrophages from smoke-exposed mice challenged with
nontypeable Haemophilus influenzae elicited increased levels of inflammatory mediators, such as
MCP-1, MCP-3, MCP-5, IP-10, and MIP-1γ, whereas the expression of pro-inflammatory cytokines,
namely TNF-α, IL-1β, IL-6, was decreased in comparison with bacteria-challenged control mice.
Of note, this altered inflammatory profile was associated with the exacerbation of the inflammatory
response, which was neutrophilic in nature. Increased CXCL8 levels and neutrophil counts are
typically found in the airway of COPD patients with bacterial colonization. In line, suppressing effect
of CSE on pro-inflammatory cytokines expression does not apply for CXCL8, a potent neutrophil
chemoattractant [199].

Due to impaired pathogen recognition and altered immune response, AMs from smokers exhibit
reduced phagocytic properties. The weight of evidence indicates that CSE impairs bacterial clearance
and enhances bacteria survival in the airway [159,202,211]. Exposure to cigarette smoke was associated
with decreased bactericidal or bacteriostatic properties, suppressed fusion of phagolysosome and
autophagy impairment probably related to oxidative stress [200,212,213]. Furthermore, cigarette smoke
was shown to reduce major histocompatibility class I (MHC I) antigen presentation by suppressing
the activity of immunoproteasome [214]. Since MHC I-mediated antigen presentation to CD8+ T cells
is crucial for mounting immune response against virus-infected cells, cigarette smoke may dampen
antiviral immune responses. This is in line with diminished MHC I levels on alveolar macrophages
observed in smokers with COPD [215].

Apart from ineffective bacterial clearance, impaired phagocytic properties of alveolar
macrophages account for deffective phagocytosis of apoptotic bronchial epithelial cells, a process
termed ‘efferocytosis’. Defective efferocytosis facilitates leakage of apoptotic cell contents into
the surrounding tissue exposing neighboring cells to noxious intracellular components, such as
enzymes (e.g., proteases and caspases) and oxidants. Accumulated apoptotic cells may undergo
secondary necrosis contributing to a perpetuation of inflammation and resulting in tissue damage
persistent even after smoking cessation [145]. Disturbed efferocytosis with abnormal accumulation
of apoptotic epithelial cells in the airway lumen has been conclusively documented in COPD
patients [216]. Cigarette smoke was shown to reduce the expression of some recognition molecules
on the surface of alveolar macrophages, namely CD31, CD91, CD44, and CD71, which are
necessary for epithelial/macrophage crosstalk and effective clearance of apoptotic cells and tissue
debris [217]. Impaired efferocytosis by alveolar macrophages appears to be an important contributor
to the exacerbated cellular inflammation not only in COPD, but also in asthma, bronchiolitis
obliterans, protracted bacterial bronchitis and bronchiectasis in children [216,218–221]. Recently,
considerable emphasis has been placed on the role of sphingolipid metabolites in cigarette
induced-efferocytosis impairment with sphingosine 1-phosphate (S1P) signaling garnering especially
great attention [222–225]. S1P downstream signaling pathways participate in innate and adaptive
immune responses, in particular in leukocyte trafficking and differentiation. Recently found disparity
in the expression of Spinster 2 (Spns2), a plasma membrane transporter of S1P, between AMs and
epithelial cells suggests, that cigarette smoke-induced impairment of AMs’ phagocytic properties may
be a consequence of disturbed crosstalk between these two cell types [223]. These observations are
of interest as S1P signaling was shown to be involved in airway inflammation and hypersensitivity
as well as delayed-type contact hypersensitivity [226]. In ovalbumin (OVA)-induced allergic asthma
model, Spns2-knockout mice exhibited decreased count of eosinophils and lymphocytes as well as
increased macrophage numbers in BAL fluid, elaborated blunted Th2-type response with significantly
decreased levels of IL-4, IL-13 and IL-5, and diminished antigen-specific antibody production when
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compared with wild type littermates. These results indicate, that Spns2 is implicated in both the
induction of Th2-type inflammatory response in the airway, a hallmark of allergic asthma, and the
regulation of Th1-driven inflammation in skin diseases [226].

Taken together, the net effect of cigarette smoke on alveolar macrophages is a significant increase
in AM count with concurrent substantial impairment of their function. Decreased phagocytic ability of
AMs contributes to augmentation of inflammation, increased susceptibility to respiratory infections
and tissue damage.

4.1.3. Dendritic Cells

Dendritic cells are the most important antigen-presenting cells uniquely positioned at the interface
between the innate and adaptive part of the immune system [227,228]. Human DCs can be divided into
convetional DCs or “myeloid” DCs (mDCs) and plasmocytoid DCs (pDCs). DCs govern differentiation
and activation of antigen-specific T-cells in response to pathogens. This is mediated by antigen
presentation, co-stimulatory molecule expression, and immune-stimulatory cytokine release [229].
Depending on the character of these signals, DCs may determine T-cell response polarization.

Active smoking substantially impacts the number, distribution, and differentiation of DCs and
Langerhans Cells (LCs) in human alveolar parenchyma [230]. Cigarette smoking has the capacity
to lower the number of bronchial mucosal DCs in COPD and asthma patients [231,232]. In contrast,
short smoke exposure was shown to increase CD11b+ DCs count in bronchoalveolar lavage fluid,
which was associated with sensitization and asthma development [233].

Several separate lines of evidence suggest that cigarette smoke exposure impairs the maturation
and function of DCs. Cigarette smoke-exposed DCs displayed diminished T-cell-stimulatory
capacity [234]. In asthmatic rats, the expression of myeloid differentiation factor 88(MyD88), IL-10
and IL-12 was decreased in marrow DCs as a result of cigarette smoke exposure [235]. In parallel,
DC maturation within the lymph nodes was impaired by cigarette smoke, as demonstrated by reduced
cell surface expression of MHC II and the costimulatory molecules CD80 and CD86. These DCs had
a diminished capacity to induce IL-2 production by T-cells. Of note, DC-induced T-cell function
impairment may lead to the exacerbations of COPD, diminished infection response, and inhibited
tumour surveillance [236]. However, in another murine model cigarette smoke extract was shown to
induce neutrophil extracellular traps, which in turn were capable of driving plasmacytoid DCs (pDCs)
maturation and activation [237].

CSE has a definite impact on DCs response to infections. While both subtypes of DCs express
PRRs allowing effective pathogen sensing, only pDCs express TLR-9 which facilitates the recognition
of viral double-stranded DNA. Therefore, pDCs constitute an important driver of innate antiviral
immunity. CSE was shown to augment the production of IL-8, a potent neutrophil chemoattractant,
with simultaneous suppression of the pro-inflammatory cytokine release (TNF-α and IL-6) after
TLR-9 induction. Importantly, CSE attenuated IFN-α, a key antiviral protein, production through the
suppression of PI3K/Akt signaling pathway. Taken together, these data indicate that CSE has the
potential to lessen anti-viral immunity with concurrent induction of neutrophilic inflammation [149].
Accordingly, CSE downregulated the expression of TLR-7 and the activation of interferon regulatory
factor (IRF)-7 in RSV-infected pDCs. RSV-induced release of INF-α, Il-1β, Il-10 and CXCL10 was
inhibited in pDCs further demonstrating that the key functions of pDCs upon viral infection are
impaired by CSE [238]. In parallel, cigarette smoke alters the ability of DCs to promote anti-bacterial
response. Nicotine was shown to reduce both endocytic and phagocytic abilities of immature DCs.
The production of cytokines such as Il-10, Il-12, Il-1β and TNF-α in response to bacterial products was
impaired [239]. In particular, the suppression of IL-12 production, a potent inducer of Th1 responses,
may potentially contribute to blunted host defense mechanisms against infections mediated by DCs
exposed to nicotine. Accordingly, CSE was observed to significantly reduce S. pneumoniae-induced
monocyte derived DC maturation and to suppress DC capacity to activate antigen specific T-cell
response. Specifically, a decrease in pro-Th1 and -Th17 response accompanied by sustained CXCL8
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secretion accounted for impaired anti-bacterial defense mechanism and aggravated neutrophil airway
deposition [234]. Data regarding cigarette smoke impact on cytokine production in DCs are, however,
conflicting. While suppressed production of inflammatory mediators (IL-12 and IL-23) was attributed
to reactive oxygen species or nicotine, stimulation with LPS or CD40 ligand resulted in up-regulation
of certain inflammatory mediators (prostaglandin-E2, IL-8, and IL-10) [240–242].

There is much evidence suggesting cigarette smoke contributes to inflammation and allergic
response mediated by DCs. In murine models, short smoke exposure has been shown to amplify
dendritic cell-mediated transport of house dust mite allergens to the intrathoracic lymph nodes and to
generate a local T-helper cell type 2 response. This was accomplished by selective up-regulation
of C-C chemokine receptor 7 (CCR7) surface expression on airway DCs promoted by cigarette
smoke. The CCR7 protein is crucial to the migration of DCs to lymphatic nodes, which is a key
step in the antigen-presenting function of airway DCs. The authors conclude that the concomitant
inhalation of aerosolized ovalbumin (OVA) and cigarette smoke induces Th2-type airway inflammation,
which was not observed after exposure to either agent alone. Cigarette smoke was also shown to
induce up-regulation of MHC class II, CD86 (B7-2), PDL2 and down-regulation of Inducible T-Cell
Costimulator Ligand (ICOSL) on airway DCs. CD86 is a costimulatory molecule involved in the
priming of Th2 responses and the subsequent development of allergic airway inflammation. Thus,
cigarette smoke may activate pulmonary DCs in a way that promotes allergic sensitization against
co-inhaled molecules. Such skewing of immune response appears to be TLR-independent and is
attributed to the presence of immunological adjuvants in the smoke fume [243]. Subsequent study,
however, using a murine model of allergic pulmonary inflammation, revealed that cigarette smoke
effects on DCs do not simply promote allergic airway inflammation, but rather alter the Th1/Th2
balance. Mice previously sensitized and challenged with OVA demonstrated a decreased number of
eosinophils and suppressed IL-4 and IL-13 production following cigarette smoke exposure. Cigarette
smoke exposure associated with OVA sensitization reduced the number of pDCs and their activation
by suppressing the expression of CD86, PDL2 and ICOSL, which was sufficient to decrease regulatory
T cells recruitment and IL-10 and TGF-β production. Additionally, cigarette smoke increased the
recruitment of CD8α+ DCs into lymph nodes, which may account for an increase in number and
activation of CD8+ T cells in the lungs [244].

In conclusion, cigarette smoke may alter the immune profile of DCs in a variety of ways, some of
which are contradictory. One possible explanation for the apparent paradox was proposed by
Nouri-Shirazi and Guinet who stated that DCs developed in a nicotinic environment fail to support the
terminal development of effector memory Th1 cells due to their differential expression of costimulatory
molecules CD86 and CD80 and lack of IL-12 production [245]. It is plausible, that DCs can adopt Th-1
promoting function, which is necessary to fight infections, only when the balance of environmental
signals strongly favors Th1 immunity, and promote Th2 response in a Th2-biased environment, which
primes the development and exacerbation of asthma [246].

4.1.4. Natural Killer Cells

Natural Killer (NK) cells are large granular lymphocytes similar to cytotoxic lymphocytes
able to secrete perforin, granzymes, TNF-α and IFN-γ but unable to rearrange T-cell receptor or
immunoglobulin genes [247]. NK cells are responsible for defense against microbial agents and tumour
surveillance. This is mediated by Ca2+-dependent granule exocytosis, cytotoxic proteins (perforin
and granzymes) release from intracytoplasmic granules, constitutive or induced upon interaction
with target cells FasL expression, Ca2+-independent Fas (CD95/Apo 1)-mediated apoptosis induction,
and membrane-bound or secreted cytokines (e.g., TNF-α) production [248].

CSE has been reported to both suppress and stimulate the activity of NK cells. NK cell activity
in peripheral blood was reduced in smokers compared with non-smokers. These alterations appear
to be reversible, since a recovery period of six weeks after smoking cessation brought the cytotoxic
activity of NK cells back to the level of never-smokers [249]. NK cells from long-term smokers display
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a decreased intracellular IL-16 concentration. This depletion of the CD4+-recruiting cytokine strongly
suggests that long-term smoking may impact immune responses at the systemic level, and that NK
cells are involved [250]. There is ample evidence showing direct negative effect of cigarette smoke on
NK cell cytolytic capacity, as well as on their ability to produce inflammatory cytokines in response to
microbial agents. Mian et al. demonstrated that cigarette smoke significantly suppresses the induction
of IL-15 by polyinosinic:polycytidylic acid (poly I:C) in human peripheral blood mononuclear cells
(PBMCs). This decrease in IL-15 production, which was linked with attenuated signal transducer
and activator of transcription (STAT) 3 and STAT5 phosphorylation, compromises NK cell cytolytic
potential [251]. NK cell TNF- α and IFN-γ production was also shown to be impaired after treatment
with tobacco product preparations and stimulation with poly I:C and LPS [252]. Cigarette smoke has
been found to inhibit IFN-γ production in vitro and ex vivo by poly I:C induced NK cells. TNF-α
production after stimulation with poly I:C was also decreased in smokers compared with non-smokers,
as was perforin expression and NK cell cytotoxic activity [253].

These data notwithstanding, cigarette smoke may also exert a stimulatory effect on NK cells.
Stolberg et al. show that acute cigarette smoke exposure elicits NK cell activation. In particular,
cigarette smoke exposure caused increased accumulation of primed/activated CD69(+) NK cells in
parenchymal and mucosal locations in the airway. The priming and activation of NK cells is believed
to result from crosstalk between NK and sentinel cells, such as DCs, and CCR4 appears to be a possible
promoter of NK/DC interaction [254]. Furthermore, CSE up-regulates epithelial-derived IL-33 level
with reciprocal increase in IL-33 receptor ST2 expression on macrophages and NK cells. This can
significantly contribute to the amplification of type I proinflammatory responses within the lung
during infection [255]. In line, analysis of human data showed that acute smoking was associated
with systemic activation of NK cells. The activation of pulmonary NK cells was dependent on COPD
coincidence, regardless of current smoking status [256].

In summary, the impact of smoking on cytokine production and cytolytic activity of NK cells
is ambiguous, with evidence pointing at both pro-inflammatory and anti-inflammatory effects.
The overall result is likely dependent on the existing comorbidities and general state of the patient.

4.1.5. Neutrophils

Neutrophils play a pivotal role in the pathogenesis of COPD. However, considerable emphasis
has been recently placed on neutrophilic inflammation in asthma [257]. According to epidemiologic
and experimental studies, cigarette smoke is a potent inducer of neutrophilic inflammation. In short,
CSE leads to necrosis of bronchial epithelial cells with reciprocal DAMPs release and pro-inflammatory
cytokine production, which, in turn, induce neutrophilic airway inflammation [146]. Higher numbers
of neutrophils in BALF following CSE have been repeatedly demonstrated in humans and experimental
models [146,258,259]. In patients with asthma, neutrophilic airway inflammation is frequently
associated with severe course of the disease and poor response to glucocorticoid therapy. Asthmatic
smokers have higher expression of IL-17A, IL-6 and IL-8, and neutrophil numbers in the bronchial
mucosa when compared with non-smoking asthmatics [260]. Further to this, co-stimulation with CSE,
smoke-induced IL-17A and aeroallergens further increases IL-6 and IL-8 production, indicating that
smoke-induced neutrophilic inflammation in asthmatics may be self-sustaining in nature.

CSE was also shown to alter neutrophil activation and chemotaxis which may contribute to
impaired immune responses observed in smokers. There is some debate as to whether CSE can trigger
the formation of neutrophil extracellular traps (NETs), which are critical for antimicrobial host innate
defence responses. Cigarette smoke exposure appeared able to trigger neutrophils to undergo NETosis.
Moreover, CSE-induced NETs were shown capable of driving murine plasmacytoid dendritic cells
maturation and activation with ensuing polarization of naive CD4+ T cells towards Th1 and Th17
responses [237]. A more recent study, however, demonstrated that the release of NETs was impaired
in human neutrophils from the peripheral venous blood of heathy volunteers after short treatment
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with CSE or its components or metabolites. Additionally, these neutrophils exhibited decreased speed,
velocity and directionality [261].

In conclusion, the majority of evidence seems to suggest that cigarette smoke exposure is
associated with the induction of neutrophilic inflammation, the primary sign of which is an increase in
neutrophil numbers. It may, however, alter the response to infectious agents, with studies showing
both decreased and increased chemotaxis and activation after exposure to microbial products.

4.2. Effects of Cigarette Smoke Exposure on Adaptive Immunity

In response to pathogens, innate immune responses mount a more sophisticated, pathogen-specific
adaptive immune response. It is now well appreciated that cigarette smoke has a profound impact on
activity and function of adaptive immune cells, namely T helper cells (Th1, Th2, Th17), CD4+CD25+
regulatory T cells, CD8+ T cells, B cells and memory T and B lymphocytes.

4.2.1. T Lymphocytes

T cells play a central role in cell-mediated adaptive immunity. Following antigen recognition
innate immune cells activate and stimulate naïve T cells to differentiation with ensuing generation of
predominantly effector T cells and, to a lesser extent, memory and regulatory T cells [262–266].

Cigarette smoke exposure leads to significant changes in certain T cell subtypes prevalence
in blood and tissues. Active smokers were shown to have higher numbers of circulating CD3+ T,
CD4+ T, and total lymphocytes than nonsmokers [267]. Consistently, numbers of memory T cells
and class-switched memory B cells were significantly and positively correlated with smoking habits,
indicating that lymphocytes are sensitive to cumulative effect of smoking [267,268]. While active
smoking exerts positive effect on memory T-cell counts, this may not be true for passive smoking.
In nonsmoking adolescents exposure to SHS was correlated with reduced numbers of circulating CD3+
and CD4+ memory T-cells with a reciprocal linear increase in the percentage of naïve CD4+CD45RA+
and CD3+CD45RA+ T-cell subsets [269].

Other studies demonstrated higher numbers of circulating Th17 cells and, although not consistently,
increased percentages of CD8+ T-cells in smokers or COPD patients [270,271]. Vargas-Rojas et al. has
shown that the percentage of Th17 cells in circulating T cell subsets from COPD patients was higher than
Th17 levels in healthy population [272]. Furthermore, cigarette smoke exposed mice had higher numbers of
IL-21+ Th17 and IL-21R+ CD8+ T cells in peripheral blood. The impact of CSE on the numbers of circulating
CD8+ T-cells is, however, ambiguous. In contrast to previous study, Koch et al. showed that smokers with
COPD have less circulating CD8+ T cells than smokers without COPD and nonsmokers, and that these
cells have decreased chemotactic activity. However, the percentage of circulating cytotoxic effector CD8+
T-lymphocytes was increased in smokers and COPD patients compared with nonsmokers [271].

Studies assessing T cell composition in BAL fluid demonstrated that smokers have a decreased
CD4+/CD8+ ratio when compared with nonsmokers [273]. This change in T cell subsets is caused by
higher proportion of CD8+ T lymphocytes in BAL fluid which has been repetitively found in smokers
and COPD patients [274,275]. Furthermore, smokers exhibited a higher Tc1/Tc2 CD8+ T cells subtypes
ratio in BAL fluid associated with augmented IFN-γ production [275]. CD8+ T cells can be divided
into two subtypes—Tc1 cells releasing IFN-γ but not IL-4, and Tc2 cells producing IL-4 but not IFN-γ.
These data notwithstanding, chronic CSE was associated with elevated numbers of Th1 and Th17 cells
in BAL fluid [276].

To sum up, cigarette smokers have an increased number of circulating CD3+ T and CD4+ T
lymphocytes including Th17 cells, whereas the precise influence of cigarette smoke on CD8+ T cell
number in peripheral blood remains unclear. CSE increases the numbers of CD8+, Th1, and Th17
cells in BAL fluid. Some discrepancies in results between the studies may, however, be found,
yielding some uncertainty as to the precise mechanisms governing cellular recruitment to different
airway environments.
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Th1 and Th2 Cells

Type 1 T helper (Th1) and Th2 lymphocytes are two subsets of CD4+ T cells with reciprocal
functions and patterns of cytokines. Th1 cells produce interferon-gamma, IL-2, and TNF-β, which
activate macrophages and are responsible for cell-mediated immunity and phagocyte-dependent
protective responses [277]. Th2 cells are characterized by IL-4, IL-5, IL-10, and IL-13 production,
which are responsible for enhanced antibody synthesis, eosinophil activation, and inhibition of several
macrophage functions, thus providing phagocyte-independent protective responses [277].

It has been shown that continuous cigarette smoke exposure alters the balance between Th1
and Th2 CD4+ T cells in the lung [278]. Chronic CSE was associated with elevated numbers of Th1
and Th17 cells in BAL fluid as well as with augmented Th2- mediated airway inflammation [16,276].
Increased percentages of Th1 and Th17 cells in smokers and COPD patients may be responsible
for sustaining chronic pulmonary inflammation. On the other hand, CSE was shown to dampen
Th1 type and to promote Th2 type immune responses [278]. While Th1 augmentation may increase
the risk for the development of emphysema, Th1 to Th2 shift may favor development of allergic
diseases such as asthma. In accordance, our group has previously demonstrated a Th2 driven
immune responses in asthmatic children exposed to parental tobacco smoke [279]. Shaler et al. showed
that continuous cigarette smoke exposure hinders anti-mycobacterial type 1 protective immunity in
pulmonary tuberculosis murine models. Mechanistically, CSE considerably impaired lung deposition
of antigen presenting cells and their production of IFN-γ, TNF-α, IL-12 and RANTES, thus inhibiting
the recruitment of Th1 polarized cells to the lung. Concurrently, CSE enhanced Th2 CD4+IL-4+
responses in the lung, inclining that it may initiate specific changes in T-cell polarization upon entering
the lung. Consistent with severely diminished Th1 cytokine production, continuous cigarette smoke
exposure substantially inhibited the ability of lung mononuclear cells to produce nitric oxide, thereby
diminishing the amount of bactericidal products in the lung and dampening anti-bacterial host defense
responses. This is of great importance, as severely weakened Th1 immunity in the lung caused by
tobacco smoke exposure predisposes to chronic bacterial colonization and infection, as exemplified by
weakened mycobacterial control.

In support of the premise that CSE could bias local lung immune responses towards Th2 immunity
come observations from experimental asthma models. Apparently, concurrent administration of
cigarette smoke and ovalbumin induces the development of airway inflammation with predominant
Th2-type immune responses and is further associated with delayed tolerance to inhalant antigen [16].
This shift towards Th2 immunity is primed by a plethora of mediators including lipocortin 1 and
aforementioned TSLP [142]. Lipocortin 1 is a naturally occurring defense factor against inflammation
with the capacity to regulate T helper responses. Bhalla et al. have observed that impaired synthesis
and degradation of lipocortin 1 may bidirectionally influence immune responses in animals exposed to
tobacco smoke either by augmenting T helper cell Th1 response or by shifting Th1 to Th2 response [280].

In aggregate, despite convincing evidence indicating that CSE enhances Th1 immune responses,
which are of great importance in COPD pathogenesis and progression, data exist on CSE contribution
to Th2 bias of lung immunity crucial for allergic sensitization and asthma.

Th17 Cells

T helper 17 cells (Th17) are a subset of pro-inflammatory T cells defined by their production
of interleukin 17 (IL-17) [281]. IL-17A is a pro-inflammatory cytokine predominantly released from
Th17 cells. It is a well-recognized regulator of cellular immunity since it has the capacity to stimulate
the expression of secondary pro-inflammatory chemokines and growth factors in epithelial and
mesenchymal cells and, thus, to mediate neutrophil recruitment and activation as well as neutrophil
and macrophage accumulation in the lung tissue [282]. Of note, IL-17A has been implicated in the
pathogenesis of asthma [283]. IL-17A expression is increased in blood eosinophils, sputum and
bronchoalveolar lavage specimens of asthmatic patients in comparison with control subjects [284].
During allergen-induced airway inflammation IL-17A primes recruitment of alveolar macrophages and
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neutrophils and regulates airway hyper-reactivity to methacholine [283,285]. Moreover, IL-17 appears
to play a crucial role in activating T-cells in allergen-specific immune responses, as IL-17-deficient mice
showed attenuated T-dependent antibody production as well as contact, delayed-type, and airway
hypersensitivity responses [285].

Evidence from human and experimental studies strongly suggests, that CSE increases the number
of Th17 cells in lung tissue and peripheral blood [270,272,286]. Higher count of Th17 cells was
associated with augmented expressions of IL-17 and IL-21 accounting for up-regulation of perforin
and granzyme B production in increased number of CD8+ T-cells. In general, Th17 cells are negatively
correlated with T regulatory cells and the signals that cause Th17s to differentiate inhibit Treg
differentiation [281]. Therefore, these results may imply that cytotoxic function of CD8 + T cells
can be regulated by Th17 cells [270]. In accordance, mice with COPD induced by constant tobacco
smoke presented an increased level of Th17 subset followed by upregulation of Th17-series of cytokines
(IL-6, IL-17A and IL-23) in both lung tissue and peripheral blood [286]. Moreover, CSE-induced Th17
responses are strongly implicated in the induction of several autoimmune diseases such as COPD,
psoriasis and rheumatoid arthritis [287].

To conclude, findings from both animal and human studies highlight the fact that Th17
cells contribute to the intensification of smoking-induced inflammation and are associated with
autoimmune responses.

Treg Cells

The regulatory T cells are a subpopulation of T cells that modulate the immune system, maintain
tolerance to self-antigens, and prevent autoimmune disease. Tregs are immunosuppressive and
generally suppress or downregulate induction and proliferation of effector T cells [288]. Many studies
have demonstrated that tobacco smoke exposure leads to Treg imbalance. A study on phenotypic
patterns of T-lymphocytes in COPD has shown a considerable downregulation of CD4+ CD25+ Treg
cells in BAL fluid from patients with COPD compared with healthy smokers [289]. On the contrary,
many studies have shown increased levels of Treg cells among COPD patients. Patients with diagnosed
COPD who remained smokers had significantly increased level of CD4+CD25+ Tregs compared to
healthy non-smokers [290]. Study by Hou et al. demonstrated unbalancing effects of tobacco smoke
exposure on Treg cells [291]. Specifically, COPD patients had a decreased number of suppressive Tregs
(CD25++ CD45RA+ resting Tregs and CD25+++ CD45RA− activated Tregs) but higher percentage of
FrIII cells compared with non COPD smokers, which may imply that Treg imbalance (aTreg+rTreg vs.
Fr III) has an impact on pathogenesis of COPD.

4.2.2. B Lymphocytes

B cells play an important role as a component of the adaptive immune system. They are
responsible for secreting antibodies and cytokines and participate in antigen presenting process.
Compelling evidence from human and experimental studies suggests that cigarette smoking
may be associated with the suppression of B-cell development, function and immunoglobulin
production [292,293]. Additionally, cigarette smoke-induced alternations in B cell distribution and the
underlying mechanisms have gained considerable attention recently. COPD patients were shown to
have an increased number of B cells in the small airways [294]. A more recent study demonstrated
lower (memory) B-cell counts with concurrent increase in Treg number in peripheral blood of COPD
patients in comparison with healthy controls [292]. While the memory B-cell percentages in peripheral
blood were significantly decreased, current smokers displayed higher percentages of class-switched
memory B cells than non-smokers, regardless of the disease state. Since the process of class-switch
recombination results from repeated antigen recognition, this finding suggests that cigarette smoke
is potentially capable of generating neo-antigens derived from damaged lung tissue or smoke fume
components in a chronic manner.
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Consistent with the aforementioned findings regarding lower percentages of B cells in blood,
cigarette smoke exposure can suppress B-cell differentiation process at a very early stage, as a significant
down-regulation of pre-B and pro-B cells was identified in murine bone marrow [295,296].

Other deleterious effects of cigarette smoke exposure comprise the suppression of immunoglobulin
production. Though the secretion of IgA, IgG and IgM appears to be down-regulated in peripheral
blood and saliva of smokers, this suppressive effect does not affect IgE synthesis [297]. Indeed, smokers
have increased levels of circulating IgE, which may potentially account for increased risk of atopy and
asthma development [108,297]. A study conducted in 1983 provided evidence that the mean IgE level in
ex-smokers was much lower than in current light smokers but was still higher than in nonsmokers [298].

Altogether, cigarette smoking increases airway deposition of B cells, decreases frequency of
memory B-cells in peripheral blood, down-regulates secretion of IgA, IgG and IgM but augments the
production of IgE, possibly contributing to allergic diseases. The negative impact of CSE on B-cells can
be identified very early in differentiation process, as exemplified by the suppression of bone marrow
pre-B cells and pro-B cells in mice.

5. Conclusions and Further Research

For the last decades, we have witnessed a substantial limitation of ETS exposure. We have
better and better legal regulations, and the number of smokers is gradually decreasing (especially in
Europe). However, a significant part of the population of the world is still exposed to the detrimental
effects of tobacco smoking. Children are particularly vulnerable to harmful effects of cigarette fume.
A chemically diverse mixture of pro-inflammatory, oxidative and carcinogenic factors found in tobacco
smoke has a number of different, sometimes contradictory effects. In this review we demonstrated,
in a comprehensive manner, the current state of knowledge on ETS effect upon immune function with
a strong emphasis on the airway. Cigarette smoke alters a myriad of signaling pathways and immune
responses, and some of them are implicated in the development of allergic diseases. We presented
data on the molecular and cellular level from both animal models and clinical studies. It is worth
noting that the mechanisms presented above may not only apply to ETS but also to other air pollutants,
including traffic-related air pollution. Clinical and laboratory data on how environmental pollution
contributes to the development of diseases of affluence, including allergy is accumulating. However
this area definitely requires further research.
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