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Abstract

Background: Researchers have been exploring the molecular mechanisms underlying the control of periodontal
ligament stem cell (PDLSC) osteogenic differentiation. Recently, long noncoding RNAs (IncRNAs) and circular RNAs
(circRNAs) were shown to function as competitive endogenous RNAs (ceRNAs) to regulate the effect of microRNAs
(miRNAs) on their target genes during cell differentiation. However, comprehensive identification and integrated
analysis of INcRNAs and circRNAs acting as ceRNAs during PDLSC osteogenic differentiation have not been performed.

Results: PDLSCs were derived from healthy human periodontal ligament and cultured separately with osteogenic
induction and normal media for 7 days. Cultured PDLSCs were positive for STRO-1 and CD146 and negative for CD31
and CD45. Osteo-induced PDLSCs showed increased ALP (alkaline phosphatase) activity and up-regulated expression
levels of the osteogenesis-related markers ALP, Runt-related transcription factor 2 and osteocalcin. Then, a total of 960
IncRNAs and 1456 circRNAs were found to be differentially expressed by RNA sequencing. The expression profiles of
eight IncRNAs and eight circRNAs were measured with quantitative real-time polymerase chain reaction and were
shown to agree with the RNA-seq results. Furthermore, the potential functions of INcRNAs and circRNAs as ceRNAs
were predicted based on miRanda and were investigated using Gene Ontology and Kyoto Encyclopedia of Genes and
Genomes analysis. In total, 147 IncRNAs and 1382 circRNAs were predicted to combine with 148 common miRNAs and
compete for miRNA binding sites with 744 messenger RNAs. These mRNAs were predicted to significantly participate
in osteoblast differentiation, the MAPK pathway, the Wnt pathway and the signaling pathways regulating pluripotency
of stem cells. Among them, INcRNAs coded as TCONS_00212979 and TCONS_00212984, as well as circRNA BANP and
circRNA ITCH, might interact with miRNA34a and miRNA146a to regulate PDLSC osteogenic differentiation via the
MAPK pathway.

Conclusions: This study comprehensively identified IncRNAs/circRNAs and first integrated their potential ceRNA
function during PDLSC osteogenic differentiation. These findings suggest that specific INcRNAs and circRNAs might
function as ceRNAs to promote PDLSC osteogenic differentiation and periodontal regeneration.
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Background

Periodontitis is a slowly progressive disease character-
ized by the loss of periodontal tissue, which is the main
cause of tooth loss [1]. With the development of stem-cell
delivery therapeutics, periodontal ligament stem cells
(PDLSCs) have been shown to produce typical periodontal
ligament-like tissue to regenerate tissue damaged by
periodontitis [2, 3]. Our previous studies also have shown
the great potential of PDLSCs to regenerate periodontal
tissue and form a bioengineered tooth root in miniature
pigs [4—6]. The regeneration potency of PDLSCs con-
tributes to their self-renewal and multi-differentiation
capacity, especially osteogenic differentiation [7]. Exploring
the molecular mechanisms of PDLSC osteogenic differen-
tiation might provide new genetic strategies for periodontal
regenerative medicine.

Recently, through microarray analysis, microRNAs (miR-
NAs) were identified and predicted to be involved in
PDLSC osteogenic differentiation [8]. In addition, miR-
NA146a, miRNA17 and miRNA22 have been demonstrated
to regulate PDLSC osteogenic differentiation by modulating
the expression of target genes at the post-transcriptional
level [9-11]. However, recent studies have revealed that a
new player, competing endogenous RNA (ceRNA), is
essential for the circuitry of miRNAs and target genes [12].
By competing for common miRNA response elements
(MREs), ceRNAs can break the balance between miRNAs
and target genes to regulate the physiological and patho-
physiological process [13]. These ceRNAs include various
types of RNAs, such as long non-coding RNAs (IncRNAs),
circular RNAs (circRNAs), messenger RNAs (mRNAs) and
pseudogenes.

LncRNA is a class of non-coding RNA (ncRNA) tran-
scripts longer than 200 nucleotides [14]. Recent studies
have reported that IncRNAs were involved in the
osteogenic differentiation process [15]. For example,
up-regulation of IncRNA HIF la-anti-sense 1 induced
by TGEB-mediated targeting of sirtuin 1 promotes the
osteogenic differentiation of human bone marrow stromal
cells [16]. Furthermore, IncRNA ANCR was proved to be
critical in regulating the PDLSC osteogenic differentiation
via the Wnt signaling pathway [17].

CircRNA is another new class of RNA composed of more
than one exon with a covalently closed loop [18]. Com-
pared to linear RNA, this circular structure is more stable
and resistant to RNase R [19]. Emerging evidence has re-
vealed that circRNAs participate in osteogenic differenti-
ation [20, 21]. For instance, 154 differentially expressed
circRNAs were found to associate with bone morpho-
genetic protein 2-induced osteogenic differentiation of
MC3T3-E1 cells [22]. Moreover, circRNAs were predicted
to have potential roles in osteogenesis of PDLSCs [23].

Although several IncRNAs, circRNAs and miRNAs
are suggested to be involved in PDLSC osteogenic
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differentiation, there is not much data published on
their potential networks and functions. To fully
understand the impact of ceRNA crosstalk on PDLSC
osteogenic differentiation, it will be crucial to inte-
grate the IncRNA/circRNA-miRNA-mRNA competi-
tive regulatory networks. In this study, we developed
RNA sequencing (RNA-seq) with Illumina HiSeq2000
to comprehensively identify differentially expressed
IncRNAs and circRNAs in normal and osteogenic
inductive PDLSCs. Subsequently, the representative
IncRNAs and circRNAs were further confirmed using
quantitative real-time polymerase chain reaction
(qRT-PCR). Finally, we predicted the ceRNA net-
works of IncRNAs, circRNAs, miRNAs and mRNAs
based on miRanda and investigated their potential
regulatory roles via gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) ana-
lysis. Our findings might provide new evidence for
exploring the molecular mechanism of PDLSC osteo-
genic differentiation.

Methods

All protocols for the handling of human tissues were ap-
proved by the Research Ethics Committee of Stomatology
Hospital of Shandong University, China (G201401601).
Informed consent was obtained from all donors.

Cell culture and osteogenic induction

In this study, PDLSCs were derived from the middle
third of the root surface of normal human impacted
third molars, which were collected from 18- to 20-year-
old patients at the Department of Oral Maxillofacial
Surgery, Stomatology Hospital of Shandong University,
using the explant culture method. Then, they were
cultured with normal media, consisting of a-modification of
Eagle’s media (HyClone, South Logan, UT, USA), 10% fetal
calf serum (Gibco BRL, Grand Island, NY, USA), 100 U/ml
penicillin and 100 pg/ml streptomycin (Invitrogen,
Carlsbad, CA, USA) at 37 °C in 5% carbon dioxide.
The stemness of PDLSCs was characterized by the
scanning of cell surface markers (STRO-1, CD146,
CD31, and CD45) through flow cytometric analysis
(Becton, Dickinson and Company, Franklin Lakes, NJ,
USA). For osteogenic differentiation, PDLSCs were
cultured with osteogenic inductive media supplemented
with 10 nM dexamethasone, 10 mM p-glycerophosphate
and 50 pg/ml vitamin C (Sigma-Aldrich, St. Louis, MO,
USA). Through separately culture with osteogenic
induction and normal media for 7 days, PDLSCs were
divided into two groups: induced and non-induced
groups. All cells in this study were used at passage
number 3.
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Alkaline Phosphatase (ALP) staining and ALP activity
assay

ALP staining and activity assay were performed using an
Alkaline Phosphatase Kit (Sigma-Aldrich) as described
previously [24]. Briefly, PDLSCs were fixed with 70%
ethanol for 30 min and stained with a solution of so-
dium nitrite, FRV alkaline and naphthol AS-BI alkaline
for 15 min away from light. For the ALP activity assays,
total protein was isolated from two groups of PDLSCs,

Page 3 of 13

incubated for 15 min with citrate buffer and phosphatase
substrate (Sigma-Aldrich), and then quantified by spec-
trophotometric absorbance at 405 nm.

Quantitative real-time PCR (qRT-PCR)

Total RNA was isolated from two groups of PDLSCs.
For analysis of linear transcripts, 1 pg of RNA per
sample was reverse transcribed into ¢cDNA using a
¢DNA Reverse Transcription Kit (Takara, Tokyo, Japan).
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Fig. 1 Identification and osteogenic differentiation of PDLSCs. a PDLSCs were derived from periodontal ligament explants. b PDLSCs were cultured
with non-induced media at passage number 3. ¢-f PDLSCs were positive for STRO-1 and CD146 and negative for CD31 and CD45. g, h ALP activity
was enhanced in osteo-induced PDLSCs (Induced), as evidenced by ALP staining and ALP activity assay. i-k Compared with the non-induced group,
the induced group showed up-regulated expression of the osteogenic genes ALP, Runx2 and OCN by gRT-PCR. All PCRs were performed in triplicate.
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Fig. 2 The apparent variations of differentially expressed IncRNAs and circRNAs. (a, b) LncRNAs and circRNAs were broadly distributed across the
24 pairs of human chromosomes according to their locations. The inner blue ring corresponds to the non-induced group; the outer yellow ring
corresponds to the induced group. ¢ Among differentially expressed IncRNAs, 17 common IncRNAs and 180 specific INcCRNAs in the non-induced
group and 763 specific IncRNAs in the induced group were identified. d Among differentially expressed circRNAs, 95 common circRNAs and 642
specific circRNAs in the non-induced group and 719 specific circRNAs in the induced group were identified. e Differentially expressed IncRNAs,
consisting of 777 up-regulated IncRNAs and 183 down-regulated IncRNAs, are displayed in the heatmap. f Differentially expressed circRNAs, consisting
of 766 up-regulated circRNAs and 690 down-regulated circRNAs, are displayed in the heatmap

Convergent primers were designed to detect IncRNAs  were measured with quantitative PCR using a Roche
and mRNAs. Divergent primers were designed to detect  LightCycler®480 sequence detection system (Roche, Basel,
the circular form of circRNAs. Relative transcript levels  Switzerland) following the manufacturer’s protocol. Each
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Table 1 Statistical data of RNA-Seq reads for two samples

Sample Raw Clean Unique Unique  Unique

reads reads INcCRNAs  circRNAs  mRNAs
Non-induced 914 million  90.9 million 11,529 5913 66,134
Induced 113.8 million 1124 million 9511 3162 52227

20 ul reaction volume contained 10 ul SYBR® Premix Ex
Taq™ (Takara), 0.4 ul 10 uM forward primer (0.4 uM final),
04 pl 10 uM reverse primer (0.4 pM final), 200 ng of
template cDNA and DEPC-treated water. GAPDH was
used as an internal control to quantify and normalize the
results. The primer pairs are listed in Additional file 1.
The specificity of the reaction was determined by detec-
tion of the Tms of the amplification products immediately
after the last reaction cycle. The 2°°““T value was used for
comparative quantitation. All qRT-PCRs were performed
in triplicate.

Construction of cDNA libraries and high-throughput
sequencing

Total RNA was extracted from two groups using Trizol
(Invitrogen) according to the manufacturer’s protocols.
Strand-specific cDNA libraries were constructed following
a previously described protocol [25] and were sequenced
using an Illumina HiSeq2000 sequencer (LC Biotech,
Hangzhou, China) by performing a paired-end run with a
100 bp read length. The raw reads were processed by
removing the adaptor reads and low-quality tags. All sub-
sequent analyses were performed using clean reads.

Identification of differentially expressed IncRNAs,
circRNAs and mRNAs

The clean reads from two cDNA libraries were mapped to
the human genome sequence in GENCODE Release 19
using TopHat version 2.0.9 [26]. The transcripts were then
assembled and annotated using Cufflinks [27]. According
to the annotation of the human genome sequence, the
known IncRNAs and mRNAs were identified. The coding
potential of the remaining unknown transcripts was
calculated with a coding potential calculator based on

Table 2 Expression profiles of INcRNAs validated by RNA-seq

Test_id. Induced (FPKM)  Non-induced (FPKM)  Regulation
TCONS_00019601  93.6452 0 up
TCONS_00227764 830447 476825 up
TCONS_00085268 0 26.6246 down
TCONS_00254538  18,683.1 3962.3 up
TCONS_00198784  9.25995 0.0230801 up
TCONS_00136898  8.67356 0.0105046 up
TCONS_00125934 0 465289 down
TCONS_00115113 0 4.05314 down
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Fig. 3 Differentially expressed IncRNAs/circRNAs validated by gRT-PCR. a
Convergent primers were designed to detect eight INcRNAs with P < 0.05,
FC =2 and FPKM in at least one of the samples 24. LncRNAs coded as
TCONS_00019601, TCONS_00227764, TCONS_00254538,
TCONS_00198784 and TCONS_00136898 were up-regulated in the
induced group compared with the non-induced group, and
TCONS_00085268, TCONS_00125934, and TCONS_00115113 were
down-regulated. b Divergent primers were designed to detect the
circular form of circRNAs with P < 0.05, FC = 2 and RPM in at least one of
the samples 24. CircRNAs named CDR1-AS, NCOA3, and SKIL were
up-regulated in the induced group compared to the non-induced
group, and the circRNAs IFFO1, NTNG1, PLOD2, SMO, and SMURF2
were down-regulated. The results agreed with the normalized
expression of validated IncRNAs and circRNAs shown in Tables 2
and 3. All PCRs were performed in triplicate. The data are represented
as means + SD. %, P < 005; *, P< 001
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Table 3 Expression profiles of circRNAs validated by RNA-seq

Name Induced (RPM)  Non-induced (RPM)  Regulation
circRNA CDR1-AS  3038.695 1102.345 up
circRNA IFFO1 0 3372772 down

circRNA NCOA3 1421.615
circRNA NTNGT 0
circRNA PLOD2 0
circRNA SKIL 1956.098
circRNA SMO 0
circRNA SMURF2 0

0
1286478
3742131
0
783.6154
282.7267

up
down
down
up
down

down
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capacity. The expression levels of IncRNAs and mRNAs
were quantified as FPKM (fragments per kilobase of exon
per million fragments mapped) using the Cuffdiff program
[27]. The differential expression of IncRNAs and mRNAs
was determined using DESeq, with P<0.05 and fold
change (FC) =2 [29].

Compared with linear RNAs, circRNAs exhibit distinct
patterns of alternative back-splicing and alternative splicing.
An upgraded computational pipeline (CIRCexplorer2) was
used to systematically identify and annotate circRNAs [30].
The expression levels of circRNAs were quantified as RPM

(mapped backsplicing junction reads per million mapped
reads) using the EBSeq package [31]. The differential

h I 1 d milari ¢ expression of circRNAs was determined with P < 0.05,
the quality, comp eteness, an sequence st arity % FC>2, and circRNA junction reads =5 [31].
the open reading frame to the proteins in the protein

databases [28]. The remaining unknown transcripts of

more than 200 base pairs (bp) were considered novel Functional analysis

IncRNAs with a coding potential score of less than -1,  The ceRNA networks among IncRNAs, circRNAs, miRNAs
which suggested that a transcript had no protein-coding and mRNAs were predicted based on miRanda with a
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Fig. 5 CeRNA networks of selected circRNAs and miRNAs based on miRanda. Considering that graphics cannot display the enormous amount of
network information between 1401 circRNAs and 855 miRNAs, we selected circRNAs with more miRNA binding sites and less binding free energy
to make the network diagram using Cytoscape3.5.1

maximum binding free energy of —20 [32]. First, we pre-
dicted and selected miRNAs binding with both differentially
expressed IncRNAs and circRNAs. Then, target mRNAs of
these selected miRNAs were predicted and compared to
the differentially expressed mRNAs that were identified in
the RNA-seq results. Subsequently, we selected the
intersecting elements of target mRNAs and differen-
tially expressed mRNAs to analyze their potential functions
through GO functional annotation and KEGG pathway
analysis. GO terms were enriched using Blast2GO [33] by
referring to GO databases. Meanwhile, KEGG pathway
analysis was performed by referring to KEGG pathway
databases. Cytoscape3.5.1 was used to display the
IncRNA/circRNA-miRNA-mRNA networks.

Statistical analysis

Quantitative qRT-PCR datasets are presented as the
means + standard deviation (SD) of at least three inde-
pendent experiments. The statistical calculations were
performed with SPSS statistics software version 17.0.
Student’s t-test was performed for normally distributed
data to determine statistical significance. A P-value less
than 0.05 was considered statistically significant.

Results

Identification and Osteogenic differentiation of PDLSCs
PDLSCs derived from periodontal ligament explants
were cultured with normal media to passage number 3

(Fig. 1a, b). Cultured PDLSCs were positive for STRO-1
and CD146 and negative for CD31 and CD45 (Fig. 1c-f).
Increased ALP activity identified via ALP staining and
ALP activity assay indicated osteogenic differentiation
of osteo-induced PDLSCs (Fig. 1g, h). Subsequently, the
up-regulated expression levels of the osteogenesis-
related markers ALP, Runt-related transcription factor
2 (Runx?2) and osteocalcin (OCN) provided further proof
for the occurrence of PDLSC osteogenic differentiation
(Fig. 2i-k). These findings agreed with previous reports on
PDLSC differentiation into osteoblasts [7].

Differential expression of IncRNAs, circRNAs and mRNAs
upon osteogenic differentiation of PDLSCs
Ribosome-depleted RNA-seq generated 91.4 million raw
reads of the non-induced group and 113.8 million raw
reads of the induced group (Table 1). After filtering the
adaptor reads and low-quality tags, we separately obtained
90.9 million and 112.4 million clean reads. More than 98%
of the raw reads per sample were clean reads. According
to the annotation of the human genome sequence
GENCODE Release 19, 11,529 IncRNAs (non-induced
group) and 9511 IncRNAs (induced group) were identified
from the two cDNA libraries (Table 2) (Additional file 2).
We also identified 5913 circRNAs in the non-induced
group and 3162 circRNAs in the induced group (Table 2)
(Additional file 3). In addition, 66,134 mRNAs (non-
induced group) and 52,227 mRNAs (induced group)
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were annotated (Table 2) (Additional file 4). Both
IncRNAs and circRNAs were broadly distributed across
the 24 pairs of human chromosomes (Fig. 2a, b). A total
of 960 IncRNAs, 1161 circRNAs and 1887 mRNAs were
found to be differentially expressed, with P-value <0.05
and FC>2 (Additional file 5, Additional file 6 and
Additional file 7). Among the differentially expressed
IncRNAs, 17 common IncRNAs and 180 specific IncRNAs
in the non-induced group and 763 specific IncRNAs in
the induced group were detected, with 777 up-regulated
IncRNAs and 183 down-regulated IncRNAs (Fig. 2c).
Meanwhile, we also identified 95 common circRNAs and
642 specific circRNAs in the non-induced group and 719
specific circRNAs in the induced group, with 766 up-
regulated circRNAs and 690 down-regulated circRNAs
(Fig. 2d). The apparent variations in transcripts between
the two groups are visually displayed with heatmaps
(Fig. 2e, f).

Differentially expressed IncRNAs/circRNAs validated by
qRT-PCR

To verify the results of the RNA-seq experiments, eight
IncRNAs and eight circRNAs with P<0.05, FC>2 and
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FPKM/RPM in at least one of the samples >4 were selected
for qRT-PCR validation. The IncRNAs were amplified
with convergent primers and the circRNAs were ampli-
fied with divergent primers (Fig. 3a, b). Compared to the
non-induced group, the induced group showed increased
expression of the IncRNAs coded as TCONS_00019601,
TCONS_00227764, TCONS_00254538, TCONS_00198784
and TCONS_00136898 and decreased expression of
TCONS_00085268, TCONS_00125934, and TCONS_00
115113 (Fig. 3a). The circRNAs named CDR1-AS, NCOA3,
and SKIL were up-regulated in the induced group
compared to the non-induced group, and the circRNAs
[FFO1, NTNG1, PLOD2, SMO, and SMURF2 were
down-regulated (Fig. 3b). All the results were consistent
with the normalized expression of RNA-seq shown in
Tables 2 and 3.

Function of IncRNAs and circRNAs as ceRNAs via
IncRNA/circRNA-miRNA-mRNA networks

Based on miRanda with the maximum binding free energy
of -20, 430 IncRNAs were predicted to share at least two
binding sites with 779 miRNAs (Fig. 4) (Additional file 8).
We also predicted that 1401 circRNAs bind 855 miRNAs
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Fig. 6 CeRNA networks of 744 mRNAs and 148 common miRNAs based on miRanda
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with at least two binding sites (Additional file 9). Consid-
ering that graphics cannot display the enormous amount
of network information between 1401 circRNAs and 855
miRNAs, we selected circRNAs with more miRNA bind-
ing sites and less binding free energy to make the network
diagram (Fig. 5). Through analysis of the common binding
MREs of IncRNAs and circRNAs, 165 miRNAs were
predicted to combine with both 158 IncRNAs and 1385
circRNAs (data not shown).

To reveal their potential function, we predicted target
mRNAs of these miRNAs based on miRanda and
compared these target mRNAs to the differentially
expressed mRNAs that were identified in the RNA-seq
results (Additional file 7). There were 744 differentially
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expressed mRNAs that were found to combine with
148 common miRNAs along with 147 IncRNAs and
1382 circRNAs (Additional file 10). The networks of
744 mRNAs and 148 common miRNAs are shown in
Fig. 6.

The potential regulatory roles of the ceRNA networks
were predicted by analyzing the functions of 744 mRNAs
through GO and KEGG pathway analysis (Additional file 11
and Additional file 12). GO annotations (P < 0.05) involv-
ing the top 60 mRNAs are displayed in Fig. 7a and include
multiple biological processes, cellular components and
molecular functions. Among these GO terms, we obtained
GO: 0001649 (osteoblast differentiation), which was
significantly enriched by 21 mRNAs (Additional file 11).

Comparison of GO classification
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The complex mRNA networks involved in GO: 0001649
(osteoblast differentiation) and related miRNAs, IncRNAs,
and circRNAs are displayed in Fig. 8. Through KEGG
analysis, mRNAs were predicted to participte in 34 path-
ways (Fig. 7b). Among these KEGG pathways, the MAPK
pathway, the Wnt pathway and the signaling pathways
regulating pluripotency of stem cells were closely related
to osteogenic differentiation.

Based on the above results, we selected several IncRNAs,
circRNAs, miRNAs and mRNAs associated with the
MAPK pathway to further display the ceRNA networks
(Fig. 9). The IncRNAs coded as TCONS_00212979 and
TCONS_00212984, circRNA BANP and circRNA ITCH
were predicted to combine with miRNA34a and miR-
NA146a. DUSP1, FAS and RAC1 were predicted to be tar-
get genes of miRNA34a. In addition, PDGFRA, TGFBR2
and MYC were predicted to be targeted by miRNA146a.
These six mRNAs were the pivotal genes of the MAPK
pathway according to the KEGG analysis. This compli-
cated ceRNA network suggested that TCONS_00212979,
TCONS_00212984, circRNA BANP and circRNA ITCH
might play regulatory roles in the MAPK pathway through
miRNA34a, miRNA146a and their targets during PDLSC
osteogenic differentiation.
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Discussion

LncRNAs, circRNAs, miRNAs and mRNAs form large-
scale ceRNA cross-talk networks through MREs, which
has exciting implications for gene regulation at the
post-transcriptional level during multiple physiological
and pathophysiological processes [12, 34]. In recent years,
studies have documented the functions and clinical impli-
cations of ceRNAs in cancer, systemic lupus erythematosus
and other diseases, which may present opportunities for
new therapeutic approaches for diseases [35, 36].

Recently, researchers have systematically constructed
ceRNA networks through RNA-seq and bioinformatics
in mouse germline stem cells to reveal functions and
mechanisms of IncRNAs and circRNAs in mouse germline
stem cell self-renewal and differentiation [37]. Moreover,
IncRNA POIR was demonstrated to form a regulatory
network with miRNA182 and FoxOl to up-regulate
PDLSC osteogenic differentiation in periodontitis patients
[38]. However, the ceRNA networks were revealed to be
intertwined [39]. To fully understand the impact of
ceRNA crosstalk on PDLSC osteogenic differentiation,
it will be crucial to integrate the competitive IncRNA/
circRNA-miRNA-mRNA regulatory networks. In our
study, 744 mRNAs were predicted to combine with 148
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Fig. 9 CeRNA networks of IncRNAs/circRNAs-miRNAs-mRNAs significantly
participated in the MAPK pathway. The IncRNAs coded as
TCONS_00212979 and TCONS_00212984, as well as circRNA
BANP and circRNA ITCH, were predicted to interact with
miRNA34a and miRNA146a. DUSP1, FAS and RAC1 were
predicted to be target genes of miRNA34a. PDGFRA, TGFBR2
and MYC were predicted to be targeted by miRNA146a. These
six mRNAs are pivotal genes in the MAPK pathway according
to KEGG analysis

common miRNAs, along with 147 IncRNAs and 1382
circRNAs.

Through GO analysis, 21 mRNAs were predicted to
significantly participate in osteoblast differentiation (GO:
0001649) (Fig. 8). Among them, ALPL, also called ALP,
was reported to be an osteogenesis-related marker and
was up-regulated during PDLSC osteogenic differenti-
ation [7]. The up-regulated expression level of ALP was
also detected by qRT-PCR in our study (Fig. 1i). SMAD3
and SMAD5, members of the SMAD family, were also
predicted to form ceRNA networks and participate in
osteoblast differentiation. Both SMAD3 and SMAD5
were demonstrated to regulate PDLSC osteogenic
differentiation by modulating TGE-$ signals [40, 41].
Additionally, Notchl, another participant in osteoblast
differentiation (GO: 0001649), is part of the Notch
signaling pathway, which is important for maintaining
osteogenic differentiation of PDLSCs [42, 43]. These
crucial osteogenic genes formed ceRNA networks with
IncRNAs and circRNAs by targeting common miRNAs,
and these networks might provide evidence of new regula-
tory mechanisms in PDLSC osteogenic differentiation.
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Through KEGG pathway analysis, mRNAs of ceRNA
networks were predicted to be involved in the Wnt path-
way, MAPK pathway and signaling pathways regulating
the pluripotency of stem cells. Previous studies have
demonstrated that Wnt signaling contributes to the
differentiation of periodontal ligament fibroblasts into
osteoblasts [44]. In addition, the MAPK pathway was
found to be critical for skeleton development and bone
homeostasis [45]. Moreover, it plays significant roles in
osteogenic differentiation of PDLSCs [46, 47]. Furthermore,
we constructed a ceRNA network of TCONS 00212979,
TCONS_00212984, circRNA BANP, circRNA ITCH, miR-
NA34a, miRNA146a, DUSP1, FAS, RAC1, PDGFRA,
TGFBR2 and MYC. These mRNAs are important elements
of the MAPK pathway based on KEGG analysis. Among
them, DUSP1, FAS and RACI are targeted by miRNA34a,
while PDGFRA, TGFBR2 and MYC are targeted by miR-
NA146a. Studies have illustrated that both miRNA34a and
miRNA146a are closely related to osteogenic differentiation
of human mesenchymal stem cells [48, 49]. In addition,
miRNA146a was revealed to promote differentiation
of periodontal ligament cells [9]. TCONS_00212979,
TCONS_00212984, circRNA BANP and circRNA ITCH
were predicted to bind miRNA34a and miRNA146a.
TCONS_00212979, known as CARMEN, has been reported
to be a cardiac mesoderm enhancer-associated IncRNA that
modulates cardiac differentiation through miRNA143 and
miRNA145 [50]. TCONS_00212984 is a novel IncRNA with
a genomic origin similar to that of TCONS_00212979 ac-
cording to RNA-seq. circRNA BANP and circRNA ITCH
have both been reported to contribute to carcinogenesis
and might serve as cancer biomarkers [51, 52]. However,
the regulatory roles of these two IncRNAs and circRNAs in
osteogenic differentiation remain unclear. In summary,
the ceRNA network suggested that TCONS_00212979,
TCONS_00212984, circRNA BANP and circRNA ITCH
might interact with miRNA34a and miRNA1l46a to
regulate PDLSC osteogenic differentiation via the MAPK
pathway. However, their regulatory mechanisms need to
be further investigated. Our future study plan will be to
validate their differential expression profiles, verify their
ceRNA networks and specify their effects on PDLSC
osteogenic differentiation using knockdown and overex-
pression experiments.

Conclusion

This study identified differentially expressed IncRNAs,
circRNAs and mRNAs during osteogenic differentiation of
PDLSCs. Competitive IncRNA/circRNA-miRNA-mRNA
regulatory networks were comprehensively integrated and
predicted to be involved in osteoblast differentiation by
GO and KEGG pathway analysis. Moreover, the IncRNAs
coded as TCONS 00212979 and TCONS 00212984,
circRNA BANP and circRNA ITCH were predicted to
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interact with miRNA34a and miRNA146a to regulate
PDLSC osteogenic differentiation via the MAPK
pathway. Our study suggested that specific IncRNAs
and circRNAs might function as ceRNAs to promote
PDLSC osteogenic differentiation and periodontal
regeneration.
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