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Abstract

Phylogenetic analyses which include fossils or molecular sequences that are sampled through time require models that
allow one sample to be a direct ancestor of another sample. As previously available phylogenetic inference tools assume
that all samples are tips, they do not allow for this possibility. We have developed and implemented a Bayesian Markov
Chain Monte Carlo (MCMC) algorithm to infer what we call sampled ancestor trees, that is, trees in which sampled
individuals can be direct ancestors of other sampled individuals. We use a family of birth-death models where individuals
may remain in the tree process after sampling, in particular we extend the birth-death skyline model [Stadler et al., 2013] to
sampled ancestor trees. This method allows the detection of sampled ancestors as well as estimation of the probability that
an individual will be removed from the process when it is sampled. We show that even if sampled ancestors are not of
specific interest in an analysis, failing to account for them leads to significant bias in parameter estimates. We also show that
sampled ancestor birth-death models where every sample comes from a different time point are non-identifiable and thus
require one parameter to be known in order to infer other parameters. We apply our phylogenetic inference accounting for
sampled ancestors to epidemiological data, where the possibility of sampled ancestors enables us to identify individuals
that infected other individuals after being sampled and to infer fundamental epidemiological parameters. We also apply the
method to infer divergence times and diversification rates when fossils are included along with extant species samples, so
that fossilisation events are modelled as a part of the tree branching process. Such modelling has many advantages as
argued in the literature. The sampler is available as an open-source BEAST2 package (https://github.com/CompEvol/
sampled-ancestors).
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Introduction

Phylogenetic analysis uses molecular sequence data to infer

evolutionary relationships between organisms and to infer

evolutionary parameters. Since the introduction of Bayesian

inference in phylogenetics [1–3], it has become the standard

approach for fully probabilistic inference of evolutionary history

with many popular implementations [4–7] of Markov chain

Monte Carlo (MCMC) [8,9] sampling over the space of

phylogenetic trees. Initial descriptions of Bayesian phylogenetic

analysis were restricted to considering bifurcating trees [1,2], but

have been extended to include explicit polytomies [10]. Here we

tackle phylogenetic inference with trees that may contain sampled

ancestors [11].

Standard phylogenetic models developed for inferring the

evolutionary past of present day species assume that all samples

are terminal (leaf) nodes in the estimated phylogenetic tree.

However, serially sampled data generated by different evolutionary

processes can be analysed using phylogenetic methods [12] and, in

some cases, the assumption that all sampled taxa are leaf nodes is

not appropriate.

One case in point is when inferring epidemiological parameters

from viral sequence data obtained from infected hosts [13–17].

Viral sequences are obtained from distinct hosts and treated as

samples from the transmission process. Using standard phyloge-

netic models (such as coalescent or birth-death models) to describe

the infectious disease transmission process entails the assumption

that a host becomes uninfectious at sampling (where sampling is

obtaining a sequence or sequences from the pathogen population

residing in a single infected host). However in many cases, hosts

remain infectious after sampling and, when sampling is sufficiently

dense, the probability of sampling an individual that later infects

another individual which is also sampled is not negligible [18–20].

A recent analysis of a well-characterised HIV transmission chain

[20] employed a hierarchical model of a gene tree inside a

transmission tree to infer the differences in evolutionary rates
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(substitution rates) within and among hosts. Hierarchical model-

ling of gene trees inside transmission trees has also been used to

infer transmission events for small epidemic outbreaks where

epidemiological data is available in the form of known infection

and recovery times for each host [16]. In both cases the inference

of transmission trees assumes complete sampling of the hosts

involved, and the host sampling process is not explicitly modelled.

Incomplete sampling is explicitly accounted for by birth-death-

sampling models [15,21–23], and the probability density functions

of the trees are available in closed form, thus making these models

tractable for use in Bayesian inference. The birth-death-sampling

models do not assume that individuals are removed from the tree

process after the sampling. However, using models that allow for

infection after sampling has not been possible due to a lack of

software, meaning that many analyses simply ignore the possibility

of sampled ancestors [15,23].

Another problem that may require sampled ancestor models is

inferring species divergence times using fossil data. Without the

means to calibrate the times of divergences, the length of branches

in the estimated molecular phylogeny of contemporaneous

sequences are typically described in units of expected substitutions

per site. Geologically dated fossil data can be employed to

calibrate a phylogenetic tree, thus providing absolute branch

lengths in calendar units. The most common approach here is to

specify age limits or a probability density function on specific

divergence times in the phylogeny, where the constraints are

defined using the fossil data [24–28]. There are several drawbacks

connected to this approach [29,30]. First, there is potential for

inconsistency when applying two priors on the phylogeny [31]: a

calibration prior on one or more divergence times and a tree

process prior on the entire tree. Second, it is not obvious how to

specify a calibration density so that it accurately reflects prior

knowledge about divergence times [29,30]. Finally, such densities

usually only use the oldest fossil within a particular clade, thus

discarding much of the information available in the fossil record

[30].

Other methods for dating with fossils have been developed

recently [32]. One approach that addresses the problems of the

node calibration method requires modelling fossilisation events as

a part of the tree process prior. This allows for the joint analysis of

fossil and recent taxa together in a unified framework [29,30,33–

36]. Models that jointly describe the processes of macroevolution

and fossilisation should account for possible ancestor-descendant

relationships between fossil and living species [37], and thus

include sampled ancestors.

Wilkinson and Tavaré [38] used the inhomogeneous birth-

death process with sampled ancestors and approximate Bayesian

computation methods to estimate divergence times from fossil

records and known features of the extant phylogeny. A birth-death

model with sampled ancestors has been used to estimate speciation

and extinction rates from phylogenies in [22]. Heath et al. [30]

have used this model (they call it the fossilized birth-death process)
to explicitly model fossilisation events and estimate divergence

times from molecular data and fossil records in a Bayesian

framework. In their approach, the tree topology relating the extant

species has to be known for the inference [30]. So a method that

simultaneously estimates the divergence times and tree topology

while modelling incorporation of sampled fossil taxa is an obvious

next step.

Full Bayesian MCMC inference using models with sampled

ancestors is complicated by the fact that such models produce

trees, which we call sampled ancestor trees [11], that are not strictly

binary. They may have sampled nodes that lie on branches,

forming an internal node with one direct ancestor and one direct

descendent. Thus, modelling sampled ancestors induces a tree

space where the tree has a variable number of dimensions (a

function of the number of sampled ancestors), which necessitates

extensions to the standard MCMC tree sampling algorithms.

Here we describe a reversible-jump MCMC proposal kernel

[39] to effectively traverse the space of sampled ancestor trees and

implement it within the BEAST2 software platform [6]. We study

the limitations of birth-death models with sampled ancestors and

extend the birth-death skyline model [23] to sampled ancestor

trees. We apply the new posterior sampler to two types of data: a

serially sampled viral data set (from HIV), and molecular

phylogeny of bear sequences with fossil samples.

Methods

Tree models with sampled ancestors
In this section, we consider birth-death sampling models

[15,21–23] under the assumption that sampled individuals are

not necessarily removed from the process at sampling. This results

in a type of phylogenetic tree that may contain degree two nodes

called sampled ancestors.
An important characteristic of the models we consider here is

incomplete sampling, i.e., we only observe a part of the tree

produced by the process. Consider a birth-death process that starts

at some point in time (the time of origin) with one lineage and then

each existing lineage may bifurcate or go extinct. Further, the

lineages are randomly sampled through time. An example of a full
tree produced by such process is shown in Figure 1 on the left. We

have information only about the portion of the process that

produces the samples, shown as labeled nodes, and do not observe

the full tree. Thus we only consider this subtree relating to the

sample, which is called the reconstructed tree (or the sampled tree)

and is shown on the right of Figure 1.

The sampled ancestor birth-death model. Here we

describe a serially-sampled birth-death model with sampled

ancestors [15,21]. First we describe a variant of the model suited

to modelling transmission processes and then we extend the model

to describe speciation and fossilization processes.

Author Summary

A central goal of phylogenetic analysis is to estimate
evolutionary relationships and the dynamical parameters
underlying the evolutionary branching process (e.g.
macroevolutionary or epidemiological parameters) from
molecular data. The statistical methods used in these
analyses require that the underlying tree branching
process is specified. Standard models for the branching
process which were originally designed to describe the
evolutionary past of present day species do not allow one
sampled taxon to be the ancestor of another. However the
probability of sampling a direct ancestor is not negligible
for many types of data. For example, when fossil and living
species are analysed together to infer species divergence
times, fossil species may or may not be direct ancestors of
living species. In epidemiology, a sampled individual (a
host from which a pathogen sequence was obtained) can
infect other individuals after sampling, which then go on
to be sampled themselves. The models that account for
direct ancestors produce phylogenetic trees with a
different structure from classic phylogenetic trees and so
using these models in inference requires new computa-
tional methods. Here we developed a method for
phylogenetic analysis that accounts for the possibility of
direct ancestors.

Bayesian Inference of Sampled Ancestor Trees
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The process begins at the time of origin torw0 measured in time

units before the present. Moving towards the present, each existing

lineage bifurcates or goes extinct according to two independent

Poisson processes with constant rates l and m, respectively.

Concurrently, each lineage is sampled with Poisson rate y and is

removed from the process at sampling with probability r. The

process is stopped at time 0. This process can be used to model the

transmission of infectious disease and we call it the transmission
birth-death process.

The transmission process involves sampling individuals and

produces trees that have degree two nodes corresponding to

sampling events when a lineage was sampled but was not removed.

We call these trees sampled ancestor trees (whether or not any

sampled ancestors are present). The reconstructed tree has degree-

two nodes when a lineage is sampled but not removed and then it,

or a descendent lineage, is sampled again. The reconstructed tree

in Figure 1 (on the right) is an example of a sampled ancestor tree.

Note that the root of a sampled ancestor tree is the most recent

common ancestor of the sampled nodes and therefore it may be a

sampled node. There is no origin node in the tree because the time

of origin is a model parameter and not an outcome of the process.

A tree (or genealogy) g consists of the discrete component T ,

which is called a tree topology, and the continuous component �tt,

which is called a time vector. The tree topology of a sampled

ancestor tree is a sampled ancestor phylogenetic tree, which is a

ranked labeled phylogenetic tree with labeled degree-two vertices

(a rigorous definition of a sampled ancestor phylogenetic tree can

be found in [11], where it is called an FRS tree). The time vector is

a real-valued vector of the same dimension as the number of ranks

(nodes) in the tree topology and with coordinates going in the

descending order so that each node in the tree topology can be

unambiguously assigned a time from the time vector.

Further, we have three types of nodes: bifurcation nodes,

sampled tip nodes, sampled internal nodes. Let m be the number

of leaves, then m{1 is the number of bifurcation events. Let

�xx~(x1, . . . ,xm{1) be a vector of bifurcation times, where

xm{1v . . . vx1. Let �yy~(y1, . . . ,ym) be a vector of tip times,

where ymv . . . vy1. Further let �zz~(z1, . . . ,zk) be a vector

of times of sampled two degree nodes, where zkv . . . vz1 and

k is the number of such nodes. Then �tt can be obtained

by combining elements of �xx, �yy, and �zz and ordering them in the

descending order (see also Figure 1). A genealogy may be written

as (T ,�xx,�yy,�zz).

Stadler et al. [15] derived the density of a genealogy

g~(T ,�xx,�yy,�zz) given the transmission birth-death process parame-

ters l,m,y,r and time of origin tor. In [21], it was indicated that we

should also condition on the event, S, of sampling at least one

individual because only non-empty samples are observed. The

density is

f ½gDl,m,y,r,tor,S�~
1

(mzk)!

(y(1{r))kq(tor)

1{p0(tor)
P

m{1

i~1
2lq(xi)

P
m

i~1

y(rz(1{r)p0(yi))

q(yi)
,

ð1Þ

where the function p0(x) is the probability that an individual has

no sampled descendants for a time span of length x so that

p0(x)~

lzmzyzc1
e{c1x(1{c2){(1zc2)

e{c1x(1{c2)z(1zc2)

2l

where

c1~D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(l{m{y)2z4ly

q
D, c2~{

l{m{y

c1

Figure 1. Full tree versus reconstructed tree. A full tree produced by the sampled ancestor birth-death process on the left and a reconstructed
tree on the right. The sampled nodes are indicated by dots labeled by letters A through H. Nodes A, B and D are sampled ancestors. The
reconstructed tree is represented by a sampled ancestor tree g~(T ,(x1,x2,x3,x4,y1,z1,z2)), where T denotes the ranked tree topology and �xx, �yy, and �zz
denote the node ages. In the reconstructed tree the root is a sampled node. In the skyline model, birth-death parameters vary from interval to
interval. There are two intervals in this figure bounded by the time of origin t0 , parameter shift time t1 , and present time t2 . Between t0 and t1

parameters l1, m1 , y1 and r1 apply and between t1 and t2 parameters l2 , m2 , y2 , and r2 . There are additional sampling attempts at times t1 and t2 with
sampling probabilities r1 and r2.
doi:10.1371/journal.pcbi.1003919.g001
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and

q(x)~
4

2(1{c2
2)ze{c1x(1{c2)2zec1x(1zc2)2

:

Throughout this paper, we consider non-oriented labeled trees (in

oriented trees, each non-root node is labeled as the left or right

child of its parent). So equation (1) differs from the equation on

page 350 in [15], written for oriented trees, by a factor accounting

for the switch from oriented to labeled trees and also by the term

for conditioning on S. Note also that the definition of the function

q here is different from the definition in [15].

We show in the Supporting Information (Theorem 2 in Text S1)

that function (1) depends only on three parameters: l{m{y, ly,

and y(1{r), and does not depend on parameters l, m, y and r
independently. This means that the tree model is unidentifiable

but, as we show in simulation studies, if we specify one of the

parameters we can estimate the others.

When applying this model to data, we typically shift time

such that the most recent tip occurs at present, ym~0, as we

often do not have information about the length of time

between the last sample and the end of the sampling effort.

This is done to reduce our set of unknown quantities by one

(namely setting ym~0).

We extend the model to allow the possibility of sampling

individuals at present, where each lineage at time 0 is sampled

with probability r. This process, with r set to zero (which

implies that an individual is not removed from the process after

sampling) can be used to model speciation processes with

fossilisation events, hence it is called the fossilized birth-death
process [30]. Let Sr denote the event of sampling at least one

individual at present then according to [21] and accounting for

labeled trees:

f ½gDl,m,y,r,tor,Sr�~
1

(mzk)!

ykrnq(tor)

1{p̂p0(tor)

P
mzn{1

i~1
2lq(xi) P

m

i~1

yp0(yi)

q(yi)

ð2Þ

where n is the number of r-sampled tips, p0, q and c1 defined

as above with

c2~{
l{m{2lr{y

c1

and

p̂p0(tor)~1{
r(l{m)

lrz(l(1{r){m)e{(l{m)t
:

In contrast to the transmission birth-death process, where only

three out of the four parameters l, m, y, and r can be inferred,

under the fossilized birth-death process, all four parameters l,

m, y, and r can be identified from the phylogeny as we show in

simulation studies.

It is possible to re-write density (2) conditioning on the time

of the most recent common ancestor of sampled individuals

rather than conditioning on the time of origin. In this case, we

discard trees in which the root is a sampled node. In other

words, we assume that the process starts with a bifurcation

event and we only consider trees with sampled nodes on both sides

of the initial bifurcation event. Then the time of the most recent

common ancestor of the sample is the time of the root, x1.

Accounting for labeled trees, the probability density function can thus

be written [21] as:

f ½gDl,m,y,r,x1,Sr�~
1

(mzk)!

ykrnq(x1)

l(1{p̂p0(x1))2

P
mzn{1

i~1
2lq(xi) P

m

i~1

yp0(yi)

q(yi)
:

ð3Þ

where p0, p̂p0, and q are defined as in equation (2).

The probability of an individual sampled at time t before

present to be a sampled ancestor is

(1{r)(1{p0(t)):

Thus, the fact that an individual is a sampled ancestor depends on

whether the individual stays in the process after it is sampled or not

(determined by r), the rate of population growth (l and m),

sampling rates (y and r) and the amount of time (t) elapsed until

present. If the population grows fast and/or the sampling rate is

high and/or the amount of time elapsed is large then the

probability of an individual sampled at time t (before present)

leaving sampled descendants is high.

The sampled ancestor skyline model. Here we extend the

sampled ancestor birth-death model so that parameters may

change through time in a piecewise manner. This model combines

two models from [15] and [23].

Let there be l time intervals ½ti,ti{1) for i[f1, . . . ,lg defined by

vector �tt~(t0, . . . ,tl{1) and tl~0 with tlvtl{1v . . . vt1vt0

(where t0 plays the role of the origin time, i.e., tor~t0). We use

notation tl for time zero only for convenience and do not include it as a

model parameter. Within each interval ½ti,ti{1), i[f1, . . . ,lg the

constant birth-death parameters li, mi, yi, and ri apply. At the end of

each interval at times ti, i[f1, . . . ,lg, each individual may be sampled

with probability ri (see also Figure 1). Thus, the model has 6l

parameters: �ll, �mm, �yy, �rr, �rr, and �tt. We prove in the Supporting

Information (Theorem 1 in Text S1) that the probability density of a

reconstructed sampled ancestor tree g~(T D�xx,�yy,�zz) produced by this

process is (not conditioned on survival),

f ½gD�ll,�mm,�yy,�rr,�rr,�tt�~ 1

(mzMzkzK)!
|

q1(t0) P
k

i~1
(1{rizi

)yizi
P

mzM{1

i~1
2�lixi

qixi
(xi) P

m

i~1

yiyi
(riyi

z(1{riyi
)piyi

(yi))

qiyi
(yi)

|

P
l

i~1
((1{ri)qiz1(ti))

ni r
Ni
i ((1{riz1)qiz1(ti))

Ki (riz1z(1{riz1)piz1(ti))
Mi

ð4Þ

where m is the number of y-sampled tips; k is the number of y-

sampled nodes that have sampled descendants; Mi is the number of

tips sampled at time ti; Ki is the number of nodes sampled at time ti

and having sampled descendants; Ni~KizMi is the total number of

nodes sampled at time ti; ni is the number of lineages present in the tree

at time ti but not sampled at this time for i[f1, . . . ,lg; M~
Pl
i~1

Mi;

K~
Pl

i~1

Ki; ix is an index such that tixƒxvtix{1; and functions pi

and qi are defined presently.

The probability pi(t) that an individual alive at time t has no

sampled descendants when the process is stopped (i.e., in the time

interval ½tl ,t�), with tiƒtvti{1 (i~1, . . . ,l) is

ð4Þ

Bayesian Inference of Sampled Ancestor Trees
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pi(t)~

lizmizyi{Ai
eAi (t{ti )(1zBi){(1{Bi)

eAi (t{ti )(1zBi)z(1{Bi)

2li

where

Ai~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(li{mi{yi)

2z4liyi

q
and

Bi~
(1{2(1{ri)piz1(ti))lizmizyi

Ai

for i~1, . . . ,l and plz1(tl)~1. Further,

qi(t)~
4eAi (t{ti )

(eAi (t{ti )(1zBi)z(1{Bi))
2

for i~1, . . . ,l. Note that qlz1(tl) does not appear in the equation

because nl (which is the number of lineages present in the tree at

time tl but not sampled at that time) and Kl (which is the number

of two degree nodes at time tl ) are always zero. Also, rlz1 cancels

out because Kl is always zero and plz1(tl)~1.

We obtain two special cases of this general model that

correspond to the skyline variants of the transmission and fossilized

birth-death processes by setting some of the parameters to zero.

To obtain the skyline transmission process, we set �rr~0. This

implies Ki~0, Mi~0, and Ni~0 for all i. As before, we condition

on the event, S, of sampling at least one individual, where

f ½SD�ll,�mm,�yy,�tt�~1{p1(t0). The tree density is

f ½gj�ll,�mm,�yy,�rr,�tt,S�~ 1

(mzMzkzK)!
|

q1(t0)

1{p1(t0)
Pk

i~1(1{rizi
)yizi

Pm{1
i~1 2lixi

qixi
(xi)P

m
i~1

yiyi
(riyi

z(1{riyi
)piyi

(yi))

qiyi
(yi)

P l
i~1(qiz1(ti))

ni :

ð5Þ

We show in the Supporting Information (Theorem 2 in Text S1)

that (5) can be re-parameterised with

di~li{mi{yi for i~1, . . . ,l

fi~liyi for i~1, . . . ,l

gi~(1{ri)yi for i~1, . . . ,l, and

ki~
li

liz1
for i~1, . . . ,l{1:

ð6Þ

Thus, of the original 4l parameters, only 4l{1 may be estimated.

For the skyline fossilized birth-death model, we set r1, . . . ,rl{1~0
and �rr~0 and condition on Sr, the event of sampling at least one

extant individual (i.e., at time tl ). The tree density becomes

f ½gD�ll,�mm,�yy,rl ,�tt,Sr�~
1

(mzMzkzK)!
|r

Nl
l

q1(t0)

1{p̂p1(t0)
P
k

i~1
yizi

P
mzNl{1

i~1
2lizi

qixi
(xi) P

m

i~1

yiyi
piyi

(yi)

qiyi
(yi)

P
l

i~1
(qiz1(ti))

ni

ð7Þ

where

p̂p1(t)~p1(tD�yy~0):

This probability density can be re-parameterised as in (6) with one

additional equation h~llrl (see Text S1). Now there are 3lz1 initial

parameters: �ll, �mm, �yy, and rl and 4l equations defining the re-

parameterisation. Since ri~0, gi defines yi, then fi yields li, then di

yields mi, h yields rl and the l{1 equations for ki are not needed at all,

thus 3lz1 equations define the re-parameterisation of the 3lz1
parameters and this re-parameterisation does not reduce the number of

parameters.

Markov chain Monte Carlo operators
We introduce a number of operators to explore the space of

sampled ancestor trees with a fixed number of sampled nodes.

Throughout this section, we denote the height (or the age) of a

node a by ta.
Extension of the Wilson-Balding operator. We extend the

Wilson-Balding operator (a type of subtree prune and regraft) [40]

to sampled ancestor trees so that it is identical to the original

implementation in BEAST [41] when it is restricted to trees with

no sampled ancestors. The operator may propose a significant

change to a tree and may change its dimension, that is, the

number of nodes in the tree. We use the reversible jump formalism

of [39].

First, we describe a reduced version of the operator that does

not change the root. Let g~(T ,�tt) be a genealogy. There are three

steps in proposing a new tree.

1. Choose edge e1~Sp1,c1T uniformly at random such that p1 is

not the root (p1 is the parent of c1). Recall that we do not

consider the origin as a node belonging to the tree.

2. Choose either edge e2~Sp2,c2T or leaf l. The method of

selection depends on the type of e1:

(a) if node c1 has a sibling then, uniformly at random from all

possibilities, either choose edge e2 which is not adjacent to e1

and at least one end of which is above c1 (i.e., p2 is older than

c1) or leaf l which is older than c1;

(b) if node c1 does not have a sibling (so p1 has only one

child, i.e., it has degree two and thus is a sampled node)

then choose edge e2 such that at least one of its ends is

older than c1 or a leaf which is older than c1 uniformly at

random.

If there is no such edge nor leaf then the proposal is rejected.

3. If an item was chosen in step 2, then prune the subtree rooted

at node p1 and reattach it to edge e2 or leaf l. When attach-

ing to an edge, we draw a new height for the parent of

node c1 uniformly at random from the interval

½max (tc1
,tc2

),tp2
�.

Figure 2 illustrates pruning from a branch (case 2a) and from a

node (case 2b) and attaching to a branch and to a leaf. Let the

resulting new genealogy be g�~(T �,�tt�).
Now we extend this move to add the possibility of changing the

root. We modify the described procedure as follows. We allow e1

for which p1 is the root to be chosen at the first step, and we allow

the root edge (i.e., the edge which connects the root with the

origin) to be chosen at the second step. Although we do not usually

ð5Þ
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consider this edge as a part of the tree, for convenience we assume

we can choose it. In this case, the parent of node c1 becomes a new

root with the height obtained by drawing a difference between the

new root height and the old root height from the exponential

distribution with rate le.

To calculate the Hastings ratio,
q(g�Dg)

q(gDg�)
, for this move we derive

the proposal density, q(g�Dg). q(g�Dg) is a product of the probability

of choosing edge e1 at the first step, the probability of choosing

edge e2 (or leaf l) at the second step, and the probability density of

choosing a new age at the third stage (or one if we attach to a leaf).

Let D denote the number of edges in tree T . Then the

contribution of the first step to the proposal density is
1

D
. The

probability at the second step depends on the number of choices

there. However, since we choose the same subtree to prune in the

forward and backward moves and then, at step two, choose from

the items remaining in the tree after pruning the subtree, the

second terms in the product will cancel in the ratio and we do not

calculate them.

The contribution of the third step depends on the type of

move. When attaching to a leaf it is equal to one. When attaching

to a branch it is equal to the probability density of a random

variable tnew which defines a new age for the parent of c1. So it is

either

f (tnew)~
1

DI1D
, where I1~(tp2

, maxftc1
,tc2
g)

or

f (tnew)~
e{leh1 , if h1~tnew{t1w0;

0, otherwise:

(

where ta denotes the height of node a. The Hastings ratio for the

different cases is summarised in Table 1.

Leaf to sampled ancestor jump. This is a dimension

changing move that jumps between two trees where a particular

sampled node is a sampled ancestor in one tree and a leaf in the

other. The proposal starts by randomly choosing a sampled node i.

If i is a sampled ancestor, we propose a new tree where i is a leaf as

follows. Let p be the parent of i and c be the child of i. Create a

new node j with height chosen uniformly at random from the

interval ½ti,tp�. Make p the parent of j and make i (now a leaf) and

c the children of j.

Figure 2. The Wilson Balding operator. The operator proposes a sampled ancestor tree topology and node ages and may propose a tree of
larger or smaller dimension (the number of nodes in the tree) than the original tree. First, it prunes a subtree rooted at edge e1 (blue edge) either
from a branch, coloured black, in case a.1 or from a node, coloured black, in case a.2. Then it attaches the subtree either to an edge e2 (black edge) at
a random height in case b.1 or to a leaf l (black node) in case b.2. Case a.1 followed by b.2 removes a node from the tree and case a.2 followed by b.1
introduces a new node into the tree.
doi:10.1371/journal.pcbi.1003919.g002

Table 1. Hastings ratio for the extension of the Wilson Balding operator.

Pruning from/Attaching to internal branch leaf root branch

internal branch DI2 D
DI1 D

D

(D{1)

1

DI1 D
eleh2

DI1D

internal node D

(Dz1)
DI2 D

1 D

(Dz1)
eleh2

root branch DI2 D
eleh1

D

(D{1)

1

eleh1

-

The table summarises the Hastings ratio
q(g� Dg)

q(gDg�)
for the extended Wilson Balding operator.

doi:10.1371/journal.pcbi.1003919.t001
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If i is a leaf then it becomes a sampled ancestor replacing its

parent if possible. It is not possible if i has no sibling or the

sibling of i is older than i. When this is possible, let node b be the

parent of i in the proposed tree. The Hastings ratio for this move

is
1

tp{ti

when i is a sampled ancestor and (tb{ti) when i is a

leaf.

Note that these same trees can be proposed under the extended

Wilson-Balding operator. We introduce this more specific, or local,

operator to improve mixing.

Other operators. We extend the narrow and wide exchange

operators used in BEAST2 [6] to sampled ancestor trees. The

narrow exchange operator swaps a randomly chosen node with

its aunt if possible. It chooses a non-root node c such that its

parent p is not the root either. If the parent b of node p is not a

sampled node and, therefore, has another child u and the height

of u is less than the height of c then we remove edges Sp,cT and

Sb,uT and add edges Sp,uT and Sb,cT. Otherwise the proposal is

rejected. The wide exchange operator swaps two randomly

chosen nodes along with the subtrees descendant from these

nodes if none of them is a parent to another one and the ages of

the parents allow to swap the children. The Hastings ratio is 1 for

both operators.

To propose height changes we use a scale operator and a

uniform operator. The scale operator scales non-sampled internal

nodes by a scale factor drawn from the uniform distribution on the

interval (
1

b
,b), where bw1. If the scaling makes some parent node

younger than either of its children then the proposal is rejected.

The Hastings ratio for this operator is ak{2, where a is the scale

factor and k is the number of internal non-sampled nodes (the

number of scaled dimensions). The uniform operator proposes a

new height for internal nodes chosen uniformly at random

from the interval bounded by the heights of the parent and the

oldest child of the chosen node. The Hastings ratio for this

operator is 1.

Simulations and empirical data analysis
Simulating the fossilized birth-death process. We simu-

lated 100 trees under the fossilized birth-death model (r-

sampling and r~0). We fix the tree model parameters in this

simulation:

l~1:5 tor~3:5

m~0:5 r~0:7

y~0:4

Since the time of the origin is one of the model parameters, we

simulate each tree on the time interval of 3:5. We discard

trees with less than five sampled nodes, which constitute 8% of

the simulated trees. The remaining trees have 55 sampled

nodes on average. Then we simulated sequences along each tree

under the GTR model with a strict molecular clock model and

ran the MCMC with the sequences and sampled node dates as

the input data. Note that the simulated data includes sequences

for y-sampled nodes. For these runs, we use the re-parameter-

isation:

net diversification rate d~l{m~1:0

turnover rate n~
m

l
~0:33

sampling proportion s~
y

mzy
~0:44

ð8Þ

along with the time of origin, tor and r. The sampling

proportion is the proportion of individuals which are sampled

before they are removed, meaning it is the proportion of

sampled individuals out of all individuals in the full tree. In this

parameterisation there are only two parameters (d and tor) on

the unbounded interval (0,?) with the others are defined on

½0,1�, making it a convenient parametrisation for defining

uninformative priors. For the tree prior distribution we use

the distribution with probability density function (2) multiplied

by priors for hyper parameters: n, s, and r* Uniform(0,1) for

and Uniform(0,1000) for d and tor.

We estimate a tree, macroevolutionary parameters, GTR rates,

and the clock rate. The parameters of interest include the

macroevolutionary parameters (d , n, s, and r) and features of the

tree including the time of the origin (tor), tree height and the

number of sampled ancestors.

Further, we use the same simulated data to investigate the

inferential power of the fossilised birth-death model in the absence

of molecular data for y-sampled nodes (e.g. to represent fossil

samples in real data sets). We ran the MCMC with sequence data

from contemporaneously sampled nodes and only sampling dates

(but not sequences) for the y-sampled nodes. Since the input data

does not contain the topological locations of fossil nodes, we also

need to fix one of the parameters to the truth. We chose to fix

sampling probability, r, because it is likely to be known in analyses

of real datasets. Note that we sample full genealogies, which

include both extant and fossil samples. It is impossible to estimate

the topological position of the fossil nodes without sequence or

morphological data but sampling full genealogies accounts for this

uncertainty.

Simulating the transmission birth-death process. In our

second set of simulations, there is no r-sampling but rw0. Here

we again use d , n, and s parametrisation defined by Equations (8).

We fix the time of the origin, tor~3, and draw the tree model

parameters from the distributions

d* Uniform 1,2ð Þ

n* Uniform 0,1ð Þ

s* Uniform 0:5,1ð Þ

r* Uniform 0,1ð Þ

and simulate a tree under the transmission birth-death process

with drawn parameters on the fixed time interval. We choose these

prior distributions because they cover a wide range of parameter

combinations of interest and produce trees of reasonable size. We

discard trees with less than 5 or greater than 250 sampled nodes,

which constitute 21% of the sample. In total, we report the results

on 100 trees with the mean number of sampled nodes being 53.

We simulate sequences along each tree under the GTR model

with a strict molecular clock.

In the MCMC runs, we fix the sampling proportion, s, to its

true value as only three out of the four transmission birth-death

parameters can be inferred. We chose to fix s because it is one of

the parameters about which there is likely strong prior knowledge

Bayesian Inference of Sampled Ancestor Trees
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in a typical epidemiological study. The tree prior distribution is (1)

with uniform prior distributions for hyper parameters d , n, s, and

r, on the same intervals as above and Uniform(0,1000) prior

distribution for the time of the origin. We estimate the tree, tree

model parameters, GTR rates and clock rate and assess the

estimates of the tree model parameters and properties of the

tree.

To assess the bias introduced by model misspecification

we also analyse these simulated datasets under the tree prior

model without sampled ancestors, that is, we fix the removal

probability r to one for the inference. Fixing r to one results in

any tree with sampled ancestors having probability density zero.

Thus any proposed tree with sampled ancestors is rejected in the

MCMC which is equivalent to not allowing sampled ancestor

trees.

Simulating under the sampled ancestor skyline

model. We simulated the skyline transmission process under

three different sets of parameters and then estimated the

parameters in MCMC with fixed trees and with some

parameters fixed. We have tried scenarios with two and three

intervals, fixing either r or y. In one scenario, only y changes

through time from zero to a non-zero value and the other

parameters stay constant. In the second scenario, all parameters

except r change through time. In the final scenario, all

parameters change through time and the whole vector �rr is fixed

in the inference. For a full description of the parameter and prior

settings see Text S1.

Bear dataset analysis. We re-analyzed the bear dataset

from [30] comprised of sequence data of 10 extant species and

occurrence dates of 24 fossil samples, assigned to six clades. Heath

et al. [30] assume that the tree topology on the extant species is

known and each fossil sample is assigned to a clade in the tree, i.e.,

each fossil sample is constrained to be a descendant of a particular

node in the extant tree. Here, we replicate this analysis using the

MCMC implementation of the fossilized birth-death model in

BEAST2.

The fossilized birth-death model we use is the same model

as in the original analysis by Heath et al. [30] but we use a

strict clock instead of a relaxed molecular clock model. We

perform two analyses, both with a strict clock, using our

implementation in BEAST2 and the implementation in DPPDiv

by Heath et al.
The tree prior density is (3) with transformed parameters d, n,

and s for which we chose uniform priors and r~1 is fixed. We use

the strict molecular clock with an exponential prior for the clock

rate and the GTR model with gamma categories with uniform

priors for GTR rates and gamma shape.

The prior distributions in both analyses (in BEAST2 and

DPPDiv) are all the same except the priors for GTR rates and

gamma shape. In DPPDiv,

(gAC ,gAG,gAT ,gCG,gCT ,gGT )*Dirichlet(1,1,1,1,1,1)

In BEAST2, we fix gAG to one and use Uniform(0, 100) priors for

other rates. We used a uniform prior for the gamma shape

parameter in BEAST2 and an exponential prior in DPPDiv.

HIV 1 dataset analysis. We re-analyzed UK HIV-1 subtype

B data from [42] consisting of viral sequences obtained from 62

patients (one sequence per patient). We use the skyline model

without r-sampling and with one rate shift time (in 1999)

because no samples were taken before this time. The tree prior

density is (5). We use the following parameterisation and prior

distributions:

effective reproductive number R0~
l

mzyr

* LogNormal 0:5,1ð Þ

total removal rate d~mzyr

* LogNormal {1,1ð Þ

leaf sampling proportion sl~
yr

mzyr

* Uniform 0,1ð Þ

removal probability r

* Beta 5,2ð Þ

time of origin tor

* LogNormal 3:28,0:5ð Þ

The leaf sampling proportion is the proportion of individuals who are

removed by sampling out of all removed individuals, thus it is the

proportion of sampled tips out of all tips in the full tree. The

parameterisation and prior distributions are different from the

distributions used in simulation studies. We chose the prior

distributions for R0, d, and sl following [23] and the prior distribution

for r assuming that diagnosed patients are likely to change their

behaviour. Recall that this model is unidentifiable and we need to

have a good prior knowledge about at least one of the parameters.

We suppose that only leaf sampling proportion changes through

time and it changes from zero to a non-zero value in year 1999.

Other parameters stay constant through time. We use a GTR

model with gamma categories and a molecular clock model with

the substitution rate fixed to 2:48|10{3 as was estimated in [23].

Results

We developed a Bayesian MCMC framework for phylogenetic

inference with models that allow sampled ancestors. We imple-

mented a sampled ancestor MCMC algorithm as an add-on to

software package BEAST2 [6] thereby making several sampled

ancestor birth-death prior models available to users. We test the

accuracy and limitations of these models in simulation studies and

apply the sampler to infer divergence times for a biological dataset

comprised of extant species and fossil samples and to an HIV

dataset. In the case of the fossil-bear dataset, we compare the

results obtained from our implementation to the result obtained

from an alternative implementation [30].

Simulation of sampled ancestor models
We simulated the sampled ancestor birth-death process and

sampled ancestor skyline process under different scenarios. In all

cases, the simulations show that we can recover the tree and model

parameters from sequence data and sampling times. In the analyses

where sampled ancestors were not accounted for, the estimates of

the tree branching model parameters and clock rate were biased.

The bias and low accuracy were the most pronounced for the birth

rate (or diversification rate in the alternative parameterisation).

Bayesian Inference of Sampled Ancestor Trees
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For some variants of the model, one of the tree model

parameters has to be fixed for the inference to its true value as

was discussed in the Methods section. Simulation studies show

that fixing one of the parameters allows the recovery of the

remaining parameter values. In particular, we showed that

function (1) depends exactly on three parameters because fixing y
allows recovery of l, m and r while function (2) depends on all

four parameters: l, m, y and r. We also simulated scenarios

where we fixed different parameters, for example, r or y. All

scenarios give accurate estimates of the remaining parameter

values.

We present here detailed results of two sets of simulations: one

for the fossilized birth-death process and another one for the

transmission birth-death process. Further simulation results can be

found in the Supporting Information (Tables 2–6 in Text S1).

In these two scenarios, we first simulated trees and then

sequences along the trees. Then we ran the sampler to recover tree

model parameters and genealogies from simulated data comprised

of sequences and sampling times. For the simulated fossilised birth-

death process, we also performed analyses where only extant

sequences are used. In this case, we still estimate full topologies

that include fossil and extant samples to account for the

Figure 3. Properties of the tree estimated from simulated data (fossilized birth-death process). The graph shows median estimates
(black dots) and 95% HPD intervals (grey lines) against true values for the tree height (on the left) and number of sampled ancestors (on the right).
The upper row shows the estimates obtained from the analyses of simulated sequence data of all sampled nodes and the bottom row shows the
estimates from the analyses where only sequence data from the extant samples was used.
doi:10.1371/journal.pcbi.1003919.g003
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Figure 4. Uncertainty in estimates for simulated data (fossil-
ized birth-death process). The graph shows the widths of relative
95% HPD intervals of the turnover rate, n, against tree sizes for
simulated fossilized birth-death process. The black dots are the interval
widths for posterior distributions obtained from the analyses of
simulated sequence data of all sampled nodes and the red triangles
are the interval widths from the analyses of sequence data of only
extant samples.
doi:10.1371/journal.pcbi.1003919.g004

Figure 5. Parameter estimates for simulated data (transmission process). The graph shows median estimates (black dots) and 95% HPD
intervals (grey lines) against true values for the turnover rate, n, (on the left) and removal probability, r, (on the right).
doi:10.1371/journal.pcbi.1003919.g005

Figure 6. ROC curve for identifying sampled ancestors based
on simulated data (transmission process). The posterior distribu-
tion of trees obtained from a Bayesian MCMC analysis of simulated
sequence data can be used to detect sampled ancestors. We identify a
node as being a sampled ancestor if the posterior probability that the
node is a sampled ancestor is greater than some threshold. The curve is
parameterised by the threshold and shows the trade-off between true
positive rate (sensitivity) and false positive rate (specificity) for different
values of the threshold (any increase in sensitivity will be accompanied
by a decrease in specificity). The dashed diagonal line corresponds to a
‘random guess’ test. The closer the ROC curve to the upper-left boarder
of the ROC space (the whole area of the graph), the more accurate the
test. The optimal value of the threshold for this curve is 0.45.
doi:10.1371/journal.pcbi.1003919.g006
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uncertainty in topological locations of the fossil samples. We assess

the results by calculating summary statistics including: the median

estimate of a parameter, the relative error and relative bias of the

median estimate, and the relative width of the 95% highest

posterior density (HPD) interval. We assess whether the true value

belongs to the 95% HPD interval. To summarise the results from a

collection of runs we calculate the medians of the summary

statistics (i.e, the median of the estimated medians, the median of

the relative errors and so forth) and count the number of times

when the true value belongs to the 95% HPD interval [43]. To

assess the power of the method with regard to estimation of

sampled ancestors we performed the receiver operating charac-

teristic analysis [44] which estimates false positive and false

negative error rates under different decision rules.

For the fossilized birth-death process (the process with r-

sampling and zero removal probability), we simulated a set of trees

under a fixed set of the tree model parameters. In the case when

we analysed sequence data of all sampled nodes, each parameter

was estimated and, in the worst case, the median of the relative

errors for all runs was 0.22 (0.24 for the analyses without y-

sampled sequences). The median of the relative errors for tree

properties, such as the time of origin, tree height and number of

sampled ancestors, was at most 0.09 (0.14 without y-sampled

sequences). The true parameters and tree properties were within

the estimated 95% HPD intervals at least 95% (93% without y-

sampled sequences) of the time in all cases. The estimates of the

number of sampled ancestors and the tree height for both cases are

shown in Figure 3. Figure 4 shows how the amount of uncertainty

in estimates of turnover rate decreases with the size of the tree (i.e.,

with the number of sampled nodes) and increases when the

sequences of y-sampled nodes are discarded. Overall removing

sequence data of y-sampled nodes led to larger errors and

increased 95% intervals. The median of errors for the turnover

rate and sampling proportion were comparable as was the

coverage for all macroevolutionary parameters. This might be

due to fixing r to the truth. The detailed results of this set of

simulations can be found in Supporting Information (Table 4 in

Text S1).

To simulate from the transmission birth-death process, i.e., the

sampled ancestor birth-death process without r-sampling and with

non-zero removal probability, we draw tree model parameters from

uniform distributions for each simulation. The tree model

parameters were estimated with a maximum median of relative

errors of 0.28 and, for the tree properties, of 0.06. In the worst case a

parameter or a tree property was inside the 95% HPD interval 92%

of the time. The estimates of the parameters are shown in Figure 5.

When sampled ancestors were not accounted for the time of origin

was accurately estimated but the tree height and model parameters

were substantially biased. The median of the relative biases of the

tree height increased from {1|10{7 to 0.01, for the diversifica-

tion rate from 0:23|10{2 to 0:12 (Figure 1 in Text S1). When

sampled ancestors were not accounted for in the inference the true

tree height was inside 95% HPD interval 82% of the time,

diversification rate 69%, and turnover rate 85%. More detailed

results are presented in Table 5 in Text S1.

We used the data simulated from the transmission process to

perform the receiver operating characteristic (ROC) analysis of the

sampled ancestor predictor, which makes a prediction relying on

the posterior distribution of genealogies. A node is predicted to be

a sampled ancestor with a probability calculated as a fraction of

trees in the posterior sample in which the node is a sampled

ancestor. Out of the 5225 total sampled nodes in all simulated

trees (excluding the last sample in each tree because this cannot be

a sampled ancestor), 1814 were sampled ancestors. The ROC

curve constructed from this data and predictions obtained from

the MCMC runs is shown in Figure 6.

Application of the fossilized birth-death model to a bear
dataset

We ran two analyses of the bear dataset originally analysed in

[30] with BEAST2 and with the DPPDiv implementation by

Heath et al. under the same model. The tree topology relating all

living bear species and two outgroup species is fixed in the

analyses and we estimate the divergence times and three tree

model parameters: d, n, and s since the sampling probability r
was fixed to one in the inference. The estimates are the same in

both analyses as expected. The estimated divergence times are

shown in Figure 7. The median estimate and 95% HPD interval

for the net diversification rate, d, were 0.027 per million years

and [0.002, 0.058]; for the turnover rate, n, 0.51 and [0.1, 0.9];

and for the sampling proportion, s, 0.77 and [0.46, 0.98]. Most of

the fossil samples were estimated to be direct ancestors of extant

species or other fossil species, that is, the median estimate of the

number of sampled ancestors was 22 with 95% HPD interval

[17,24].

Application of sampled ancestor skyline model to HIV
dataset

We analysed an HIV-1 subtype B dataset from the United

Kingdom, consisting of 62 sequences that were originally analysed

in [42] and later analysed using the skyline model without sampled

ancestors in [23]. For three of the sampled nodes the posterior

Figure 7. Divergence time estimates for the bear dataset. The
estimates are obtained from the analyses with DPPDiv [30] (left bars
with blue dots) and BEAST2 (right bars with red dots) implementations
of the fossilised birth-death model, which give the same results. The
bars are 95% HPD intervals and the dots are mean estimates. The node
numbering follows the original analysis [30]: nodes 1 and 2 represent
the most recent common ancestors of the bear clade and two
outgroups (gray wolf and spotted seal). Node 3 is the most recent
common ancestor of all living bear species and nodes 4-9 are the
divergence times within the bear clade.
doi:10.1371/journal.pcbi.1003919.g007
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probability of being a sampled ancestor was 61%, 59%, and 49%,

respectively. For all other sampled nodes the posterior probability

was less than 4%. There is positive evidence that the three sampled

nodes with high posterior probabilities are sampled ancestors. The

Bayes factors are 5.9, 8.7, and 4.2, respectively.

We chose a random tree among the trees in the posterior

sample that have exactly these three nodes as sampled ancestors.

The tree is shown in Figure 8. All three sampled ancestors are

clustered within a clade of 16 (out of 62) samples, suggesting that

this clade was more extensively sampled. The median of the

posterior distribution of the number of sampled ancestors was 2

with 95% HPD interval ½1,3�. The removal probability was

estimated to be 0.74 with 95% HPD interval ½0:46,0:97�,
indicating a substantial reduction in the probability that infected

patients remained able to cause further infections after they were

diagnosed.

Figure 8. A tree sampled from the posterior of the HIV 1 dataset analysis. The tree exhibits three estimated sampled ancestors shown as red
circles. The samples with positive posterior probabilities of being sampled ancestors are shown in colour (red for the nodes with evidence of being
sampled ancestors and blue for other nodes with non-zero probabilities) with the posterior probabilities in round brackets.
doi:10.1371/journal.pcbi.1003919.g008
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Discussion

The MCMC sampler developed here enables analyses under

models in which the probability of one sample being the direct

ancestor of another sample is not negligible. These models are useful

for describing infectious transmission processes, including identifying

transmission chains. They are also useful for estimating divergence

times for macroevolutionary data in the presence of fossil samples.

In the analysis of a phylogeny of bears we show that the sampler

can be applied to data comprised of both fossil and recent taxa to

infer divergence times. This dataset was previously analysed using

the fossilized birth-death model by Heath et al. [30]. While the

underlying model is the same and thus produces the same results,

there is a conceptual difference between the two MCMC

frameworks. In the analysis by Heath et al., MCMC was used to

integrate over fossil attachment times while the topological

attachment of the fossils was integrated out analytically. To

achieve this, the topology of the phylogeny relating the extant taxa

had to be assumed to be known. In our implementation, we

average over the trees relating fossil and extant taxa, i.e., over both

the fossil attachment times and topological attachment points,

using MCMC. To facilitate a direct comparison we constrained

the topology of the extant species, however, our implementation

does not require this. For datasets where the tree topology is well

resolved, analytical calculation results in faster mixing but when

there is uncertainty in the extant phylogeny, which is the more

common case, our sampler can account for it. Since the two

implementations of the method were made completely indepen-

dently of one another, this result also provides strong evidence that

both implementations are sampling from the correct posterior

distribution.

A natural extension to the analysis of the bear phylogeny would

be to include morphological data to inform the inference

regarding the precise placement of fossils on the tree [33,34],

however this requires probabilistic models of morphological

character evolution [29,45]. Another direction for application of

the sampler is using the skyline version of the fossilized birth-death

model to analyse datasets where fossil samples come from different

stratigraphic layers, so that rates of fossilisation and discovery may

change through time. Fossils are better preserved in some layers

than in other layers and therefore the sampling rate varies from

layer to layer (see, for example, [46]) and this can be modelled as a

skyline plot.

Simulation studies show that the MCMC sampler for sampled

ancestor trees allows for the detection of direct ancestors within the

sample given sequence data and sampling dates. The simulation

scenario where sequences were removed from the fossil samples

demonstrates that the tree model is informative about sampled

ancestors given that the sequence data from contemporaneous

samples, sampling dates of fossils and sampling probability, r, are

known.

The posterior probability that a sample is a sampled ancestor is

comprised of two components. For the simple two sequence case,

one component is the probability that the amount of difference

observed in two sequences with time t between sampling is a

result of the underlying substitution process that lasted for a

period of time close to t. The second component is the prior

probability, (1{r)(1{p0(t)), that the earlier sample is a sampled

ancestor. The two probabilities depend on the substitution rate

and tree model parameters, respectively, that are jointly

estimated. We have shown that these parameters, and therefore

which samples are sampled ancestors, can be accurately inferred

given sufficiently many and sufficiently long sequences and

sampling dates.

In epidemiological studies, sampled ancestors can be interpreted

as sampled individuals that have later infected other individuals. In

the analysis of the HIV dataset, we equated the transmission tree

directly with the viral gene tree. This approximation is good

enough to demonstrate the method. But for chronic infectious

diseases such as Hepatitis C and HIV where the genetic diversity

of the pathogen population within a single host can be substantial

(e.g. [20,47]) the inferential power would be improved by a

hierarchical model that explicitly models the difference between

the sampled ancestor transmission tree and the (binary) viral gene

tree. Regardless of the modelling details, such analyses allow for

the estimation of the removal at sampling parameter r, which

controls the prevalence of sampled ancestors. In most situations

this parameter reflects the probability with which patients remain

able to cause further infections after they were diagnosed.

Even if the sampled ancestors are not of specific interest in an

analysis it is important to model sampled ancestors when the data

is likely to contain them because failing to do so introduces a bias

to the estimates of the parameters. The birth rate, diversification

rate and clock rate were all substantially biased when sampled

ancestors were not accounted for.

Analytic calculations (presented in Text S1) and simulation

studies show that there is a degree of non-identifiably of

parameters in the transmission birth-death models that include

the r parameter. In other words, these models require one of the

parameters to be fixed or strongly constrained by prior informa-

tion to achieve unambiguous inference. In epidemiological studies

with a known sampling scheme, a candidate parameter to fix is the

sampling proportion. For epidemics with a well-characterised

period of infection, such as influenza, the total removal rate, d,

could be fixed. Under the fossilized birth-death model, it is

possible to infer all the parameters of the tree process prior when

time-stamped comparative data is available. This is an interesting

insight: if no fossils are available, we can only infer two out of the

three parameters l,m,r (as the likelihood only depends on

l{m,lr) while in presence of fossils we can estimate all four

parameters l,m,r,y (as the likelihood depends on l{m,lr,ly,y).

The fossilised birth-death model allows the inference of tree

model parameters given the phylogeny or time-stamped compar-

ative data. The simulation study showed that without comparative

data for fossil samples and assuming the sampling probability, r, is

known, it is still possible to infer the tree model parameters and

phylogenies (excluding the phylogenetic positions of the fossil

nodes) albeit with increased uncertainty. In the bear data analysis,

we used this type of input data (extant sequences, fossil occurrence

dates and fixed r) and additionally imposing monophyletic

constraints on the fossils. Including comparative data for the fossil

samples would have allowed inference about their precise

phylogenetic placement without imposing monophyletic con-

straints. As sequence data for fossil organisms is rarely available

information about fossil locations on the tree obtained by

phylogenetic modelling of morphological data [29,45] may

become important to enable effective inference. This approach

has been termed total evidence fossil dating [29] and is the subject

of active research.

The implementation of the sampled ancestor skyline model

assumes that the rate shift times are known a priori. However,

there are methods that relax this assumption for the skyline model

without sampled ancestors. In one such method, the change-points

are considered to be equidistant and only the number of the

intervening intervals needs to be known prior to the inference [23].

Another method infers both the rate shift times and the number of

shifts [48]. Similar methods are yet to be developed for the skyline

model with sampled ancestors. The identifiability of parameters

Bayesian Inference of Sampled Ancestor Trees
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(including or excluding times of the rate shifts) of the skyline model

also remains to be investigated.

To our knowledge this is the first full implementation of an

MCMC sampler for sampled ancestor trees and we anticipate that

such samplers will form the computational basis for further

developments in fossil-calibrated divergence time dating, total-

evidence fossil dating and phylodynamics.

Supporting Information

Text S1 Supporting information. The text describes equa-
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38. Wilkinson RD, Tavaré S (2009) Estimating primate divergence times by using

conditioned birth-and-death processes. Theor Popul Biol 75: 278–285.

39. Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and

Bayesian model determination. Biometrica 82: 771–732.

40. Wilson IJ, Balding DJ (1998) Genealogical inference from microsatellite data.

Genetics 150: 499–510.

41. Drummond AJ, Nicholls GK, Rodrigo AG, Solomon W (2002) Estimating

mutation parameters, population history and genealogy simultaneously from

temporally spaced sequence data. Genetics 161: 1307–20.
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46. Tavaré S, Marshall CR, Will O, Soligo C, Martin RD (2002) Using the fossil record to
estimate the age of the last common ancestor of extant primates. Nature 416: 726–9.

47. Shankarappa R, Margolick JB, Gange SJ, Rodrigo AG, Upchurch D, et al.

(1999) Consistent viral evolutionary changes associated with the disease

progression of human immunodeficiency virus type 1 infection. Journal of

virology 73: 10489–10502.

48. Wu CH (2014) Bayesian approaches to model uncertainty in phylogenetics.

Ph.D. thesis, University of Auckland, Auckland, New Zealand.

Bayesian Inference of Sampled Ancestor Trees

PLOS Computational Biology | www.ploscompbiol.org 15 December 2014 | Volume 10 | Issue 12 | e1003919


