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The discovery of the central role played by the protein alpha-synuclein in Parkinson’s
disease and other Lewy body brain disorders has had a great relevance in the
understanding of the degenerative process occurring in these diseases. In addition,
during the last two decades, the evidence suggesting an immune response in
Parkinson’s disease patients have multiplied. The role of the immune system in the
disease is supported by data from genetic studies and patients, as well as from
laboratory animal models and cell cultures. In the immune response, the microglia,
the immune cell of the brain, will have a determinant role. Interestingly, alpha-synuclein
is suggested to have a central function not only in the neuronal events occurring in
Parkinson’s disease, but also in the immune response during the disease. Numerous
studies have shown that alpha-synuclein can act directly on immune cells, such as
microglia in brain, initiating a sterile response that will have consequences for the
neuronal health and that could also translate in a peripheral immune response. In parallel,
microglia should also act clearing alpha-synuclein thus avoiding an overabundance
of the protein, which is crucial to the disease progression. Therefore, the microglia
response in each moment will have significant consequences for the neuronal fate. Here
we will review the literature addressing the microglia response in Parkinson’s disease
with an especial focus on the protein alpha-synuclein. We will also reflect upon the
limitations of the studies carried so far and in the therapeutic possibilities opened based
on these recent findings.

Keywords: neuroinflammation, toll-like-receptors, integrins, neurodegeneration, T-cells, MHC-II, DAMP, sterile
inflammation

INTRODUCTION

Parkinson’s disease (PD) is the second most common neurodegenerative disease and it is
characterized by the loss of dopaminergic neurons in substantia nigra and the presence of intra
neuronal cytoplasmic inclusions composed mainly of aggregated alpha-synuclein (a-syn) named
Lewy bodies (LB) and neurites. The protein a-syn plays a central role in the pathogenesis of
the disease since multiplication or mutations of the gene are associated with familial forms of
PD (Koros et al., 2017). A-syn is suggested to exist as an unfolded monomeric form, although
a controversial tetrameric form has been also suggested to exist, stabilizing the protein (Villar-
Pique et al., 2016). During PD, a-syn progressively transforms from soluble to insoluble fibrillary
complexes, most likely through an intermediate soluble oligomeric form (Cremades et al., 2017)
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leading to neuronal dysfunction (Eschbach and Danzer, 2014),
where the dopaminergic neurons are the most susceptible and
will degenerate and die. As a consequence of the nigral cell
loss, dopamine levels would decrease in caudate-putamen leading
to a malfunction of the basal ganglia circuitry (Obeso et al.,
2008). This results in the four cardinal symptoms of PD: resting
tremor, bradykinesia, muscle rigidity, and postural instability
(Gopalakrishna and Alexander, 2015). Although, these motor
symptoms are the hallmark of PD, they are preceded by other
non-motor symptoms, which are not directly related to the
dopamine loss but that seem correlated to a-syn pathology in
other neuronal populations, such as constipation, hyposmia, and
rapid eye movement (REM)-sleep behavior disorder (Schapira
et al., 2017). Furthermore, cognition is also impaired in PD and
the progression and worsening of these symptoms results in
dementia at later stages of PD (Aarsland et al., 2017).

As mentioned, the pathological a-syn accumulation in the
different neuronal populations in brain of patients seems to be
associated to all main symptoms in PD, therefore suggesting
that aggregated a-syn leads to neuronal dysfunction. This was
highlighted by Braak and Braak’s work in post-mortem PD
brains which resulted in their proposal of the staging scheme
in PD, based on their correlation between a-syn pathology and
PD progression (Braak et al., 2003). According to this scheme,
in stage 1 a-syn pathology is present in the olfactory nucleus
and dorsal motor nucleus of the vagus nerve, which would
explain why enteric system and other autonomic dysfunction,
together with hyposmia, appear as early symptoms in PD. Stage
2 shows a-syn pathology in medulla oblongata and the pontine
tegmentum with raphe and locus coeruleus affected which are
related to symptoms of depression (Boeve et al., 2007). It is not
only until stage 3 that a-syn pathology is found in substantia nigra
and amygdala. This stage is also considered a pre-symptomatic
phase, where the REM sleep disorder is suggested as a manifest
pre-motor symptom (Boeve et al., 2007). At certain time on this
stage, PD patients experience the first motor symptoms. The
feature of stage 4, is associated with the anteromedial temporal
mesocortex and it is here that overt parkinsonism is evident. The
last two stages, 5 and 6, involve the entire neocortex and it is
at this stage that PD patients manifest the full range of clinical
symptoms, where cognition problems are the most remarkable
(Braak et al., 2003).

Neurons constitutively synthesized a-syn and the protein is
normally found in synapses. The protein can adopt certain
structure upon interaction with lipids and it has been suggested
to be involved in vesicle homeostasis (review in Burre, 2015).
The neurons release a-syn to the extracellular space through an
exocytosis process. This happens for all forms of the protein:
soluble or misfolded (Emmanouilidou and Vekrellis, 2016).
Recent findings suggest that the a-syn neuronal pathology
can spread from one cell to another. Indeed, the presence
of LB in fetal transplanted neurons in PD patients found in
post-mortem analysis over a decade after they received the
transplants (Kordower et al., 2008; Li et al., 2008), suggested that
otherwise healthy neurons could uptake misfolded a-syn from
the neighboring neurons, and that this host aggregated a-syn
could act as a seed accelerating the aggregation of the a-syn

in the healthy fetal transplanted cell (Tyson et al., 2016). This
hypothesis was also supported by post-mortem studies from Braak
& Braak suggesting that a-syn pathology in PD may start in
neurons of the peripheral nervous system (gut or nose) to later
propagate progressively to anatomically connected regions of the
CNS, spreading in a prion-like manner (Braak et al., 2003). The
hypothesis has been later sustained by different findings in animal
models, where injections of extracellular aggregated a-syn lead to
a-syn pathology in neurons in the vicinity of the injection, but
also in anatomically related neurons (Luk et al., 2012; Rey et al.,
2013). However, a lack of consistency of the hypothesis in the
brains of human patients has been discussed and the hypothesis
remains controversial (Brundin and Melki, 2017; Surmeier et al.,
2017). Despite this, the acceptance that a-syn pathology is found
in multiple neuronal populations has highlighted the role of
other areas different than the substantia nigra in the disease
introducing the concept of PD as a multisystem disorder. In
the disease, the mishandling of a-syn is accepted to lead to
multiple dysfunction that will promote neurodegeneration with
or without cell death. Several mechanisms, such autophagy
failure, mitochondria dysfunction, endoplasmic reticulum stress
and calcium dysregulation have been proposed to be responsible
of the a-syn induced neurodegeneration; we refer the readers
somewhere else for further information (Benskey et al., 2016;
Wong and Krainc, 2017). In this review, we will focus our
attention on the role of microglia in the neurodegenerative
process of PD, with a special emphasis in the protein a-syn.

IMMUNE RESPONSE IN CNS DURING
PARKINSON’S DISEASE: THE
MICROGLIA

In the last decade it has become apparent that in parallel
to the a-syn induced neuronal process, inflammatory changes
in brain and periphery also occur in PD patients (Kannarkat
et al., 2013). It is suggested the chronic inflammatory process
contributes to neuronal degeneration via overproduction of
pro-inflammatory cytokines and oxidative stress. Accordingly,
the relevance of the immune process has been supported by
the epidemiological data suggesting a protective effect for the
NSAID in humans (Gagne and Power, 2010; Gao et al., 2011).
Within the brain, the microglia will be the main instructor
of such response. Microglia arise from embryonic yolk sac
precursors, different to those generating the hematopoietic
monocytic lineage, thus constituting different cells than bone
marrow derived macrophages (Li and Barres, 2017). They have
been shown, using single cell genetic analysis, to undergo
stepwise genetic stages in synchrony with neuronal changes
during brain development, although they are also influenced by
peripheral changes such as maternal microbiota (Matcovitch-
Natan et al., 2016). Microglia are continuously monitoring their
micro-environment and are able to sense changes in the brain
(Nimmerjahn et al., 2005). They possess receptors for molecules
of immune and also neuronal origin, such as neurotransmitters;
hence, microglia are able to monitor neuronal as well as immune
activity (Biber et al., 2007; Kettenmann et al., 2011). They are
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shown to be essential for synaptic remodeling via trogocytosis of
axonal structures (Weinhard et al., 2018).

The term microglia activation or microgliosis, comprises any
deviation from what otherwise is considered normal microglia
status, including cell number, morphology or protein expression
(Joers et al., 2016). Microgliosis, has been shown in PD
post-mortem studies and also most recently on in vivo PET
imaging analysis of prodromal (REM sleep disorder patients) and
diagnosed PD patients (Gerhard et al., 2006; Stokholm et al.,
2017). The presence of numerous MHCII+ cells in the brain of
PD patients has been shown in several occasions (McGeer et al.,
1988; Croisier et al., 2005; Orr et al., 2005; Miklossy et al., 2006).
MHCII, or in fact HLA expression, is normally very low in brain
and it is related of the antigen presenting system in myeloid cells.
Interestingly HLA polymorphism have been related to increased
risk of develop PD in GWAS studies (Nalls et al., 2014). In
addition, other markers are also shown upregulated in microglia
in patients: such as pro-inflammatory enzymes iNOS and COX
(Hunot et al., 1996; Knott et al., 2000) and CD68, usually
associated to phagocytic activity (Banati et al., 1998; Croisier et al.,
2005; Doorn et al., 2014). Moreover, increase pro-inflammatory
cytokines have been shown in human PD brain, such as IL-1β, IL-
2, IL-6, EGF, and TGF-α and TGF-β in striatum (Nagatsu et al.,
2000) and TNF-α upregulation in nigral microglia (Boka et al.,
1994), altogether supporting a chronic pro-inflammatory milieu
in the brain of PD patients.

Besides MHCII, other markers further suggest the cross-talk
of the microglia with the adaptive immune system, such as
the increase in lymphocyte function associated protein LFA1
(CD11a) (Imamura et al., 2003a; Miklossy et al., 2006), and its
receptor: the intercellular adhesion molecule 1, ICAM1 (CD54)
(Imamura et al., 2003a). Also, the increased expression of FcγR
in microglia that was found in the vicinity of neurons with
IgG deposition (Orr et al., 2005) supporting a role for the
humoral response in the disease. The common non-coding
HLA single nucleotide polymorphism associated to increased
PD risk, rs3129882, has been associated to a shift toward a pro-
inflammatory CD4+ T cell response upon certain environmental
exposures (Kannarkat et al., 2015), suggesting the involvement
of lymphocytes in the disease. In fact, infiltrated T-cells are
present in post-mortem PD human brains (McGeer et al., 1988;
Brochard et al., 2009). Within the adaptive immunity, the protein
a-syn seems to play a key role and actually, HLA+ microglia is
correlated with a-syn neuronal deposition (Croisier et al., 2005).
In addition, decreased levels of autoantibodies against a-syn have
been described in PD patients, suggesting a protective effect for
these antibodies (Brudek et al., 2017). Furthermore, Sulzer et al.,
has recently shown that PD patients’ derived T-cells exhibited
mostly a CD4+ Th2 response (IL-5) related to a-syn peptides,
further suggesting that the immune system responds and can act
as a protector of neuronal events related to a-syn (Sulzer et al.,
2017).

The evidence that the immune response in PD is not restricted
to microglia in brain, is multiplying during the last decade. The
changes in peripheral monocytes (Funk et al., 2013; Grozdanov
et al., 2014), lymphocytes (Bas et al., 2001; Gruden et al., 2011;
Stevens et al., 2012) as well as changes in immune soluble

mediators are numerous now. We will however, do not review
this immune aspect in this occasion and refer the reader to our
prior work (Romero-Ramos, 2017).

MICROGLIOSIS AS A MARKER OF
NEURODEGENERATION

Multiple post-mortem analysis revealed that microgliosis occurs
in all the areas where a-syn and neurodegeneration happen,
irrespective of the presence or absence of cell death (Hunot
et al., 1996; Knott et al., 2000; Imamura et al., 2003b; Croisier
et al., 2005; Halliday and Stevens, 2011; Doorn et al., 2014).
Moreover, in vivo analysis of microglia activation using positron
emission tomography (PET) in patients, suggest that the
activation is an early but sustained response in PD, not limited
only to the areas with significant neuronal death. Microglia
activation in midbrain seems to occur very early and it is
consistently found in most studies. PET imaging of the peripheral
benzodiazepine receptor (PBR/TSPO) binding ligand [11C]-
(R) PK11195, revealed microglial activation in the midbrain of
patients with REM sleep disorders (prodromal PD) (Stokholm
et al., 2017). The microgliosis progresses to be found later in
other areas in already diagnosed PD patients such as putamen
(Ouchi et al., 2005; Iannaccone et al., 2013), hippocampus (Doorn
et al., 2014), and cortex (Imamura et al., 2003a). These areas are
also highlighted by [11C]-(R) PK11195 PET of patients, such as
pons and cortex (Gerhard et al., 2006). This stage progression
could explain why some post-mortem studies observed activation
of microglia in the substantia nigra but not in striatum due to
a mix cohort of patients in different stages (Mirza et al., 2000).
Altogether, evidence suggests that the response of microglia is
early and not related only to cell death but rather to a-syn
pathology, supporting activated microglia as a sensitive index of
neuropathological changes (Imamura et al., 2003a). The presence
of microgliosis first in midbrain, might be related to the higher
susceptibility of this area in PD (Surmeier et al., 2012) and also
to the described higher density of microglia in substantia nigra
(Lawson et al., 1990; Yang et al., 2013). In fact, flow cytometry
and recently single cell gene analysis, have shown that adult brain
microglia differ from one brain area to another (de Haas et al.,
2008; Matcovitch-Natan et al., 2016); probably as a response
to the environment, which is given among other things by the
phenotype of the neuronal input and activity in the area and by
the type of a-syn aggregation found at each stage. In fact, we and
others have postulated that the microglia response during PD is
dynamic and that such response will have consequences in the
neuronal fate (Sanchez-Guajardo et al., 2010; Moehle and West,
2015).

MICROGLIOSIS IN ANIMAL MODELS OF
PARKINSONIAN-LIKE
NEURODEGENERATION

Multiple studies have shown that all classic models of PD-
like neurodegeneration present some type of microgliosis.
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Accordingly, microglia activation is associated to toxic models of
dopaminergic neurodegeneration such as 6-OHDA (Marinova-
Mutafchieva et al., 2009; Walsh et al., 2011), MPTP (Wu et al.,
2002; Smeyne et al., 2016; Manocha et al., 2017), rotenone (Ojha
et al., 2016), and also in non-toxic such as the axotomized
models (Cho et al., 2006). The relevance of the microgliosis
for the neuronal fate is supported by those attempts to achieve
neuroprotection using anti-inflammatory therapies but also, by
the PD-models based on overt immune activation such as
injections of LPS in the brain (Machado et al., 2011; Hoban et al.,
2013). Thus, robust immune activation can lead to cell death,
however, the opposite is also true and cell death per se can induce
microgliosis. Upon cell death, certain proteins can be released
from the dying neurons that will initiate a sterile inflammatory
response (an immune response in the absence of pathogen,
reviewed in Thundyil and Lim, 2015). This response will involve
receptors normally express by microglia such as TLR and others
(Rock et al., 2010). The process is initiated by one or more cellular
components that possess intrinsic proinflammatory activity,
thus they would act as DAMPs (damage-associated molecular
patterns), such as the high mobility group box 1 (HMGB1),
HSP60, ATP, mitochondrial peptides, and DNA (Rock and Kono,
2008). Accordingly, 6-OHDA induced neurotoxicity increases
HSP60 levels (Feng et al., 2013). HMGB1, also related to sterile
inflammation in brain, interacts with CD11b in microglia (Fang
et al., 2012) and it has been shown to bind a-syn (Lindersson et al.,
2004). In addition, release of ATP during cell death mediates
microglia activation and chemotaxis response via purinergic
receptors (Davalos et al., 2005). Thus, cell death will have
consequences in the microglia response, further contributing to
the immune response in the brain.

Nevertheless, the occurrence of cell death is not a necessary
event for the activation of microglia in the brain. This has become
especially apparent in protein-based models of PD focused
on a-syn. In transgenic lines where dopaminergic neuronal
death was occurring, like the a-syn A53T under the prion
protein promoter (PrP) or the double mutant (DM) A30P+A53T
a-syn under the TH promoter, microgliosis and changes in the
expression of multiple immune related genes were observed to
precede the cell death (Lee et al., 2002; Miller et al., 2007; Su et al.,
2009). Moreover, mice overexpressing a-syn under TH promoter
show very early microgliosis and up-regulation of TNF-α despite
the absence of cell death (Su et al., 2008). Equally microgliosis in
the substantia nigra and striatum of the Thy-1 wild type a-syn
line preceded motor deficits and occurred despite the absence
of neuronal death (Watson et al., 2012). Therefore, microgliosis
is rather associated to a-syn pathology and neurodegeneration,
without cell death, as it has been also described in other lines:
like that overexpressing a C-terminal truncated α-syn (Tofaris
et al., 2006), the A30P over-expressing mice under PrP (Gomez-
Isla et al., 2003), and the E46K under the PrP (Emmer et al.,
2011). We and others have also shown that the overexpression of
a-syn by means of viral vectors will lead to early microgliosis that
will be dynamic and will be influenced but not dependent of cell
death (Theodore et al., 2008; Sanchez-Guajardo et al., 2010). This
was also seen across species, as we have shown in non-human
primates (Barkholt et al., 2012).

Within this microglia activation, many are the possible
proteins and processes involved. Actually, microglia and neurons
interact through a series of proteins that are involved in microglia
activation (Kierdorf and Prinz, 2013). Microglia is continuously
sensing neuronal activity and it helps reshaping neurons, synapse
and circuits (Wake et al., 2013). Moreover, microglia are involved
in neuronal transmission and vice versa, neuronal activity
influences microglia activity and mobility (Li et al., 2012; Eyo and
Wu, 2013; Dissing-Olesen et al., 2014). Thus, any change in the
neurons during PD- changes in neurotransmitter release, changes
in ATP production, synaptic loss, etc.- will be sensed by microglia,
and subsequently initiates a response, i.e., microglia activation.
We will focus on this review in the specific role of a-syn as an
initiator of inflammation and in parallel in the role of microglia
in the neurodegenerative process associated to a-syn.

MICROGLIA AS A PHAGOCYTIC CELL
CLEARING ALPHA-SYNUCLEIN

A-syn is released from the neurons in a calcium dependent
manner (Emmanouilidou et al., 2010), so it can be found in
CSF and extracellular space, as well as conditioned media of
neurons expressing a-syn. This release seems to be related and
dependent on neuronal firing (Emmanouilidou et al., 2016;
Yamada and Iwatsubo, 2018). The release of a-syn seems to be
crucial for the so-called spreading of a-syn, and, in this context,
microglia would be highly relevant. First: microglia senses and
modulates neuronal activity, approaching highly active neurons
in brain (York et al., 2017). Furthermore, a-syn seems to act as a
chemoattractant and direct microglia migration. The Membrane
Type 1-MMP has been related to such chemoattractant ability,
which was mediated by an increase in soluble CD44 (cell
adhesion molecule) that frees microglia from surrounding matrix
to migrate (Kim et al., 2009). In addition, a-syn interaction with
CD11b and subsequent NOX2 activation, leads to increase H2O2,
which can also act as a final direct signal for migration (Wang
Q. et al., 2015). This is in agreement with the post-mortem study
showing that in PD patients the activated microglia are in close
contact with neurons presenting a-syn pathological accumulation
(Croisier et al., 2005). However, it should be noted that microglia
can and will encounter a-syn by the trogocytosis of neuronal
structures as well (Weinhard et al., 2018).

Secondly: microglia will be the main cell clearing extracellular
a-syn (Lee et al., 2008). This clearance process is influenced
by the level of activation, and as well by the type of a-syn
encountered (Lee et al., 2008; Park et al., 2008). Different proteins
have been suggested to be involved in this uptake and clearance
system and in the activation of microglia mediated by a-syn (see
below). But also some extracellular enzymes have been suggested
as responsible of the degradation of a-syn: metalloproteinase
(Sung et al., 2005), neurosin (Tatebe et al., 2010), and plasmin
(Kim et al., 2012), hence they could be relevant in the a-syn
spreading and the immune response. Otherwise, extracellular
a-syn should be degraded by microglia and this will avoid the
spreading of the pathology to neighboring neurons. To add
complexity to this, a-syn per se can modify the microglia activity
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and its functional capacity. Indeed, a-syn can act as DAMP
and induce a sterile response that can lead to activation of
microglia. This activation is dependent in the type and solubility
of the a-syn and will lead to neurotoxicity (Zhang et al., 2005;
Jin et al., 2007). In parallel, the a-syn induced activation, can
lead in turn to production of reactive oxygen species (ROS)
and oxidation of a-syn in neighboring neurons, which will feed
the disease process (Shavali et al., 2006). Thus, the microglia
response will evolve during PD as the neuronal function and
type of a-syn progressively change. The response of microglia
will in turn translate in immune signaling and neuronal changes
that will have relevant consequences in the disease progression.
To further increase the complexity, aging can be another factor
in this equation, since microglia (and macrophages) ability to
phagocyte monomeric and oligomeric a-syn decreases with age
(Bliederhaeuser et al., 2016). Accordingly, telomerase shortening,
a process associated to aging, has been shown to accelerate a-syn
pathology in vivo in an a-syn transgenic mice that was associated
to an impaired microglia immune response (Scheffold et al.,
2016).

As mentioned, microglia will be the cell by default clearing
a-syn in the extracellular space, but in parallel, a-syn will lead
to microglia activation, though such a-syn mediated activation
seems to be independent of internalization and phagocytosis
(Zhang et al., 2007); even if they might affect each other at the
long term. The literature regarding the phagocytic activity upon
a-syn stimulation includes contradictory results, which can be
due to the types of a-syn used, concentrations and cell-models
of choice. One study has suggested distinct capacity associated to
disease related mutations: while monomeric WT or A53T a-syn
increased phagocytosis, A30P and E46K monomeric, decreased
it (Roodveldt et al., 2010). Also Park et al. (2008) observed
increased phagocytosis upon activation with monomeric a-syn
that was not mediated by CD36, α6β1 integrin and CD47
receptor complex, but that was related to the N-terminal
and NAC region of a-syn. The same team showed, however,
that the phagocytosis was decreased if exposed to aggregated
a-syn (Park et al., 2008). Accordingly, aggregated a-syn has
been shown to inhibit microglial phagocytosis by activating
SHP-1 via interaction with FcγRIIB (and upregulation of its
expression) (Choi et al., 2015; York et al., 2017). Others
reported no difference in the ability of the BV2 cells to
phagocyte a-syn with respect to the solubility (monomeric,
truncated or fibrillar) (Fellner et al., 2013), which they suggested
was a TLR-4-dependent mechanism (Stefanova et al., 2011).
Thus, yet unclear, this could suggest that certain molecular
species of a-syn may interfere with the phagocytic ability of
microglia.

Monocytes, lymphocytes and other immune cells express
a-syn (Shin et al., 2000) and several studies have investigated the
role of a-syn in immune response using a-syn knockout mice. The
absence of a-syn resulted on impaired B cell (Xiao et al., 2014)
and T-cells function (Shameli et al., 2016). Furthermore, the lack
of a-syn in microglia results in exaggerated response to LPS and
decreased phagocytic ability (Austin et al., 2006), that was related
to excess activation of Phospholipase D2 and COX-2, suggesting
that a-syn is normally needed for lipid mediated signaling by

microglia (Austin et al., 2011). In the opposite, if overexpressed,
a-syn in BV2 cells increased COX-2 levels and TNF-α secretion
while the phagocytic activity is impaired (Rojanathammanee
et al., 2011). A recent study using iPSC derived macrophages
showed that triplication of SNCA gene leads to dysfunction in
phagocytosis and such effect could be mimicked by the excess of
extracellular a-syn in culture (Haenseler et al., 2017). PD human
lymphocytes show a higher intracellular concentration of a-syn
(Gardai et al., 2013), which might be related to the reported
interference of pathological a-syn in the SNARE complex (Choi
et al., 2013). Accordingly, PD derived lymphocytes and peripheral
monocytes/macrophages from the BAC a-syn transgenic mouse
line, showed impaired phagocytosis and cytokine release, due
to defective vesicle transport, as a result of SNARE deficiency
(Gardai et al., 2013). In a recent report, lack of a-syn in neurons
lead to MHC-I increase expression in neurons and microglia
activation suggesting a role for a-syn in the maintenance of
a healthy immune balance in brain (Benskey et al., 2018).
Therefore, both: loss and gain of function regarding a-syn can
have important consequences in the ability of microglia to
phagocyte and handle the protein maintaining a healthy CNS
microenvironment in the process.

Regarding, the microglial internalization of a-syn, uptake of
monomeric a-syn was reported to be independent of clathrin-,
caveolae-, and dynamin, but rather dependent on GM-1-
enriched membrane lipid rafts (Park et al., 2009). However,
internalization of aggregated a-syn has been related to clathrin
and calnexin (Liu et al., 2007). Different studies suggest that
a-syn uptake is dependent on the aggregation status, increasing
as the fibrilization growths (Hoffmann et al., 2016); or that the
proteins responsible of the uptake differ for the different types
of a-syn, as only oligomeric a-syn uptake has been shown to
be TLR-2 mediated (Kim et al., 2013), while, the reported TLR-
4 mediated a-syn uptake does not depend on the aggregation
status (Stefanova et al., 2011). Galectin 3 has also been related
to aggregated a-syn induced microglia activation and the a-syn
induced increase of phagocytosis (Boza-Serrano et al., 2014).
In relation to the subsequent degradation in microglia as in
neurons, autophagy seems to play an important role (Nash
et al., 2017), and in BV2 cells, oligomeric a-syn degradation
was mediated through NRAMP1, a lysosomal iron transporter
(Wu et al., 2017). However, in iPSC derived macrophages (not
microglia) both lysosomal and proteasomal systems have been
related to degradation of monomeric a-syn (Haenseler et al.,
2017). Remarkably, deficiency of DJ-1, another protein related
to genetic PD, reduces the levels of membrane lipid rafts and
simultaneously limits the internalization of extracellular a-syn.
Furthermore, the DJ1 deficiency also lead to the decrease in
the ability to degrade a-syn by autophagy (Nash et al., 2017).
Interestingly, while the TLR-4 has been related to increase a-syn
uptake and clearance in microglia, the TLR-2 activation in
neurons seems, on the contrary, to decrease the uptake and
autophagy of a-syn, promoting neuronal a-syn accumulation
(Kim et al., 2015). Actually, increased TLR-2 in neurons has been
observed in PD human brains, and such increased was correlated
to disease duration and pathological a-syn levels (Dzamko et al.,
2017). Moreover, a-syn interaction with TLR-2 would induced
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a pro-inflammatory response both in microglia and also in
neurons (Kim et al., 2013; Dzamko et al., 2017). Thus, signaling
cascade initiated by the same receptor in different cell types will
contribute differently to the disease.

FcγR also seems to mediate a-syn clearance and
internalization into phagosomes, with subsequent nuclear
translocation of NF-κB p65, through an IgG independent-
internalization (Cao et al., 2012; Figure 1). When complexed
with antibodies, a-syn aggregates are also internalized through
FcγR receptors and clustered in lipid rafts through a more
efficient secondary pathway that the one used in the absence
of the antibody (Bae et al., 2012). Another group also showed
that antibody mediated uptake is more efficient and goes
through FcγRI and FcγRIIB/C (Gustafsson et al., 2017). In PD
patients, FcγRI and III are expressed on activated microglia
or on lymphocyte-like cells, respectively, that are found in the
proximity of neurons that presented IgG deposition (Orr et al.,
2005), however, the FcγRIIB was absent in the PD brains in that
cohort. The FcγRIIB (CD32B) is a low affinity receptor that binds
immune-complexed IgG. It is the only inhibitory Fcγ and possess
an immunoreceptor tyrosine-based inhibitory motif (ITIM)
in its cytoplasmic domain. FcγRIIB cross-linking by immune
complexes results in ITIM phosphorylation and inhibition of
the activating signaling cascade (Smith and Clatworthy, 2010).
FcγRIIB expression in microglial cells during chronic infection,
seems to occur to prevent hyper-activation and subsequent
brain damage (Chauhan et al., 2017). Aggregated a-syn binds
to FcγRIIB on microglia, inducing SHP-1 activation, and
inhibiting microglial phagocytosis (Choi et al., 2015). Thus the
type and complexes formed by a-syn will significantly change
the consequence of its interaction with microglia receptors.
Interestingly, FcγRIIB, through downstream mechanism with
SHP-1/2, has been suggested to be involved in the propagation
of a-syn in neurons (Choi et al., 2018), but this study focused on
the expression of the proteins in neurons, rather than microglia.
Also, another immune related protein: lymphocyte activation
gene 3 (LAG3), has been suggested to be involved in the
propagation process, again through expression in neurons (Mao
et al., 2016). Equally, as mentioned above, the immune receptor
TLR-2 has been also related to a-syn effect in neurons (Dzamko
et al., 2017). Consequently, proteins typically related to immune
system are being proposed to act as a-syn receptors and/or
mediators of the a-syn effect in neurons, therefore, upon a-syn
interaction these membrane proteins will initiate a cascade of
events both in neurons and in immune cells, and both processes
will contribute to the disease progression.

ACTIVATION OF MICROGLIA BY
ALPHA-SYNUCLEIN AND THE
RECEPTORS INVOLVED

There are now multiple studies showing that extracellular a-syn
induces a pro-inflammatory response in microglia with elevated
cytokine production such as IL-1β, IL-6, and TNF-α (Klegeris
et al., 2008; Su et al., 2008; Lee et al., 2009, 2010; Roodveldt et al.,
2010; Couch et al., 2011), increased COX-2 and iNOS (Su et al.,

2008, 2009; Lee et al., 2009); and production of free radicals (Su
et al., 2008; Lee et al., 2010); a microglia response that resulted
in cell toxicity (Zhang et al., 2007; Klegeris et al., 2008). Not
only microglia-like cells but also macrophages are activated by
monomeric a-syn, inducing TNF-α, iNOS and COX-1 increase,
an ability that required both N and C terminal a-syn, but not the
NCA region (Lee et al., 2009). The relevance of the aggregation
of a-syn has been addressed and several labs confirmed the
inflammogen capacity of oligomeric or aggregated/fibrillar a-syn
that leads, similarly, to increased TNF-α (Reynolds et al., 2008a;
Beraud et al., 2011; Codolo et al., 2013) and ROS (Zhang et al.,
2005; Thomas et al., 2007; Freeman et al., 2013), which were also
related to cell toxicity (Reynolds et al., 2008a). And comparative
studies on the ability of fibrillar, oligomeric and monomeric,
side by side, suggest a higher capacity of the fibrillar a-syn
compared to the other two types to increase TNF-α and IL-1β

release (Hoffmann et al., 2016). In addition, the relevance of
the disease related mutation (A53T, A30P, and E46K) has also
been addressed with contradictory results (although incubation
time and concentration of a-syn in both studies were drastically
different). One study reported A30P and E46K a-syn as those with
the highest pro-inflammatory ability and almost no effect for the
A53T (Roodveldt et al., 2010), but a second group suggested that
first A53T and secondly the A30P were those with the highest
ability to activate microglia (Hoenen et al., 2016).

One of the first report on the a-syn ability to induce a
pro-inflammatory phenotype in microglia was reported back
in 2005; Zhang and coworkers showed that oligomeric a-syn
was phagocyted by microglia and it led to PHOX NADPH
activation (ROS production) and increased Prostaglandin E2
(Zhang et al., 2005). A-syn induced microglia activation led to
neuronal toxicity via ROS production through p67 and p47phox

membrane translocation and activation of PHOX NADPH
oxidase, (NOX2) (Zhang et al., 2005; Jin et al., 2007; Figure 1).
They reported that deletion of the Prostaglandin E receptor
subtype 2 lead to increase microglia ability to degrade a-syn (Jin
et al., 2007; Liu et al., 2007), although it did not completely
avoid microglia activation, which was partially mediated by
CD11b and did not required a-syn internalization (Zhang et al.,
2007). Indeed, a-syn interacted directly with CD11b, and this
interaction was responsible of the NOX2 activation, which also
mediated the chemoattractant ability of a-syn (Wang S. et al.,
2015). Interestingly a-syn (29–40) peptide can bind the catalytic
subunit gp91 of NOX2, thus inducing H2O2 production, which
in turn activates Erk1/2 kinase that phosphorylates p67 and
p47phox, which further amplifies the NOX2 response (Wang S.
et al., 2016). A recent work further corroborates the relevance
of CD11b (α-chain of integrin αMβ2) and suggest that it
mediates aggregated a-syn-induced NOX2 activation through a
RhoA-dependent pathway (Figure 1). In this study, the authors
confirmed that a-syn induced membrane translocation of NOX2
cytosolic subunit p47phox and the induction of superoxide
production (Hou et al., 2018).

Another membrane receptor associated to a-syn is the
scavenger receptor CD36 (through ERK phosphorylation), as its
ablation resulted in a decrease of microglia activation and TNF-α
release induced by monomeric a-syn (Su et al., 2008) or a double
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mutant A30P, A53T a-syn (Su et al., 2009; Figure 1). The protease
activated receptor 1 (PAR-1), a G-protein couple receptor,
has been indirectly implicated in the a-syn-induced activation,
through a paracrine-autocrine event initiated by the secretion of
matrix metalloproteinases (Lee et al., 2010). Also, the purinergic
receptors have been implicated in a-syn microglia activation.
In BV2 cells, oligomeric a-syn stimulated the microglial P2X7
receptor, with PI3K/AKT activation and increased oxidative
stress, via p47phox translocation (PHOX activation) (Jiang et al.,
2015; Figure 1).

CD14 has also been suggested to mediate monomeric a-syn
signaling in microglia since glimepiride, a sulfonylurea that
induces release of the CD14-GPi-anchored protein, reduced
a-syn microglia activation by decreasing the translocation of
TLR-4 into rafts through CD14 (Ingham et al., 2014). CD14,
considered the main receptor for LPS, is a co-receptor of the
TLR-4 but it has also been related to TLR-2 signaling (Kitchens,
2000; Muroi et al., 2002). These two receptors have been the
focus of research in two labs in the field: While Stefanova
et al., has been studying TLR-4, Lee et al., had a special focus
in TLR-2. Stefanova showed that the lack of TLR-4 in vivo
was related to increase neurotoxicity and elevated levels of

a-syn, decrease of phagocytic ability, increase TNF-α and a pro-
inflammatory reaction (Stefanova et al., 2011) suggesting that
TLR-4 mediates a-syn phagocytosis. Moreover, in vivo treatment
with TLR-4 agonist leads to protection in a transgenic a-syn
overexpressing line (Venezia et al., 2017). In vitro, using BV2 cells
and recombinant a-syn, the lab showed that both monomeric
and also modified (truncated or fibrillar) a-syn phagocytosis
is mediated by TLR-4, through a NF-κB nuclear translocation,
which induced releases of TNF-α, IL-6, and CXCL1 (Fellner et al.,
2013; Figure 1). However, the team noted that the lack of TLR-4
did not completely abolished the inflammatory reaction in vivo,
implying parallel TLR-4 independent processes (Stefanova et al.,
2011).

In parallel, Lee and co-workers has related immune changes
in microglia mostly, but not uniquely, to TLR-2. Their work
has highlighted the relevance of the a-syn conformation and our
ability/limitation to mimic it using in vitro recombinant proteins.
By means of conditioned media from SH-SY5Y overexpressing
a-syn they showed activation of microglia in vitro mediated by
p-p38 and that was lost if they use microglia lacking TLR-2
but not with TLR-3 or 4 deficient microglia (Kim et al., 2013).
Moreover, while in vivo overexpression of a-syn in WT mice

FIGURE 1 | Receptors and proteins involved in the a-synuclein induced response in microglia. The microglia will respond to a-synuclein that might be encountering
upon trogocytosis of synapses, but also in the extracellular milieu via exocytosis from neighboring neurons. The type of a-synuclein will change as the disease
progresses, thus microglia will encounter, i.e., monomeric, oligomeric, or fibrillar a-synuclein, but also other form such as nitrated, truncated, and phosphorylated
a-synuclein (not shown). In addition, a-synuclein might be complexed to other molecules such as IgG. The microglia will recognize, uptake and phagocyte the
different a-synucleins, in a process that will be dependent on the type of a-synuclein encountered and the proteins and cascades involved in such event might differ
accordingly. Data from multiple labs support the pro-inflammatory character of the event initiated by a-synuclein and thus its ability to act as a DAMP. Such event is
the consequence of the interaction of a-synuclein with membrane receptors that lead to the (A) NF-κB activation through several identified mediators, and to (B)
assembly of the NLRP3 inflammasome. Altogether, results in the production of inflammatory mediators and free radicals. In addition, proliferation and migration will
also occur as a result of these cascades. The microglia will also degrade a-synuclein in a process that, if compromised, can lead to further inflammatory signaling. In
parallel the microglia can act as an antigen presenting cell and through the MHC-II system present a-synuclein peptides to CD4-T-cells (C), therefore involving
peripheral cells and the adaptive immune system. The resulted immune response will in turn affect neuronal integrity and might also enhance further aggregation of
a-synuclein in neighboring cells contributing to disease progression. (Image partially constructed using Servier Medical Art).
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induced MHCII upregulation in microglia, this was not observed
in TLR-2 KO mice, where the correlation between the expression
of a-syn and MHC II found in the WT, was lost. Remarkably,
this TLR-2 activation was conformational dependent as it was
associated to oligomeric a-syn and not monomeric or fibrillar
a-syn (Kim et al., 2013; Figure 1). However, both labs noted
that not all a-syn induced effect on microglia were dependent in
their TLR of choice and as listed above, other proteins such as
CD11b are also involved in the a-syn activation of microglia, thus
resulting in a complex event.

CASCADES INITIATED BY
ALPHA-SYNUCLEIN IN MICROGLIA

NF-κB
Regarding to the intracellular cascade initiated by a-syn, NF-
κB has been consistently implicated in studies with monomeric,
oligomeric, aggregated or nitrated a-syn in rodent cell lines and
human microglia (Klegeris et al., 2008; Reynolds et al., 2008b;
Wilms et al., 2009; Lee et al., 2010; Couch et al., 2011; Hoenen
et al., 2016). This could be a consequence of the a-syn interaction
with TLR, which leads through the adaptor protein Myeloid
Differentiation primary response gene-88 (Myd-88) to activation
of the “canonical” IκB kinases, initiating a phosphorylation
cascade that results in translocation of NF-κB (Figure 1).
Indeed, oligomeric, but not monomeric, a-syn induces a pro-
inflammatory phenotype in microglia through interaction with
a heterodimer TLR-1/2, leading to NF-κB nuclear translocation
and increase of TNF and IL-1β, in a MyD88-dependent manner
(Daniele et al., 2015; Figure 1). Interestingly, the MyD88 cascade
leads to phosphorylation of LRRK2; another PD related protein
that seems to be also an important player in the immune response
(Dzamko et al., 2012). A-syn overexpression increased microglia
expression of LRRK2 CD68 and iNOS (Daher et al., 2014).
Accordingly, overexpression of a-syn via viral vectors in LRRK2-
KO rats resulted in reduced nigral degeneration and decreased
number of ameboid microglia expressing CD68 and/or iNOS
(Daher et al., 2014). Furthermore, lack of LRRK2 in microglia
resulted in an improved ability to clear extracellular a-syn, which
was associated to an increase of early endosomes (Maekawa et al.,
2016). Thus, suggesting that LRRK2 has a role in the clearance
of a-syn and the a-syn induced activation of microglia. However,
the role of LRRK2 seems to be more significant due to its putative
function not only in microglia, but also in other immune cells,
including macrophages, dendritic cells and B cells (Dzamko,
2017).

The signaling cascade involved in the microglia response
to a-syn is complex and seems to involve not only NF-κB
but also other parallel cascades. Incubation with oligomeric or
monomeric a-syn leads to activation of erk1/2 and p38MAPK
(Su et al., 2008, 2009; Wilms et al., 2009). The oligomeric a-syn
induced TLR2 signaling was mediated by both: NF-κB and p38
(Kim et al., 2013), and p38 and JNK have previously been
related to a-syn toxicity and inflammation (Klegeris et al., 2008;
Wilms et al., 2009; Prabhakaran et al., 2011). Accordingly, genetic
deletion of ASK1 (a MAPK3 that acts upstream of p38) in an

a-syn transgenic mice, decreased microgliosis and improved the
motor phenotype, although no changes in the a-syn pathology
were observed (Lee et al., 2014).

Inflammasome
As suggested by the increased IL-1β induced by a-syn in
microglia, several studies have addressed the involvement of
the inflammasome in the a-syn related immune response. In
human monocytes aggregated a-syn (40 nM) induced release of
IL-1β in a phagocytosis dependent event, which required caspase-
1 activation and involved the NLRP3 inflammasome (Codolo
et al., 2013). However, another group, did not see this using
only a-syn, but if the aggregated a-syn (0.6–2.4 µg/ml, 40–
160 nM) was used in LPS-primed THP-1 (a human monocytic
cell line), this lead to IL-1β release through a caspase-1 activation,
suggestive of inflammasome (Figure 1). This disparity might
reflect differences in aggregate preparation (2 weeks shaking vs. 3
days, respectively), the time of incubation (6 h vs. 24 h) or the cell
used (Freeman et al., 2013). A third group using BV2 cells showed
that both monomeric and aggregated WT and A53T a-syn (0.1,
1, and 10 µg/ml) activated caspase-1, p65 nuclear translocation
and inflammasome. This effect was endocytosis dependent and
mediated through lysosomal damage, cathepsin B release and
AMPK-phosphorylation-dependent ROS accumulation (Zhou
et al., 2016; Figure 1). Interestingly, inflammasome related
caspase-1 activation leads to the truncation of a-syn and
generation of a pro-aggregatory form of truncated a-syn (1–121)
that promotes aggregation and neuronal toxicity (Wang W. et al.,
2016).

Nfr2
Besides the a-syn induced cascade resulting in ROS, the redox
status modulates in turn the microglia activity by modifying
not only pro-inflammatory transcription factors, such as NF-
κB, but also the antioxidant transcription factor Nrf2 (Rojo
et al., 2014). Accordingly, monomeric A53T a-syn (but not wild
type) induced microglia activation through a phosphorylation
mechanism mediated by MAPKs and successive NF-κB/AP-
1/Nrf2 pathways activation (Hoenen et al., 2016). Aggregated
a-syn induces a robust classic pro-inflammatory status with
oxidative stress shown by the increased NO production and
elevated NOX1. However, when a-syn is complexed to dopamine
this fails to mount similar robust pro-inflammatory response but
is able of inducing Nrf2 which in turn induces up-regulation
of antioxidant heme oxygenase-1 (HO-1) and the reduction of
NOX expression (Beraud et al., 2013). Therefore, the type of a-syn
presented by the neuron will be determinant in the microglia
response. The relevance of Nfr2 is also highlighted by in vivo
studies, since lack of Nrf2 resulted on increased a-syn toxicity
due to the failure of the microglia to respond, which lead to
increased IL-6, IL-1β, iNOS, and reduced phagocytosis, which
correlated to a-syn accumulation (Lastres-Becker et al., 2012).
Accordingly, overexpression of Nrf2 in brain has been shown
to be neuroprotective in a-syn based models (Gan et al., 2012).
A recent paper suggest that Nrf2 can also act as a cell-autonomous
agent by inducing a-syn clearance in neurons (Skibinski et al.,
2017).
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MHCII
As mentioned above, an immune marker expression that
correlates directly with a-syn neuronal pathology is MHCII;
this is true in humans (Croisier et al., 2005), but also in
rodents (Sanchez-Guajardo et al., 2010). MHCII is involved
in the presentation of antigens to T-cell, specifically CD4-
T cells, thus suggesting that adaptive immune system is also
involved in the immune response during PD. Supporting this,
PD genetic risk variants have been described in the human
leukocyte antigen (HLA) gene loci (Hamza et al., 2010; Nalls
et al., 2011; Puschmann et al., 2011; Wissemann et al., 2013). In
brain, microglia can act as an antigen presenting cell (Almolda
et al., 2015). Thus, we could speculate that upon uptake of a-syn
by the microglia, the protein can be processed in endosomes
and presented to T-cells via MHCII (Figure 1). Accordingly,
in vitro, aggregated a-syn increased T-cell proliferation in a MHC
II dependent manner (Harms et al., 2013). We and others have
shown that a-syn PD based models showed T-cell infiltration in
brain that correlated to microglia proliferation and activation
(Sanchez-Guajardo et al., 2010; Harms et al., 2017). Supporting
this possibility, a-syn derived peptides are recognized by T-cells
derived from PD patients (Sulzer et al., 2017). Interestingly, a-syn
toxicity was abolished in mice in the absence of MHCII, however,
the MHCII knock-out line used in this study presents a dramatic
decrease of the CD4+ T-cell population thus making difficult
to draw conclusions (Madsen et al., 1999; Harms et al., 2013).
A deleterious role for CD4 in PD has been previously proposed
(Brochard et al., 2009). However, the work of Sulzer supports a
Th2 response (thus anti-inflammatory) rather than a deleterious
response in the T-cells of PD patients (Sulzer et al., 2017). We
have shown that allelic variance of Mhc2ta related to lower
expression MHCII levels resulted in increased a-syn toxicity in
rats that correlated with a higher microglia response (Jimenez-
Ferrer et al., 2017), thus suggesting that a failure in the adaptive
immune signal (MHCII-CD4 T cell) will have consequences in
the neuronal survival to a-syn insult. In PD patients the CD4
population seems to be altered (Fiszer et al., 1994; Saunders et al.,
2012; Stevens et al., 2012) and they seem to be more prone to
apoptosis, and differ in their activation state, which could suggest
that a failure of the CD4 cells response might be happening in PD
(Romero-Ramos et al., 2014). However, we should also consider
a differential response of the T-cells to the different types of
a-syn presented through the disease, thus changing the nature of
their response as disease progress. Accordingly, we have recently
shown that the CD4 response was variant specific (Olesen et al.,
2018).

LIMITATIONS OF THE STUDIES
PERFORMED SO FAR

Altogether, the literature is now abundant about the character of
a-syn as a DAMP, however, certain problems have arisen through
the last decade which complicates the comparison of the studies
performed in multiple labs. The choice of cellular or animal
model, as well as the concentrations and or preparation of the
different forms of a-syn is not trivial. For example although BV2

cells are widely used as a microglia model (Blasi et al., 1990),
they do not always predict fully the in vivo response of microglia
and also differ in their response from primary microglia (Henn
et al., 2009). In addition, studies using monocytes or monocytic-
cell lines, such as RAW 264.7 (murine) and THP-1 cells (human),
although relevant for the disease, they will not always translate
directly to microglia response, since as mentioned they constitute
different cells.

A consensus about preparation of a-syn oligomers or fibrillar
aggregates is also important, since changes in the type of a-syn
strain used, is determinant in the type of pathology observed
in brain (Peelaerts et al., 2015). Also, the presence or absence
of endotoxin in preparations of recombinant a-syn and during
fibrilization has also been investigated and shown different effects
when approached in vivo (Rutherford et al., 2015; Kim et al.,
2016). Some of these issues have been visited and protocols
have been put forward recently with an initiative of the MJ. Fox
Foundation (Polinski et al., 2018), an initiative that the scientific
community should positively embrace.

Finally, the concentrations used in each experiment is also
highly relevant. Although, initial papers studying in vitro a-syn
effect on microglia were using rather high concentrations, on
the range of µM, the recent papers regarding TLR-2 and TLR-
4 activation by a-syn are based on much lower although also
variable concentrations, 5.3 µg/ml (360 nM) and 3 nM. This is
relevant, especially considering that a-syn concentrations in CSF
are reported to be 550 pg/ml (35 pM, using a Luminex bead-based
assay) (Wang et al., 2012). Furthermore, a-syn levels in brain has
been shown to be 2–5 ng/µg protein in healthy humans and up
to 17.5 ng/µg in MSA (using calibrated western blots) (Tong
et al., 2010). Microdialysis experiments (followed by sandwich
ELISA) showed 0.15 ng/ml in wild type mouse and 0.49 ng/ml in
a transgenic a-syn line. Moreover, the authors reported also that
in humans 0.5–8 ng/ml a-syn were found in brain parenchyma
(Emmanouilidou et al., 2011). This is corroborated in a recent
paper reporting a concentration of a-syn in the interstitial space
of 1–5 ng/ml (68.49–342, 45 pM) using microdialysis in mice
(Yamada and Iwatsubo, 2018). The levels of extracellular a-syn
in cell culture are reported to be higher, in the range of 2–12 nM
(Emmanouilidou et al., 2010). But conditioned media containing
as little as 1.06± 0.371 µg/ml (70 nM) oligomeric a-syn, has been
shown to have an effect in microglia TLR-2 (Kim et al., 2013).
Thus, the relevance of some of the studies reviewed here, should
be put in context, with respect to the physiological significance.
Although, we could speculate that high concentration of the a-syn
could be achieved locally at the level of synapse or high neuronal
activity areas, since as suggested, a-syn release increases with
neuronal activity (Yamada and Iwatsubo, 2018).

NEUROPROTECTIVE STRATEGIES
BASED ON IMMUNOMODULATION

With the knowledge gained through the last decade, several
immune-based therapeutic approaches have been recently tested.
Several laboratories have investigated a-syn toxicity in the viral
vector PD based model in several knock-out lines and suggested
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protective roles for fractalkine (Thome et al., 2015), highlighted
the key inflammatory role of the microRNA155 (Thome et al.,
2016) and the role of TLR2 in a-syn toxicity (Kim et al.,
2013). Although, knock-out studies constitute a useful proof of
principle approach, the in vivo pharmacological modulation of
the a-syn induced immune cascade will have a more translational
significance.

In that regard, several recent studies have approached drugs
and natural compounds that can interfere with relevant immune
related cascades to achieve neuroprotection. Pharmacologic
inhibition of the JAK1/2, was protective in the a-syn viral
vector model in vivo (Qin et al., 2016). MAPK inhibitor
semapimod, also protected against a-syn induced microgliosis
and dopaminergic cell death in vivo (Wilms et al., 2009). And
several studies have approach NF-κB and NOX2 cascade to
decrease neurodegeneration. Taurine, a major intracellular
free β-amino acid in mammalian tissues, was neuroprotective
in mice injected with paraquat and maneb (Che et al., 2018).
Taurine interfered with the NF-κB pathway and the membrane
translocation of p47phox (thus NOX2 activation), and it supressed
paraquat and maneb-induced microglial M1 polarization. This
resulted in decreased dopaminergic neurodegeneration and
a-syn aggregation (Che et al., 2018). Equally α-mangostin,
a polyphenolicxanthone from mangosteen, also inhibited
NOX2 and NF-κB signaling induced by a-syn in culture, thus
supressing microglial release of pro-inflammatory cytokines,
iNOS and ROS production (Hu et al., 2016). Lenalidomide
is a thalidomide derivative with reduced toxicity that when
administrated to transgenic a-syn Thy1- mice improved
motor performance abilities and attenuated dopaminergic
degeneration and microgliosis, by modulating NF-κB signaling
and cytokine expression (Valera et al., 2015). NOX2 inhibitor
diphenyleneiodonium treatment in several PD mouse models
was neuroprotective (Wang Q. et al., 2015). When LPS was used
in A53T a-syn transgenic, diphenyleneiodonium could protect
neurons by avoiding pro-inflammatory activation of microglia,
reducing oxidative stress and it lead to a decrease of a-syn
accumulation (Wang Q. et al., 2015).

Dimethyl fumarate is a potent anti-inflammatory and anti-
oxidant fumaric acid esters. On the MPTP mouse model,
dimethyl fumarate significantly reduced a-syn aggregates (dimers
and oligomers) rescuing neurons from oxidative stress via
activation of the Nrf2 transcriptional system, suppression of
NF-κB signaling and consequently decreasing COX-2 and IL-1β

levels (Campolo et al., 2017). In the same model and on a similar
way of action, the novel bibenzyl compound 2-[4-hydroxy-
3-(4-hydroxyphenyl) benzyl]-4-(4-hydroxyphenyl) phenol, was
neuroprotective not only by regulating NF-κB signaling, but
also by supressing NOD-like receptor protein 3 (NLRP3)
inflammasome pathway (Zhang et al., 2017).

Another natural compound, Juglanin (from Polygonum
aviculare) was neuroprotective in mice treated with LPS,
by supressing LPS-induced inflammation through the TLR-
4/CD14/MyD88 pathway and thus decreasing the release of
pro-inflammatory cytokines (IL-1β, TNF-α, IL-18) and COX-2
(Zhang and Xu, 2018). Interestingly, as an indirect effect, LPS
induced increased on a-syn mRNA was reversed by Juglanin

in a dose dependent manner. Thus, although several of these
studies were not using a-syn based models, the mechanism
of neuroprotection could also be relevant in a-syn induced
neurodegeneration.

In parallel, enhancement of a-syn clearance is the therapeutic
strategy approached by other labs. Stefanova’s team aimed to
increase a-syn uptake through TLR-4 using monophosphoryl
lipid A, a TLR-4 selective agonist and a potent inducer
of phagocytosis. The drug was neuroprotective in MSA
model, and chronic treatment reduced the a-syn accumulation,
neuroprotection and improved motor behavior (Venezia et al.,
2017). Other labs have approached passive immunization to
facilitate a-syn degradation and found neuroprotection in
multiple a-syn based models (Bae et al., 2012; Games et al.,
2014; Mandler et al., 2015; Spencer et al., 2017). With that
purpose, novel antibodies have also been generated against
specific peptides (targeting the N-terminal or central region of
α-synuclein-AB1 and AB2 respectively) on full-length human
a-syn and tested on a viral vector-based a-syn model in rats. Both
showed beneficial neuroprotective effects, but particularly AB1
demonstrated to be more efficient (Shahaduzzaman et al., 2015).
Additionally, passive vaccination with a a-syn antibody that has
preference for aggregated a-syn, is being approached in a Phase 1
trial by Prothena in collaboration with Hoffman-La Roche1.

Interestingly, a-syn vaccination also results in neuroprotection
in the MPTP toxic PD model (Villadiego et al., 2018). An
innovative vaccination strategy that combines a-syn and Glucose
related protein 94(Grp94), a chaperone protein found in the
endoplasmic reticulum with critical functions in physiology
and development of multicellular organisms (Marzec et al.,
2012), demonstrated a strong disease-modifying potential
with the ability to target neuroinflammation in the MPTP
model (Villadiego et al., 2018). In the same model, while
vaccination with nitrated a-syn induced a Th17 response and
neurodegeneration, the adoptive transfer of T-regulatory cells,
lead to neuroprotection (Reynolds et al., 2010). Thus, suggesting
the importance of the type of a-syn that the immune system
is recognizing, which is corroborated by our own data showing
that the T-cell compartment recognized and responded to the
different a-syn and its disease related modifications (fibrillar and
nitrated) in vivo (Olesen et al., 2018).

We have previously reported that an active a-syn vaccination
in the a-syn viral vector PD model, resulted in decreased
a-syn pathology that was correlated to the humoral response
(antibody production and IgG deposition in brain) but also
to a cellular response with increase infiltration of T-regulatory
cells in brain (Sanchez-Guajardo et al., 2013). In a follow up
study, we showed how the vaccination strategy, was able of
modifying the peripheral T-cell compartment, thus corroborating
the role of the periphery in the disease and its influence in brain
events (Christiansen et al., 2016). The advantages of a combined
cellular and humoral response have been recently confirmed in
an a-syn transgenic mouse (Rockenstein et al., 2018). An active

1http://globenewswire.com/news-release/2015/03/19/716962/10125642/en/
Prothena-Reports-Robust-Reduction-of-Free-Serum-Alpha-Synuclein-of-up-
to-96-After-Single-Dose-of-PRX002-a-Novel-Protein-Immunotherapy-for-
Parkinson-s-Disease.html
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vaccination in PD patients is being conducted by the company
Affiris, and it has initiated its Phase 2 after a successful Phase 12.

CONCLUSION

The evidence so far suggest that the microglia will respond to the
changes in neurons during PD, it will not only sense changes in
neurotransmitter release and or modifications in other proteins
expressed by neurons such as CD200 or CX3CL1 (Ransohoff
and Cardona, 2010), but it will also recognize and respond
to a-syn. This a-syn might be encountered upon trogocytosis
of axonal structures, but also in the extracellular milieu upon
exocytosis. The type of a-syn will change as the disease progresses,
i.e., monomeric, aggregated, nitrated, truncated, and also it
will be affected by interaction with other molecules depending
on the neuronal population or disease stage. The microglia
will recognize, uptake and phagocyte the a-syn, in a process
that will be dependent on the type of a-syn encountered and
the proteins and cascades involved in such event might differ
accordingly (Figure 1). For example, aggregated a-syn induced
a TNF response in microglia, but upon dopamine modification
a-syn does not efficiently initiates such inflammatory cascade
but seems to favor Nrf2 expression (Beraud et al., 2013). Or the
clearance of a-syn through FcγR seems to be more efficient if
complexed with IgG (Bae et al., 2012). In addition, as mentioned
before, while TLR-4 recognized and uptakes monomeric a-syn,
TLR-2 seems to be especially relevant to recognize an epitope
associated to oligomeric a-syn (Kim et al., 2013). However, the
research community seems to agree on the pro-inflammatory

2 http://www.affiris.com/news/affiris-announces-results-of-a-phase-i-clinical-
study-using-affitopes-pd01a-and-pd03a/

character of the event initiated by aggregated a-syn, which will
in turn affect neuronal integrity and might also enhance further
aggregation of a-syn in neighboring cells. In parallel to the
local neuronal response, the microglia would also interact with
peripheral lymphocytes, that will eventually also modulate the
immune response in the patient. Altogether leading to a dynamic
response of the immune system in the disease as time progresses.
Thus, if aiming for immunomodulation, in the future we should
take into account at the status of the immune system in the
patient, so appropriate neuroprotective factors are enhanced
accordingly. Therefore, a more personalized therapeutic design
should be considered that will require a profiling of the patient’s
immune system prior to initiation and selection of the pertinent
immunomodulatory agent.
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