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Abstract

Background: Individual participant data (IPD) meta-analyses that obtain ‘‘raw’’ data from studies rather than summary data
typically adopt a ‘‘two-stage’’ approach to analysis whereby IPD within trials generate summary measures, which are
combined using standard meta-analytical methods. Recently, a range of ‘‘one-stage’’ approaches which combine all
individual participant data in a single meta-analysis have been suggested as providing a more powerful and flexible
approach. However, they are more complex to implement and require statistical support. This study uses a dataset to
compare ‘‘two-stage’’ and ‘‘one-stage’’ models of varying complexity, to ascertain whether results obtained from the
approaches differ in a clinically meaningful way.

Methods and Findings: We included data from 24 randomised controlled trials, evaluating antiplatelet agents, for the
prevention of pre-eclampsia in pregnancy. We performed two-stage and one-stage IPD meta-analyses to estimate overall
treatment effect and to explore potential treatment interactions whereby particular types of women and their babies might
benefit differentially from receiving antiplatelets. Two-stage and one-stage approaches gave similar results, showing a
benefit of using anti-platelets (Relative risk 0.90, 95% CI 0.84 to 0.97). Neither approach suggested that any particular type of
women benefited more or less from antiplatelets. There were no material differences in results between different types of
one-stage model.

Conclusions: For these data, two-stage and one-stage approaches to analysis produce similar results. Although one-stage
models offer a flexible environment for exploring model structure and are useful where across study patterns relating to
types of participant, intervention and outcome mask similar relationships within trials, the additional insights provided by
their usage may not outweigh the costs of statistical support for routine application in syntheses of randomised controlled
trials. Researchers considering undertaking an IPD meta-analysis should not necessarily be deterred by a perceived need for
sophisticated statistical methods when combining information from large randomised trials.
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Introduction

Individual participant data (IPD) systematic review and meta-

analysis in which the original ‘‘raw’’ data from each participant in

the relevant trials are centrally collected, checked, re-analysed and

combined [1,2], is considered to be a gold standard approach to

evidence synthesis. The IPD approach has the potential to

minimise publication and reporting biases [3] and to allow

detailed data checking and verification. Analysts can re-code

covariate, measurement and outcome data to common definitions

and carry out appropriate analyses, even where trials failed to do

so [4]. A major advantage of IPD analysis over the conventional

aggregate data approach is that it allows detailed participant-level

exploration of treatment effectiveness in relation to individuals’

characteristics such as age or stage of disease [2,5].

To date, most IPD analyses have taken a two-stage approach to

analysis. In the first stage individual participant data within a trial

are analysed to generate trial-level summary statistics (e.g. relative

risks). In the second stage these results from each trial are

combined across trials using conventional meta-analytical methods

[6,7].The two-stage approach is relatively straightforward to

implement, and produces easily interpretable and communicable

results for those familiar with meta-analyses of aggregate data.

A ‘‘one-stage’’ approach, by contrast combines all individual

participant data in a single meta-analysis based on a regression

model stratified by trial (e.g. a logistic regression). In order to

incorporate random-effects to allow for heterogeneity, hierarchical

or mixed-effect regression models are used [7–9]. These models

are particularly suitable for investigating how treatment effects
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vary between individuals or groups [10] and have improved ability

to detect differences between groups of participants over two-stage

meta-analyses. They also allow separation of group level and

individual level relationships; and allow models with different

statistical assumptions and structure to be formally compared.

In the two-stage framework associations between treatment and

participant characteristics may be investigated by subgroup

analysis commonly accompanied by tests of interaction [6,11],

or less commonly by meta-regression [12]. These indirect

comparisons present two problems both of which are potentially

addressed by the use of one-stage models. First, because they are

trial-level comparisons they lack statistical power to detect an

interaction when compared to using all the data across trials

[13,14]. One-stage models improve the power to detect treatment

by covariate interactions in IPD meta-analyses [15,16], suggesting

that one-stage models may be most useful where trials are few or

small, i.e. they have limited power. Second, the association

between effect and covariate in a subgroup analysis or meta-

regression may consist of a mixture of within-trial relationships

and across-trial relationships resulting in the potential for

aggregation or ecological bias [13,17,18] (definition and explana-

tion provided in supporting information S1, figure S1). Aggrega-

tion bias in a two-stage approach may be avoided by estimating

interaction parameters separately in each trial and then combining

these estimates using conventional meta-analysis [16,19].

The one-stage approach is flexible, allowing incorporation of

both random treatment effects [8] and random-effects on

treatment-covariate interaction terms [9]. Multiple patient factors

(covariates) may be incorporated in a single model - provided

sufficient data are available for all trials. Correlation between

covariates and trials can also be explicitly included. Aggregation

bias may be avoided by analysing only within-trial relationships

between treatment and covariates or by estimating within and

across-trial treatment-covariate interactions independently [9].

Different one-stage models may be compared in terms of

goodness-of-fit (how well the model explains the data) and

complexity, using the Akaike Information Criterion (AIC) [20],

providing a means of choosing between multiple models.

The flexibility of the one-stage approach offers multiple

approaches to model specification and so increases the potential

for data dredging [21]. The relative complexity makes commu-

nicating results more difficult. The reduced flexibility of the two-

stage approach minimises the chances of data dredging, but

implicit assumptions may be inappropriate [22,23], particularly

with heterogeneous data [24]. For instance, over-fitting may occur

when the number of studies is (relatively) small or the normality

assumption of random-effects is violated [25]. Although one-stage

approaches require explicit value judgements about how syntheses

could be optimised, they can provide alternative analytical

strategies that may either overcome these problems or demon-

strate the sensitivity of results to specific model assumptions.

There is currently no consensus or guidance on the appropri-

ateness of the different approaches to analysis of IPD [26]. A

recent paper advocated either a two-stage approach to combining

within-trial treatment-covariate interactions based on regression or

one-stage models [19]. Comparisons of one and two-stage

methods based on time-to-event data have suggested that choice

between them has limited impact on treatment effects or

treatment-covariate interactions, although arguably, one-stage

models may provide ‘‘deeper insights’’ into the data [27,28].

Here we present an empirical comparison of one and two-stage

methods for dichotomous outcome data, based on a large

individual participant dataset which includes both large and small

randomised controlled trials (range 22 to 8016 participants). We

compared fixed-effect and random-effects estimates of overall

treatment effectiveness and treatment-covariate interactions using

one and two-stage approaches to analysis. We use these findings,

together with those of others and theoretical underpinnings, to

explicitly consider the tradeoffs between computational and

statistical complexity with the ability to minimise potential bias

and provide insights into treatment effectiveness. Our aim is to

provide pragmatic guidance on choice of methods.

Methods

The dataset comprises IPD collected as part of an international

collaborative IPD meta-analysis evaluating antiplatelet agents for

the prevention of pre-eclampsia [29] in pregnancy. We explored

potential treatment interactions by previous ‘‘high risk’’ pregnan-

cy, history of hypertension in pregnancy, previous infant small for

gestational age, maternal renal disease, diabetes, and hypertension

(categorical covariates) and maternal age and gestational age at

randomisation (continuous covariates).

The Overall Treatment Effect
The previously published two-stage meta-analysis [29] was

replicated. This analysis presented data on maternal pre-eclampsia

from 24 randomised controlled trials, with a total of 30, 822

women. An equivalent one-stage fixed-effect model was fitted

using logistic regression (model 1, see supporting information S2

for full model specifications). A two-stage random-effects analysis

[30] was performed and compared to its one-stage random-effects

equivalent, a random-effects logistic regression model (model 2,

supporting information S2).

Treatment-covariate Interactions
Two-stage analyses to investigate the association between

treatment effect and covariates, that is, treatment-covariate

interactions, were conducted by subgroup analysis for each

covariates of interest. It was not possible to build a one-stage

multivariate model incorporating all covariates, because different

subgroups were reported in different trials, thus each covariate was

considered in turn. One-stage fixed and random-effects analyses

were conducted by extending regression models 1 (fixed) and 2

(random) to include the covariate and an interaction term between

treatment and covariate as proposed by [8], (model 3, table 1).

We used presence of a high risk factor (as defined by [29],

including hypertension or history of hypertension, renal disease

and diabetes) as a dichotomous covariate, and maternal age as a

continuous covariate, in further analysis of treatment-covariate

interaction using more complex one-stage models (table 1). The

two-stage approach considered three age categories (,20 years, 20

to 35 years, .35 years).The risk of pre-eclampsia increases for

women over 35 years old [31]. However, the relationship between

age and risk of pre-eclampsia may not be linear. Therefore, in

addition to standard models assuming a linear relationship

between age and risk of pre-eclampsia, one-stage models were

constructed using quadratic terms to allow elevated risk in woman

above and below the median age of 34.

A range of models making different assumptions were used to

analyse interactions between treatment and high risk factor and

between treatment and maternal age. Model 3 assumes that the

effect of the covariate and the treatment-covariate interaction

are common to all trials. Model 4, however, allows for

independent effects of the covariate across trials. Model 5

separates the within-trial information on the treatment-covariate

interaction from the across-trials information. A final novel one-

stage-model incorporates random-effects for both the treatment
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effect and the treatment-covariate interaction (model 6). We also

explored the ease with which one-stage models could be

extended to include multiple covariates or treatment-covariate

interactions.

Two-stage analyses were undertaken using the Metafor package

[32] in R (2.14.1). One-stage models were fitted via the Lme4

package. The code to fit the one-stage models is included alongside

the full model specifications in the supporting information S2.

Results

The overall estimates of effect of anti-platelets in preventing

pre-eclampsia obtained by one and two-stage approaches were

compared (table 2). One and two-stage fixed-effect estimates

were identical. There were minor differences between the

models where random-effects were included because of the

different estimates of heterogeneity (total variation between

between studies). One-stage models estimated zero heterogeneity

(Tau2) indicating no variation between studies. The standard

(method-of-moments) estimate of heterogeneity in the two-stage

approach was 0.011 (Q = 28.98, p = 0.18, I2 = 21%) indicating

minimal variation, but both restricted maximum likelihood and

maximum likelihood approaches estimated heterogeneity as zero

(I2 = 0.01%). Heterogeneity therefore appears sensitive to

method of computation, but not to choice of one or two-stage

model directly. However, none of these differences were of

material importance or would lead to different clinical

interpretation of findings. The forest plot (figure 1) illustrates

the minimal heterogeneity with associated statistics from the

two-stage fixed-effect model.

Table 1. Key characteristics of one-stage models in approximate order of increasing computational complexity.

Treatment effect Treatment-covariate interaction Within and across trial coefficients

Model 1 fixed NA NA

Model 2 random NA NA

Model 3 random fixed NA

Model 4 random fixed NA

Model 5 random fixed yes

Model 6 random random NA

Models 3 to 5 have fixed treatment-covariate interactions such that the effect of the covariate and the treatment-covariate interaction are common to all trials.
doi:10.1371/journal.pone.0046042.t001

Figure 1. Forest plot of relative risks of developing pre-eclampsia (fixed-effect inverse variance model based on two-stage analysis
replicating the analysis of [29]). Q(df = 23) = 31.19, p = 0.12, I2 = 26.3.
doi:10.1371/journal.pone.0046042.g001
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Comparison of Treatment-covariate Interaction Estimates
from One and Two-stage Models

Neither one-stage nor two-stage methods identified any

statistically significant interactions between the effect of anti-

platelet administration and any of the types of women considered.

There are important differences in the way results are presented

between the approaches. Two-stage analyses generally present a p-

value for an interaction test, whilst one-stage models provide

interaction coefficients. Generally, in the two-stage approach effect

sizes are only presented for subgroup categories (e.g. separately for

men and for women) when there is clear evidence of a differential

effect of the intervention, as indicated by statistically significant test

for interaction. In which case the clinically utility of the

intervention for each type of participant group is likely to be best

judged with respect to the particular effect estimate obtained for

that group (e.g. the effect estimate obtained for men will be used to

make decisions about the use of interventions in men). Where

there is no indication that particular types of participant benefit

disproportionally from the intervention, as indicated by a non

significant test for interaction, the overall result generally remains

the best estimate to use when making clinical judgements of utility

(e.g. the same overall effect will be used to make decisions about

the treatment of both men and women). One-stage models

generally present regression and interaction coefficients. When

there is evidence of a differential effect of the intervention (e.g.

women benefit more than men) the coefficients can be converted

to effects to aid clinical interpretation. Here we present effects for

all subgroups to facilitate comparison of one and two-stage model

output along with p-values from associated tests of interaction. In

actuality, neither approach would generally present results

separately by subgroup category as there were no indications of

differential effectiveness. There were no consistent differences

between one and two-stage methods in terms of the size, precision

or differences between subgroups (table 3).

There were some numerical differences in results for continuous

covariates, although the differences were not clinically significant

(table 4). The estimates of effect were very similar, but the p values

for interaction were larger in the one-stage models, reflecting the

tight confidence intervals around the treatment-covariate interac-

tion term. This coupled with the interaction estimates indicating

no effect, increases certainty about the lack of interaction in

comparison to two-stage models (table 4).

One-stage models have the advantage of avoiding potentially

arbitrary dichotomisation of continuous covariates and allow

exploration of non-linear relationships. The inclusion of quadratic

terms in models with maternal age did not substantively alter the

treatment or treatment-age interaction coefficients. Model com-

parison indicated that simpler models, treating maternal age as

linear, represented a better trade-off between the amount of

variation explained and complexity than did models with

Table 2. Estimates of relative risk and heterogeneity (Tau2).

Relative risk 95% CI
Amount of
Heterogeneity

Two-stage fixed 0.90 0.83 to 0.96 NA

One-stage fixed 0.90 0.83 to 0.97 NA

Two-stage random 0.87 0.78 to 0.97 0.011 (se 0.016)

One-stage random 0.90 0.83 to 0.97 0 (se 0.000)

doi:10.1371/journal.pone.0046042.t002

Table 3. Relative risks and p values for the interaction between treatment and categorical covariates using one and two-stage
models.

Two-stage One-stage

Subgroup Category
Relative risk
(95% CI)

Interaction
p value

Relative risk
(95% CI)

Interaction coefficient
(standard error) p value

First pregnancy with/without
high risk factor

with 0.90 (0.76 to 1.08) 0.71 0.88 (0.66 to 1.09) 0.03 (0.13) p = 0.81

without 0.87 (0.75 to 1.02) 1.16 (1.00 to 1.31)

Second pregnancy with/without
high risk factor

with 0.89 (0.81 to 0.99) 0.56 0.88 (0.78 to 0.98) 20.08 (0.17) p = 0.62

without 0.98 (0.73 to 1.33) 0.95 (0.63 to 1.27)

Second pregnancy with/without
History of hypertension

Yes 0.86 (0.77 to 0.97) 0.25 0.88 (0.49 to 1.25) 20.07 (0.10) p = 0.46

No 0.96 (0.82 to 1.12) 0.94 (0.53 to 1.35)

Renal disease Yes 0.63 (0.38 to 1.06) 0.23 0.60 (0.35 to 1.04) 20.43 (0.31) p = 0.17

No 0.90 (0.82 to 0.96) 0.90 (0.82 to 0.98)

Diabetes Yes 0.63 (0.38 to 1.06) 0.26 0.71 (0.35 to 1.06) 20.21 (0.19) p = 0.27

No 0.90 (0.82 to 0.96) 090 (0.81 to 0.98)

Hypertension Yes 0.97 (0.84 to 1.12) 0.28 0.97 (0.82 to 1.15) 0.10 (0.10) p = 0.32

No 0.88 (0.81 to 0.96) 0.89 (0.82 to 0.96)

Previous small for gestational
age infant

Yes 1.05 (0.86 to 1.28) 1.05 (0.80 to 1.36)

No 0.85 (0.73 to 0.98) 0.27 0.85 (0.69 to 1.05) 0.25 (0.14) p = 0.07

No previous infant 0.89 (0.79 to 0.99) 0.85 (0.75 to 1.32)

The two-stage model with fixed-effect replicating the analysis of [29]. One-stage models were consistent whether treatment effects were fixed or random.
doi:10.1371/journal.pone.0046042.t003
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quadratic terms. One-stage models did not consistently converge

(models crashed) when estimating relative risks, but did converge

when outcomes were measured as odds ratios. This reflects the

additional complexity of modelling relative risk (which requires

inclusion of a link function: see supporting information S2) in

comparison to odds ratios which are a natural output of logistic

regression models. Further comparison of one-stage models was

therefore based on odds ratios.

Comparisons of One-stage Models
The full range of one-stage models described in the introduction

(table 1) were compared exploring treatment-covariate interactions

with a dichotomous (table 5) and continuous covariate (table 6).

Estimates of interaction and associated standard error were

generally consistent across models. Model 5 which separated

within- and across-trial covariate treatment interactions had the

smallest estimate of within-trial interaction in both cases. This

suggests that, in these instances, aggregation bias is resulting in

over-estimates of treatment-covariate interaction. All models,

however, clearly demonstrate that there is no evidence of

interaction between treatment and any of the covariates investi-

gated.

The additional complexity of model 5 was warranted in terms of

the extra variability the model explained in comparison to other

models where maternal age was concerned. Model fit, measured in

terms of AIC was similar across models except for model 5, which

had a substantially lower AIC than the other models in the analysis

of maternal age, suggesting a better model fit, and that accounting

for aggregation bias was important in that analysis (table 6).

The one-stage models performed similarly in terms of robust-

ness and speed of convergence (measured in seconds rather than

minutes), although convergence of the models was not always

possible when calculating relative risks rather than odds ratios.

Exploratory analyses based on inclusion of multiple covariates

simultaneously suggest that extending the models (particularly

model 5) beyond a single treatment-covariate interaction may not

always be possible as multivariate models were prone to crash.

Discussion

The selection of analytical method for IPD may not be

straightforward. Advocates of a one-stage approach point to

increased power to detect treatment-covariate interactions, ability

to control for aggregation bias and also suggest that one-stage

approaches may provide deeper insights into the data by allowing

testing of different assumptions about model structure and

adjustment for multiple covariates [9,19,27,28]. However, these

potential advantages come at the cost of computational complexity

and require additional statistical expertise in comparison to the

two-stage approaches used in most IPD analyses. Advocates of a

two-stage approach question whether these theoretical benefits are

realised in practice and whether they lead to differing clinical

conclusions. This analysis of a large data set with a dichotomous

primary outcome was consistent with previous analyses of smaller

data sets with time-to-event outcomes [27,28] strengthening the

view that one and two-stage approaches will often produce similar

results in practice. Clearly, this represents a limited body of

empirical evidence, but it does indicate that those considering

undertaking an IPD analysis should not necessarily be deterred by

a perceived need for sophisticated statistical methods, irrespective

of the type of outcome.

In this example, the increased power of one-stage methods was

not manifest in tighter confidence intervals for overall treatment

effects or for treatment-covariate interactions of the seven

Table 4. Relative risk and p value for treatment-covariate interactions for continuous covariates.

Subgroup Category Two-stage
Continuous covariate
coefficients One-stage

Relative risk
(95% CI)

Interaction test
p- value

Relative risk, *Odds ratio
(95% CI)

Interaction
coefficient p- value

Maternal age (years) ,20 0.97 (0.78 to 1.20) Treatment 0.88 (0.87 to 0.89)*

20–35 0.87 (0.80 to 0.95)

.35 1.02 (0.83 to 1.26) 0.35 Interaction 1.00 (0.98 to 1.01)* 0.85

Gestational age at
randomisation (weeks)

,20 0.87 (0.79 to 0.96) Treatment 0.90 (0.84 to 0.95)

$20 0.95 (0.85 to 1.06) 0.2 Interaction 1.00 (0.99 to 1.01) 0.53

doi:10.1371/journal.pone.0046042.t004

Table 5. Comparison of one-stage models including
interaction between antiplatelets and presence of a high-risk
factor.

Model Treatment coefficient Interaction coefficient AIC

Log odds ratio (se) p Log odds ratio (se) p

3 20.13 (0.07) 0.08 0.006 (0.09) 0.94 16189

4 20.12 (0.07) 0.09 0.007 (0.09) 0.93 16137

5 20.16 (0.06) 0.01 0.001 (0.006) 0.85 16200

6 20.13 (0.07) 0.08 0.006 (0.09) 0.94 16199

doi:10.1371/journal.pone.0046042.t005

Table 6. Comparison of one-stage models including
interaction between antiplatelets and maternal age.

Model Treatment coefficient Interaction coefficient AIC

Log odds ratio (se) p Log odds ratio (se) p

3 20.12 (0.004) 0.005 0.001 (0.006) 0.85 16199

4 20.12 (0.004) 0.005 0.001 (0.006) 0.79 16190

5 20.10 (0.05) 0.04 0.0004 (0.007) 0.94 13998

6 20.15 (0.04) 0.0007 20.001 (0.008) 0.86 16200

doi:10.1371/journal.pone.0046042.t006
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categorical covariates investigated. However, when using a one-

stage approach, the treatment-covariate interaction terms were

more precisely estimated for continuous covariates. The lack of

interaction may be more apparent in one-stage models which

display interaction coefficients and standard errors than two-stage

models where interactions are assessed using p- values from

subgroup analysis. This may be of importance where p-values are

close to statistically significant boundaries.

One-stage models have the advantages of not requiring the

potentially arbitrary dissection of covariates, and ability to test for

non-linear relationships for continuous covariates. However,

interpretation of the resulting coefficients may be difficult.

Centering treatment effects on median values is appropriate

where there are no interactions as this reflects the population for

whom the estimate is most applicable. Where interactions are

identified, it may be appropriate to express coefficients in terms of

treatment effects for categorical groups identified in protocols, as is

standard in presentation of results from two-stage analysis.

Aggregation bias is a potential problem in any meta-analysis.

Avoiding this bias by using IPD and distinguishing between

within-trials and across-trials information is therefore important.

To eliminate such bias, only within-trial information on the

association between treatment effects and covariates should be

considered. This is possible in both one-stage (see model 5) and

two-stage approaches. In a two–stage analysis aggregation bias can

be avoided by only including trials that report effects for all

subgroup categories. Alternatively, within-trial treatment-covariate

interactions can be identified by undertaking regression analyses

within each trial and combining regression coefficients in a meta-

analysis across trials. One-stage models which separate within and

across trial treatment-covariate interactions provide direct mea-

sures of effect and precision thereby allowing quantification of the

effects of aggregation bias. Model specification, can allow

statements to be made directly about the magnitude and

significance of aggregation bias (supporting information S2).

A key advantage of a one-stage approach is the flexibility in

terms of the models that may be fitted. One-stage models allow for

the inclusion of multiple covariates in a single model, multiple

random-effects on different parameters and the separation of

within and across-trials information. The different models may not

necessarily lead to different results, as was found in this analysis.

One-stage models may also be compared, in terms of both

goodness of fit and parsimony of model, by using, for example, the

AIC statistic. This allows the selection of a ‘‘best fitting’’ model to

be identified across a range of possible models. Use of AIC reduces

the risks of over-fitting and data-dredging by including too many,

irrelevant covariates or specifying multiple implausible models.

The rationale for choice of model should be transparently reported

and justified to ensure that the flexibility of the one-stage approach

does not result in selective reporting of results. As with any meta-

Table 7. Tradeoffs between analytical, computational and statistical complexity, ability to minimise potential bias and provide
insights into treatment-covariate interactions.

Method Computational and statistical complexity Potential problems

Two-stage subgroup analysis Low: Requires only standard meta-analysis techniques and interaction tests.
Available in several meta-analysis packages (eg. Cochrane Review Manager
which requires pre-processing of IPD analyses within trials and SHARRP).
Possible in most statistical packages (e.g. R, Stata).

High: Limited statistical power. Potential
for aggregation bias if trials lack data in
some subgroup categories.

Two-stage, combining within-trial
regression coefficients [9], [19]

Moderate: Requires regression models estimating treatment effect and treatment-
covariate interaction in each trial, and meta-analysis. Possible in statistical
packages with regression and meta-analysis facilities (R, Stata).

Low: Intermediate statistical power.
Eliminates potential aggregation bias.

Simple one-stage regression [8] Moderate to high: Requires some experience in fitting regression models.
Possible in R, Stata, SAS or equivalent.

Moderate: Maximal statistical power.
Potential for aggregation bias.

Complex one-stage regression (e.g.
separating within- and across-trial
information
[7], [9]

High: Requires expertise in fitting mixed-effect regression models and
programming ability in R, Stata, SAS or equivalent. May require specialist
software such as WinBUGS. Statistical support is recommended.

Low: Intermediate to high statistical
power. Eliminates aggregation bias if only
within-trials information considered.

doi:10.1371/journal.pone.0046042.t007

Table 8. Pragmatic guidance for IPD systematic reviews and meta-analyses of intervention effects based on randomised trials.

1. Estimate overall intervention effects and generate forest plots using conventional two-stage methods.

2. Fit a two-stage analysis combining within-trial regression coefficients, to eliminate aggregation bias. Forest plots of interaction coefficients from such analyses are
particularly useful for graphical display.

3. If statistical support is available fit simple one-stage models with single treatment-covariate interactions (model 3). Compare with two-stage results.

4. If possible and statistical support is available, fit one-stage models separating within and across trials information (model 5 or 6). Is there evidence of aggregation
bias? Do within- and across-trials results differ?

# If there is evidence of aggregation bias: Report results from the within-trials association from model 5 or 6; or within-trial regressions where one- stage
analysis was not possible.

# If there is no evidence of aggregation bias: Report results from model 3, if similar to model 5 or 6. These results are likely to have greater precision than two-
stage analysis results.

5. If statistical support is available, consider extending model 3 (in the absence of aggregation bias) or models 5 or 6 (with aggregation bias) to include multiple
covariates and interactions. Compare multiple models, select a best fitting model and report its results, with a summary of all models considered.

doi:10.1371/journal.pone.0046042.t008
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analysis, a priori identification of covariates and clinically mean-

ingful combinations of covariates in a protocol (e.g. [33]) is

essential.

Whilst two-stage approaches may sometimes be unrealistically

simple, one-stage approaches may be intractably complex. In this

analysis models expressed in terms of relative risk could not always

be applied, and problems arose as multiple covariates were

included in any model. Simpler models may be preferable, with

fewer covariates, fewer random-effects and expressing outcomes as

log odds rather than log relative risk. Alternatively, use of software

such as WinBUGS [34], may be required to allow a simulation

approach to analysis. The costs associated with the former

strategies relate to the realism of the simplifying assumptions

and generalisability of results whilst use of alternative software may

require additional statistical expertise.

One- stage models have greater statistical complexity and are

therefore harder to interpret. Statistical support is an important

pre-requisite for the implementation of these models. Careful

interpretation and explanation of the coefficients is required. For

dichotomous outcomes expression of results as odds ratios or risk

ratios with 95% confidence intervals is preferable to display of raw

coefficients as this is more meaningful to most non statisticians.

Reporting guidelines have not yet been developed specifically for

IPD analyses but should clearly consider the reporting of one-stage

models with emphasis on the explicit value judgements regarding

model structure, sensitivity of results to model choice, and

interpretation of regression coefficients.

Recommendations for Analysis of IPD Systematic
Reviews

Here we suggest a pragmatic approach to analysis in IPD

reviews based on existing empirical comparisons of one and two-

stage methods (the current work, [9,27,28]), theory [16,19], and

simulation studies [15] as well as personal judgements about the

tradeoffs between computational and statistical complexity and the

potential for bias associated with different methods and types of

data.

Irrespective of the final approach, performing a two-stage

analysis as an initial step is generally advisable. This generates

forest plots enabling results across trials to be compared visually,

heterogeneity investigated and differences across subgroups

visualised, all of which are essential in understanding the dataset

underlying the review. We suggest that for reviews of large

randomised trials that are homogeneous in populations and

design, a two-stage analysis will often be sufficient. Large numbers

of participants mean that lack of statistical power is unlikely to be

an issue and clinical homogeneity of trials reduces the risk of

aggregation bias. In such situations two-stage and one-stage

methods are likely to give similar results. However, a one-stage

analysis may still be preferred for evaluating treatment-covariate

interactions of continuous covariates, to avoid arbitrary categor-

isation and to incorporate non-linear relationships. They may also

be of use for fitting single models including multiple covariates,

particularly where covariates are expected to be highly correlated.

One-stage methods may be most appropriate when trials are

small, participant numbers are few and where there is clinical

heterogeneity across trials. In this case two-stage methods may lack

statistical power and subgroup analyses may be affected by

aggregation bias, particularly if some trials did not include

participants in some specified subgroup categories.

To avoid aggregation bias in two-stage analyses, models should

be fitted to estimate treatment-covariate interactions within each

trial, and these estimates pooled across trials, rather than using

conventional subgroup analysis. Where possible, one-stage models

should be parameterised to separate within and across trial

treatment-covariate interaction, at least as a sensitivity analysis.

Where one-stage models are used a range of plausible models

should be fitted (ranging from too simple to too complex) and these

models compared.

Trade-offs between computational and statistical complexity

and potential for problems such as aggregation bias and lack of

statistical power are explicitly considered in table 7 with guidance

on methodology for routine application summarised in table 8.

More sophisticated methods are likely to be required for analysis of

non-randomised data particularly if adjustment for multiple

confounders is required.

Major benefits of obtaining IPD are accrued prior to analysis

and where an IPD review evaluates effectiveness based on

sufficient data from randomised controlled trials, one-stage

statistical analyses may not add much value to simpler two-stage

approaches. Researchers should therefore not be discouraged from

undertaking IPD synthesis through lack of advanced statistical

support.
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