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Artifi cial intelligence for analyzing orthopedic trauma radiographs 
Deep learning algorithms—are they on par with humans for diagnosing fractures?
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Background and purpose — Recent advances in artifi cial intel-
ligence (deep learning) have shown remarkable performance in 
classifying non-medical images, and the technology is believed 
to be the next technological revolution. So far it has never been 
applied in an orthopedic setting, and in this study we sought to 
determine the feasibility of using deep learning for skeletal radio-
graphs. 

Methods — We extracted 256,000 wrist, hand, and ankle 
radiographs from Danderyd’s Hospital and identifi ed 4 classes: 
fracture, laterality, body part, and exam view. We then selected 
5 openly available deep learning networks that were adapted 
for these images. The most accurate network was benchmarked 
against a gold standard for fractures. We furthermore compared 
the network’s performance with 2 senior orthopedic surgeons 
who reviewed images at the same resolution as the network. 

Results — All networks exhibited an accuracy of at least 90% 
when identifying laterality, body part, and exam view. The fi nal 
accuracy for fractures was estimated at 83% for the best perform-
ing network. The network performed similarly to senior orthope-
dic surgeons when presented with images at the same resolution 
as the network. The 2 reviewer Cohen’s kappa under these condi-
tions was 0.76. 

Interpretation — This study supports the use for orthopedic 
radiographs of artifi cial intelligence, which can perform at a 
human level. While current implementation lacks important fea-
tures that surgeons require, e.g. risk of dislocation, classifi cations, 
measurements, and combining multiple exam views, these prob-
lems have technical solutions that are waiting to be implemented 
for orthopedics.

■

Despite CT and MRI being commonplace, conventional radio-
graphs remain central in orthopedics due to their availability, 
speed, price, and low radiation. Extracting all available infor-

mation from these requires years of training and there is always 
the question of inter-observer reliability (Andersen et al. 1996, 
Audigé et al. 2005, Sayed-Noor et al. 2011, Shehovych et al. 
2016). Aiding image interpretation using computers is there-
fore highly interesting from a clinical perspective.

Recent advances in artifi cial intelligence (AI) have shown 
remarkable results, even reaching superhuman performance at 
certain image interpretation tasks; for example He et al. (2015) 
were able to surpass human test subjects (Russakovsky et al. 
2015) when selecting the 5 most likely out of 1,000 categories 
where the most common error by the test subjects was fail-
ure to consider relevant classes. Deep learning is the primary 
method most often used and is a new take on traditional neural 
networks where the main difference is the number of layers. 
Neural networks are computational versions of biological 
nervous systems. They use mathematics to weigh the input 
and output from individual neurons and compute the best 
way to process information to reach a desired outcome, i.e. 
least errors. This could for example be to scan and recognize 
features of a radiograph (Erickson et al. 2017). Originally the 
networks consisted of a single layer of neurons but the rapid 
increase in computational power allows newer networks to 
have many layers of neurons communicating with each other. 
Modern networks can have anything ranging from 8 to 1,000 
layers, hence the deep in “deep learning”, enabling complex 
interpretation and decision-making. While deep learning and 
AI has been a hot topic in mainstream media (DeAngelis 2014, 
Hardy 2016, Hern 2016, Rhodes 2016) and believed by many 
to be the next technological revolution, it has so far never been 
applied in an orthopedic setting for radiographs.

The aim of this study was to see if standard deep learning 
networks can be trained to identify fractures in orthopedic 
radiographs. Secondarily we also examined whether deep 
learning could be used to determine additional features such 
as body part, exam view, and laterality.
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Methods
Setting
We extracted 256,458 hand (including scaphoid projec-
tions), wrist, and ankle radiographs, with associated radiol-
ogist reports, taken between the years 2002 and 2015 from 
Danderyd Hospital’s Picture Archiving and Communication 
System (PACS) identifi ed through the Radiology Information 
System (RIS). 

Exposure
The deep learning networks were exposed to a single image 
at a time. Each image was cropped and rescaled to 256 x 256 
pixels, about 10–20% of original size (see Figure 1 for exam-
ple images). The rescaling was performed to match the pre-
defi ned image size of each network (see Supplementary data 
for explanation) and the images were stretched to retain maxi-
mum information. While the images are distorted after this 
pre-processing, it is important to keep in mind that the tasks 
the network needed to perform did not require a non-distorted 
image, e.g. measuring angles.

Outcome labels
The images, image metadata, and radiologist reports were 
merged and anonymized (see Supplementary data for details) 
before deducing the labels. We identifi ed 4 basic outcome 
labels that were used for training the networks:
• Fracture: the presence of a fracture was deduced from a 

combination of multiple visits together with identifi cation 
of keywords and expressions identifi ed through an auto-
mated language extraction software applied to the radiolo-
gist’s report. 

• Laterality: whether it was left or right. This information 
was generally present in the image meta-data (the DICOM 
header, see Supplementary data for details), otherwise it 
was assumed that if the examination before and after was 
of the same side, the intermediate would most likely also 
belong to that side.

• Exam view: The type of view (anteroposterior/frontal, lat-
eral, oblique (2 different types), and 4 scaphoid specifi c 
views (proximal, distal, ulnar, and radial) was also identifi ed 
via the image meta-data.

• Body part: Body part refers to the general body area: ankle, 
wrist, and hand. The latter had also subgroups of scaphoid, 
thumb, or fi nger. These were also identifi ed via the image 
meta-data.
Fracture was the primary outcome while the latter 3 were 

chosen for comparing the noisy fracture label with high-qual-
ity labels specifi c to orthopedic radiographs. These second-
ary outcomes are also important to any practical implementa-
tion where they can serve as quality control and validation, to 
minimize errors and for more advanced fracture classifi cation.

Deep learning framework
We selected 5 common, freely available, deep networks from 

a popular online library (the Caffe library (Jia et al. 2014)):
• BVLC Reference CaffeNet network (8 layers) (Krizhevsky 

et al. 2012);  
• VGG CNN S network (8 layers) (Chatfi eld et al. 2014);  
• VGG CNN (16 and 19 layers networks) (Shi Zhong et al. 

2014);  
• Network-in-network (14 layers) (Lin et al. 2013).  

The networks were adapted to the outcomes above and 
retrained for 13 epochs (1 epoch = 1 run through all images). 
The training was performed using stochastic gradient descent 
on 70% of the original images, where neurons are corrected 
by a tiny portion after each image (see Supplementary data 
for details).

Manual review of radiographs
To assess a network’s performance and understand where it 
fails, we manually investigated the errors for the best perform-
ing network. We benchmarked the network against a gold 
standard for the primary outcome for 400 images from the test 
dataset by reviewing each image in full resolution together 
with its alternative views and the radiologist’s report. 

We compared the network with human performance by 
allowing 2 senior orthopedic consultants (AS, OS) to identify 
fractures in the same 400 images at the same resolution as the 
network. The reviewers were blinded to the network’s and the 
other reviewer’s labels. We calculated the accuracy for com-
parison with the network and Cohen’s kappa as an interrater 
reliability estimate.

For secondary outcomes, unlike fractures, the label out-
come was extracted from the DICOM image header set for 
each individual image during the examination. Apart from 
random human error they were assumed to be correct and 
therefore only investigated for the network’s errors in order to 
understand the underlying cause of the errors. We randomly 
selected 200 misclassifi ed exam views and 200 misclassifi ed 
lateralities for review. The exam views were categorized as 
either correctly classifi ed or misclassifi ed, for all statistical 

Figure 1. 2 images from the dataset. The area within the red box is the 
section presented to the network in order to classify the image. The left 
image is of a wrist fracture while the right image is without any appar-
ent fracture.
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and computational purposes. To understand network errors 
for the image review the misclassifi ed images were divided 
into two subcategories, unrelated view and closely related 
view. Images in the closely related view were further divided 
into subcategories describing the most common noticed mis-
classifi cation errors. We furthermore reviewed all 86 misclas-
sifi ed body part images. The review was performed by AS, 
MG, and JO. 

Statistics
Confi dence intervals were computed using bootstrapping with 
10,000 bootstraps using the 2.5 and 97.5 percentile. Inter-
observer reliability for fractures was computed using Cohen’s 
exact Kappa between the observers and the best performing 
network.

Ethics, funding and potential confl icts of interest
The Stockholm Regional Ethical Review Board approved the 
study (2014/453-31/3). Financial support for the study was 
from funding from the Swedish Association of Local Authori-
ties and Regions. We also wish to gratefully acknowledge the 
support of the NVIDIA Corporation with the donation to this 
research of 2 Tesla K40 GPUs. MG, AS, OS, and AJ are share-
holders in DeepMed AB.

Results

We included 256,458 images, of which 56% of the images 
contained fractures. Ankles were the most common body part 
(38%), with right extremity (52%) slightly more common than 
left. The anteroposterior was the most common view (Table 
1).

General network performance
All networks performed with an accuracy of above 90% when 
identifying body part and exam view (Figure 2). For fractures 
there was a clear improvement in the networks with more 
layers and newer design principles (Network-in-Network). 
The best raw performance was exhibited by the VGG 16 lay-
ered network with an accuracy of 83%.

As VGG 16 layers had the best performance in the fracture 
class, our primary outcome variable, we selected it for manual 
review. When comparing the network with 2 senior orthopedic 
surgeons we found that the network performed on par with 
the humans (Table 2). The interrater reliability was adequate 
(Table 3); the 2 human observers generally agreed with each 
other (kappa = 0.8).

Outcome-specifi c details (Table 4)
The most common causes for misclassifi cation were (1) lack 
of information within the tested image and (2) image ambigu-
ity. In images labeled with fracture, we could frequently not 
see the fracture when reviewing the images. This was often 
because the fracture was only visible in another exam view 
within the same series. 

For our secondary outcomes, we reached accuracies of over 
99% on body part (6 outcomes), 95% on exam view (7 out-
comes), and 90% on laterality.

Table 1. Raw image and label data for a total of 
256,458 images. 70% were reserved for train-
ing, 20% for validation, and 10% for testing

Label n  (%)

Fracture 
  No 111,275 (43)
  Yes 143,183 (56)
  Missing 2,000 (1)
Side 
  Left 120,377 (47)
  Right 132,511 (52)
  Missing 3,570 (1)
Exam view 
  Distal 7,136 (3)
  AP 55,916 (22)
  Oblique 44,962 (18)
  Proximal 6,776 (3)
  Radial 6,946 (3)
  Lateral 67,465 (26)
  Ulnar 7,014 (3)
  Missing 60,243 (24)
Exam body part 
  Finger 390 (0.2)
  Thumb 76 (0)
  Scaphoid 27,962 (11)
  Hand 5,614 (2)
  Wrist 65,264 (25)
  Ankle 98,002 (38)
  Missing 59,150 (23)

a 3 different types
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Figure 2. Performance of the 5 networks. An epoch is 1 
pass over all images.
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For the “wrong, but similar views” category, projections 
were often ambiguous due to incorrectly positioned limbs, i.e. 
somewhere in between two standard projections. Many of the 
scaphoid images were noted to be non-standard projections. 
For ankle projections, the network often caught the intention 
of the image, i.e. the label, but poor angles ultimately resulted 
in a different projection. This was especially true for oblique 
and lateral views.

Body part, with 6 categories, had close to perfect accuracy 
with only 86 images not matching the original label. Studying 
the errors, we found that the errors were often not errors at 
all, but rather that the network found “hidden” or “equivalent” 
features of the image. Common errors were a mix-up of hand 
and wrist in projections where both were clearly visible. Other 
errors were fi nger/thumb or fi ngers/hand.

For laterality, the dominant error—two-thirds of the cases—
was that the marker with the “Sin”/“Dx” text was not visible 

due to the image cropping. For the remaining cases, in 5 times 
out of 6 the network was correct and the metadata incorrect, 
i.e. human error.

Discussion

We found that standard deep learning networks could ade-
quately identify key image properties in orthopedic radio-
graphs despite the limited image quality. The best network had 
a similar accuracy to the performance of 2 senior orthopedic 
consultants when compared under the same conditions. The 
most common causes for errors were lack of data and ambigu-
ity in the image. 

The ability to classify an unlimited amount of radiograph 
images will most likely have a major impact on orthopedics. 
We can now review images on an unprecedented scale in 
our digital picture archives and link them to outcomes. Apart 
from identifying traditional orthopedic measures such as wrist 
angles we can also let the algorithms search for new patterns, 
for example we can go beyond simple angles into complex 
patterns that combine angles, comminution, and bone quality. 
As many of our fracture classifi cations lack prognostic value 
(Shehovych et al. 2016), often with questionable inter-observer 
reliability (Audigé et al. 2005), the option of aiding the classifi -
cation using a computer algorithm is of great interest.

Furthermore, since machine-learning algorithms do not 
have preconceived notions of what is interesting within an 
image, it is possible that we will fi nd new, previously unknown 
predictors. For instance, when predicting breast cancer prog-
nosis a machine-learning algorithm found that in addition 
to the already known histological aspects of tumor cells the 
surrounding stroma was also of value for prognosis (Beck et 
al. 2011). It is therefore likely that orthopedics will be sub-
stantially infl uenced in the coming decade as this technology 
evolves.

Our study shows that networks originally developed for 
other tasks than skeletal imaging can be applied to skeletal 
radiographs with minimal intervention. While to our knowl-
edge our study is the fi rst to show that deep learning works for 
orthopedic radiographs, it has previously been investigated for 

Table 4. Manual review of classifi cations where the network failed 

Error n (%)

Fracture
 Correctly classifi ed 276 (69)
 Misclassifi ed 124 (31)
Laterality
 Correct laterality   52 (26)
 Misclassifi ed     8 (4)
 Marker missing 140 (70)
Body part
 Correct body part   17
 Related body part   51
 Unrelated body part   15
 Invalid image     3
Exam view
 Correct view 110 (55)
 Misclassifi ed   90 (45)
     Unrelated view   12 (6)
     Closely related view   78 (39)
          Ankle: mix-up between AP and mortise   22 (11)
          Ankle: mix-up between oblique and lateral   23 (12)
          Scaphoid: mix-up between supination and pronation   14 (7)
          Scaphoid: mix-up between distal and proximal     7 (4)
          Miscellaneous   12 (6)

Table 2. Observer fracture outcome compared 
with gold standard

Category Accuracy (%) 95% CI (%)

Labels a 83 79–87
VGG 16 layers 83 80–87
Reviewer 1 82 78–86
Reviewer 2 82 78–85

a 4 labels were missing outcome and were 
excluded from the analysis for this category.

Table 3. Outcomes compared between observers. Accuracy is the percentage of out-
comes where both observers agree, presented with Cohen’s kappa

Observer Accuracy % (Kappa) 
  Label a Network Reviewer 1 Reviewer 2 Gold standard

Label a  – 80 (0.6) 76 (0.5) 74 (0.5) 83 (0.7)
Network 80 (0.6) – 84 (0.7) 86 (0.7) 83 (0.7)
Reviewer 1 76 (0.5) 84 (0.7) – 90 (0.8) 82 (0.6)
Reviewer 2 74 (0.5) 86 (0.7) 90 (0.8) – 82 (0.6)
Gold standard 83 (0.7) 83 (0.7) 82 (0.6) 82 (0.6) –

a 4 labels were missing outcome and were excluded from the analysis for this category.
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other medical domains, including spine MRIs (Jamaludin et 
al. 2017). Others have identifi ed pathologies in 2-dimensional 
slices of CT -images (Shin et al. 2015, 2016, Tajbakhsh et al. 
2016) as well as in chest radiographs (Bar et al. 2015).

While the deeper layered models outperform the older and 
shallower models in every category, suggesting that the extra 
computational work of modern networks is worthwhile, for 
some groups the difference was small. In our networks (Figure 
1) we see that the initial progress in training is rapid, with most 
progress taking place within the fi rst 5 passes (epochs) over 
the training data. Overfi tting means that the network learns 
to identify each image with its particular outcome instead of 
the pattern that makes up the outcome. When new images 
are introduced the network fails to interpret them correctly 
and accuracy falls. We saw no tendencies towards overfi tting 
during training or testing. This was likely due to the large data 
set and the fact that the training and validation sets were resa-
mpled at each epoch.

We were surprised that the top networks also performed 
better that the others on trivial tasks such as “laterality” where 
the main task is to identify the “Sin” and “Dx” markers. Since 
the training images were randomly mirrored, effects such as a 
right hand mostly appearing with the thumb to the left should 
have been eliminated. Our interpretation is that there must 
be additional laterality indicators apart from the markers that 
we did not expect to fi nd. This could possibly be due to the 
dominant side being used more and having a different bone 
structure. 

Limitations
The neural networks use labelled images as input, and the 
quality of image labels is therefore a fundamental limitation. 
The current data are labeled by trained specialists with years 
of experience but come in the form of raw text from which 
labels need to be extracted. This is due to the complex lan-
guage being inherently diffi cult, and in this study we have 
manually identifi ed key phrases. Improved use of the reports 
and information is therefore of great interest. Using Natural 
Language Processing (NLP), another fi eld of machine learn-
ing, more information could be extracted.

The current networks used only a single image for classifi -
cation. Often an examination will contain a series of images 
in different projections, since pathologies may not be visible 
in 1 image but very well seen in another. This limitation was 
also supported by our manual review. Expanding the networks 
to manage multiple images is therefore a natural next step. 
Possible network designs could be reusing the same network 
multiple times and then gathering the data by a separate net-
work that classifi es the image, also known as Siamese net-
works (Zbontar and LeCun 2016), or using a network with a 
memory that remembers the previous images, also known as 
recurrent neural network (LeCun et al. 2015).

The number of labels/classes is limited and needs to be 
increased to be clinically useful. It would be possible to 

include more advanced screening of the reports for other 
diagnostic criteria to label images. It could also be possible to 
use automated language interpretation technologies to extract 
information for image labels (Shin et al. 2015). This does, 
however, raise a second more fundamental issue. Radiologists’ 
reports are usually written as answers to questions (usually a 
series of diagnoses) posed by the physician in the exam refer-
ral. Thus some information contained in the image might be 
purposely omitted in the report as it has no bearing on the cur-
rent question or might already be clearly stated in the referral. 
As these pathologies are not mentioned in the report, they will 
be impossible to extract for image labelling and assumed to be 
non-present. This can inhibit network training for labels rarely 
asked for in trauma referrals but that may still be common, e.g. 
osteoarthritis in wrists. Including other journal data such as 
referral and other patient records would be an excellent way to 
improve labels but may raise privacy concerns.

Strengths
We used a large data set with 256,000 images where the net-
works’ potential was no’t limited by overfi tting but by the net-
work design and quality of the training labels. 

We believe that deep learning will have a great impact on 
orthopedics in the coming years. We propose that our current 
results could be useful in the emergency room as a method 
for fast screening when radiologists or orthopedists are not 
readily available, e.g. night-time at smaller hospitals. Future 
results will most likely allow us to improve diagnostic accu-
racy, classify fractures on a large scale, and identify new prog-
nostic features.

Supplementary data
Supplementary data are available in the online version of this 
article, http://dx.doi.org/ 10.1080/17453674.2017.1344459
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