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ABSTRACT

Since its emergence in Yap Island in 2007, Zika virus (ZIKV) has affected all continents except Europe. Despite the
hundreds of cases imported to European countries from ZIKV-infested regions, no local cases have been reported in
localities where the ZIKV-competent mosquito Aedes albopictus is well established. Here we analysed the vector
competence of European Aedes (aegypti and albopictus) mosquitoes to different genotypes of ZIKV. We demonstrate
that Ae. albopictus from France was less susceptible to the Asian ZIKV than to the African ZIKV. Critically we show that
effective crossing of anatomical barriers (midgut and salivary glands) after an infectious blood meal depends on a viral
load threshold to trigger: (i) viral dissemination from the midgut to infect mosquito internal organs and (ii) viral
transmission from the saliva to infect a vertebrate host. A viral load in body >4800 viral copies triggered
dissemination and >12,000 viral copies set out transmission. Only 27.3% and 18.2% of Ae. albopictus Montpellier
mosquitoes meet respectively these two criteria. Collectively, these compelling results stress the poor ability of Ae.
albopictus to sustain a local transmission of ZIKV in Europe and provide a promising tool to evaluate the risk of ZIKV

transmission in future outbreaks.
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Introduction

Before the WHO considered it as a public health emer-
gency of international concern in February 2016 [1],
Zika virus (ZIKV, Flavivirus, Flaviviridae) was globally
a neglected mosquito-borne virus. First identified in
Uganda [2], ZIKV circulates primarily within a sylvatic
cycle transmitted between Aedes mosquitoes and non-
human primates [3]. Urban ZIKV outbreaks were
associated with human-biting mosquitoes, mainly
Aedes aegypti in tropical regions and presumably,
Aedes albopictus in both tropical and temperate
countries [4]. After a first epidemic in Yap Island in
2007 [5], a large ZIKV outbreak took place in French
Polynesia in 2013-2014, and spread to other Pacific
Islands [6]. In early 2015, ZIKV hit Brazil [7] and
spread rapidly across the Americas causing hundreds
of thousands of ZIKV disease cases, some associated
with unusual severe clinical symptoms, microcephaly
in newborns and neurological disorders [8]. Phyloge-
netic analysis indicated that the circulating ZIKV
belonged to the Asian genotype [9,10]. On November

2016, the end of Zika alert was declared with a signifi-
cant decline in ZIKV cases including congenital Zika
syndrome [11]. However, the virus continues to spread
in regions where competent vectors reside. Surpris-
ingly, despite hundreds of imported cases in Europe
(21 European countries, 2,133 cases [12]) and rapid
expansion of the potential ZIKV vector Ae. albopictus
[13], no locally acquired vector-borne cases were
reported. Nearly 43% of imported cases were returning
in regions where Ae. albopictus was established, most
cases from the Caribbean (Guadeloupe, Martinique
and the Dominican Republic; [12]). First established
in Europe since 1979 [14] and more massively since
1990 [15], Ae. albopictus is regarded as experimentally
competent to ZIKV since the virus replicates, dissemi-
nates and transmits with viruses excreted in saliva [16].
Nevertheless, European Ae. albopictus was less efficient
to ZIKV than Ae. aegypti [17-20]. To date, the argu-
ments supporting the lack of local ZIKV cases in
Europe during the Zika pandemic are unconvincing.
Against all expectations, in October 2019, two
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autochthonous cases of Zika have been reported in the
south of France and to date, the viral genotype involved
remains unknown (https://www.santepubliquefran-
ce.fr/maladies-et-traumatismes/maladies-a-trans-
mission-vectorielle/chikungunya/articles/donnees-en-
france-metropolitaine/chikungunya-dengue-et-zika-
donnees-de-la-surveillance-renforcee-en-france-
metropolitaine-en-2019). Here, we estimate accurately
the vector competence of Ae. albopictus for ZIKV and
evaluate the threshold value of viral copies needed to
trigger dissemination and transmission in the mos-
quito vector. We show that a viral load in body
>4800 viral copies allows dissemination and >12,000
copies enable transmission. Only a limited number of
Ae. albopictus mosquitoes meet these two criteria com-
pared to Ae. aegypti.

Materials and methods
Ethic statements

Animals were housed in the Institut Pasteur animal
facilities accredited by the French Ministry of Agriculture
for performing experiments on live rodents. Work on
animals was performed in compliance with French and
European regulations on care and protection of labora-
tory animals (EC Directive 2010/63, French Law 2013-
118, 6 February 2013). All experiments were approved
by the Ethics Committee #89 and registered under the
reference APAFIS#6573-2016061412077987 v2.

Mosquito populations

Four populations were collected using ovitraps and
eggs were shipped to the Institut Pasteur in Paris
(France): 2 Ae. aegypti (AA; FUNCHAL (Madeira,
FO, collected in 10/2017), HAITI (Port au Prince, F1,
03/2017)) and 2 Ae. albopictus (AL; CORSICA (Bastia,
F0, 08/2017), MONTPELLIER (France, F0, 07/2018)).
After immersion of eggs for 24 h in water, larvae
were distributed by 200 in 1 L of dechlorinated water
supplemented with 1 tablet of yeast renewed every 3
days. Pupae were daily collected and placed in a cage
for adult emergence. Adults were maintained in con-
trolled conditions (28°t1°C with a 12 h light regime,
80% relative humidity) and fed ad libitum with a
10% sucrose solution. The FO-F1 generation of mos-
quitoes was used for infection assays.

ZIKV strains

Three ZIKV strains were used: two provided by EVAg
(https://www.european-virus-archive.com/; ZIKV
Dakar isolated from mosquitoes in 1984 (UVE/
ZIKV/1984/SN/Dakar ArD 411662, African genotype,
passage 4, Genbank reference: KU955592) and ZIKV
Martinique isolated from a human case in 2015
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(MRS_OPY_Martinique_PaRi_2015, Asian genotype,
passage 3, Genbank reference: KU647676)) and ZIKV
Cambodia isolated from a human case in 2010 (FSS
13025, Asian genotype, passage 3, Genbank reference:
KU955593) provided by the World Reference Center
for Emerging Viruses and Arboviruses (WRCEVA),
University of Texas Medical Branch.

Viral stocks were prepared after 1-2 passages of iso-
lates on Vero CCL-81 cells (ATCC®, VI, USA) main-
tained at 37°C. Once cytopathic effect was detected
(48-72 h after infection depending on ZIKV strain),
supernatants were collected and adjusted to 10% Fetal
Bovine Serum (Life Technologies®, CA, USA). The
virus stock was divided into 1 mL aliquots and stored
at— 80 °Cuntil use. The viral titer was estimated by serial
10-fold dilutions on Vero cells expressed in TCID5o/mL.

Infections of mosquitoes with ZIKV

For each combination of virus strain and mosquito
population, 4-6 boxes of 60 7-day-old females were
exposed to a blood meal containing 1.4 mL of washed
rabbit erythrocytes and 700 pL of viral suspension sup-
plemented with a phagostimulant (ATP) at a final con-
centration of 5 mM. The titer of infectious blood-meals
was 10" TCIDso/mL. After 1 h, engorged females were
isolated in containers and fed with 10% sucrose in an
incubator maintained at 28°+1°C, a 12 h light regime
and 80% humidity.

Vector competence indices

Batches of mosquitoes were analysed at 7, 14 and 21 dpi.
After cold anesthesia, individual mosquitoes were rid of
their wings and legs and the proboscis was inserted into
a 20 pL tip containing 5 pL of FBS. After 30 min, FBS
containing saliva was collected in 45 uL of DMEM med-
ium (Gibco, MA, USA). Abdomen and thorax, and head
were separately homogenized in 300 uL of DMEM med-
ium supplemented with 2% FBS and centrifuged at
10,000 g for 5 min. Abdomen plus thorax, head, and sal-
iva were titrated to estimate infection, dissemination
and transmission, respectively.

Infection rate (IR) is the proportion of mosquitoes
with infected body (abdomen plus thorax) among
examined mosquitoes; mosquitoes are able to replicate
the virus in the midgut epithelial cells. Dissemination
rate (DR) is the proportion of mosquitoes having
virus detected in the head among mosquitoes with
infected body; midgut-infected mosquitoes are able to
disseminate the virus beyond the midgut and infect
secondary organs/tissues through the hemolymph.
Lastly, transmission rate (TR) is the proportion of mos-
quitoes with virus detected in saliva among mosquitoes
with infected head; mosquitoes having successfully dis-
seminated the virus are able to infect the salivary glands
and to excrete virus with saliva delivered.
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Viral titration

Samples of bodies and heads were inoculated onto
monolayers of Vero cells in 96-well plates and incu-
bated for 7 days at 37°C then stained with a solution
of crystal violet (0.2% in 10% formaldehyde and 20%
ethanol). Presence of viral copies was asserted by obser-
vation of CPE. Saliva, heads and bodies from mosqui-
toes infected with ZIKV Martinique were titrated on
monolayer of Vero cells in 6 well plates incubated 7
days under an agarose overlay. Sample titers were
expressed as pfu (plaque-forming unit).

Statistical analysis

Rates (infection, dissemination and transmission) were
described using median and inter-quartile range (IQR).
The effect of population, ZIKV strain, dpi and virus on
rates was investigated using logistic regression models.
Two-by-two interaction between population, ZIKV
strain and dpi was systematically investigated. Viral
load level was compared between groups using a student
t-test. ROC (Receiver Operating Characteristic) curves
were used to evaluate the ability of viral load level to dis-
criminate between mosquitoes with and without dissemi-
nation and transmission. ROC curves are graphical plots
that represent the ability of a continuous marker to cor-
rectly classify a binary outcome; it plots 100-specificity
(False positive rate) on the x-axis against the sensitivity
(True positive rate) on the y-axis. The optimum would
be 100% specificity (0% false positive rate) and 100% sen-
sitivity (100% true positive rate) which corresponds to the
top left corner of the plot. Statistical analyses were con-
ducted using the Stata software (StataCorp LP, Texas,
and USA). p-values < 0.05 were considered significant.

Results

French Ae. albopictus were less susceptible to
Asian than to African ZIKV genotypes

Four field-collected populations (two Ae. albopictus
and two Ae. aegypti) were used for experimental infec-
tions with ZIKV. Of 903 mosquitoes analysed, 88.6%

(800) had infected bodies including the midgut. What-
ever the mosquito population and days post-infection
(dpi), IR was higher with the ZIKV strain from
Dakar than with the two other strains (p<0.001)
(Table 1 and Figures 1a,d and 2a,d). However, the IR
was not similar between mosquito populations; as
compared to the Ae. aegypti AAFUNCHAL popu-
lation, the three other populations showed significantly
greater IR (p<0.001) (Table 1). IR was found to be
lower at 7 dpi as compared to later time points
(p=0.008) (Table 1). No significant interactions
between population, dpi and virus, were found.

Then, among the 800 infected mosquitoes, 65.4%
(523) ensured a successful viral dissemination in mos-
quito hemocele; dissemination was determined by
detecting virus in mosquito head. DR differed by popu-
lation, Ae. aegypti better disseminating ZIKV com-
pared to Ae. albopictus (p<0.001) (Table 2). An effect
of ZIKV strains was evidenced (p<0.001), effect that
was not the same given the dpi (i.e. interaction between
ZIKV strains and dpi) (Table 2). Overall, the ZIKV
strain from Dakar caused a significantly higher DR
than the two other strains. Moreover, ZIKV Dakar
showed an increased DR from 7 dpi which kept
increasing with dpi, while the other strains showed
low DR at 7 dpi and even 14 and significantly increased
at 21 dpi (Table 2 and Figures 1b,e and 2be).

At the final step, among the 523 mosquitoes with
viral dissemination, 50.7% (265) were capable of trans-
mitting the virus. TR was significantly lower at 7 dpi as
compared to later time points, even after adjusting for
population and ZIKV strains (p<0.001; Table 3).
Adjusting for dpi, TR differed by viral strains, but the
effect of viral strains was not similar in all populations
(i.e. interaction between population and viral strain)
(Table 3). Overall, the ZIKV strain from Dakar pre-
sented the highest TR; TR was not different between
AAFUNCHAL and ALCORSICA (p=0.16) (Figure
2¢,f) but was significantly higher in AAFUNCHAL
than in ALMONTPELLIER or AAHAITI (both
p=0.014) (Figure lcf). With the ZIKV strain from
Cambodia, as compared to AAHAITI, TR was signifi-
cantly lower in  ALCORSICA and in

Table 1. Comparison of infection rates between mosquito populations, day post-infection and viral strains (logistic regression

model).
N Infection rate (N) Adjusted OR (95% Cl) p
Population AAFUNCHAL 240 79.2 (190) 1 < 0.001
AAHAITI 239 93.6 (223) 3.91 (2.12-7.16)
ALCORSICA 184 95.1 (175) 5.46 (2.57-11.63)
ALMONTPELLIER 240 88.3 (212) 2.10 (1.25-3.52)
Day post-infection 7 285 84.6 (241) 0.41 (0.23-0.73) 0.008
14 286 92.7 (265) 1
21 332 88.6 (294) 0.65 (0.37-1.16)
Virus Cambodia 295 83.4 (246) 1 < 0.001
Dakar 299 95.6 (286) 4.59 (2.40-8.77)
Martinique 309 86.7 (268) 1.27 (0.80-2.02)

OR: Odd Ratio, is a measure of association which compares the odds of infection of mosquitoes exposed to the infectious blood meal to the odds of infection

of unexposed mosquitoes.
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Figure 1. Infection, dissemination and transmission rates of Aedes albopictus Corsica (a, b, ) and Montpellier (d, e, f), 7, 14, 21 days
after exposure to an infectious blood meal containing ZIKV (Cambodia, Dakar and Martinique) provided at a titer of 107 TCIDso/mL.
IR, proportion of mosquitoes with infected body (abdomen plus thorax) among examined mosquitoes; DR, proportion of mosqui-
toes with virus detected in head among mosquitoes with infected body; TR, proportion of mosquitoes with virus detected in saliva

among mosquitoes with infected head. **, p 0.01; ***, p 0.001.

ALMONTPELLIER (p=0.026 and p=0.045, respect-
ively). Ultimately, with ZIKV strain from Martinique,
we did not evidence TR differences between the four
populations.

Viral dissemination was detected when
mosquito bodies (abdomen plus thorax) contain
at least 4800 viral copies

We selected the 145 mosquitoes that were infected
with the ZIKV strain from Martinique which has

lastly circulated in the Americas and the Caribbean,
and provided estimations of viral loads at each step
in mosquitoes: midgut/body infection, dissemination
and transmission. The viral load in body was signifi-
cantly lower in Ae. albopictus than in Ae. aegypti
(mean+SD (N): 3.0 Logjot1.2 (66) vs. 4.9 Log;+0.7
(79), respectively; p<10_4) (Figure 3a). The viral
load in body was significantly higher in mosquitoes
with viral dissemination from the midgut into the
hemocele than in those without viral dissemination
(4.7 Logipx0.9 (100) vs. 2.6 Log;0x0.9 (45),
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Figure 2. Infection, dissemination and transmission rates of Aedes aegypti Funchal (a, b, ¢) and Haiti (d, e, f), 7, 14, 21 days after
exposure to an infectious blood meal containing ZIKV (Cambodia, Dakar and Martinique) provided at a titer of 107 TCIDso/mL. IR,
proportion of mosquitoes with infected body (abdomen plus thorax) among examined mosquitoes; DR, proportion of mosquitoes
with virus detected in head among mosquitoes with infected body; TR, proportion of mosquitoes with virus detected in saliva
among mosquitoes with infected head. *, p < 0.05; **, p 0.01; *** p 0.001.

respectively; p<10~*) (Figure 3b). To estimate the
threshold of viral load in mosquito body to trigger
viral dissemination, we pooled all 145 infected mos-
quitoes and built a ROC curve (Figure 4). The
AUC (Area Under the Curve) was calculated; it cor-
responds to the surface below the ROC curve. The
maximum value is 1 and a value over 0.9 is con-
sidered very good. We estimated an AUC value of
0.9413 showing a good ability of the viral load level
in body to discriminate mosquitoes with and without
viral dissemination. We also estimated the threshold

which offers the best sensitivity/specificity balance; it
maximizes the proportion of “correctly classified indi-
viduals”. The number of 4800 viral copies in body
was the threshold that correctly categorized the high-
est proportion of mosquitoes according to their viral
dissemination status (Figure 4). Hence, out of 100
mosquitoes with viral dissemination, 93 presented a
viral load above this threshold. On the other hand,
of 45 mosquitoes without dissemination, 39 had a
viral load below the threshold (Supplementary
Table 1).
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Table 2. Comparison of dissemination rates between mosquito populations, day post-infection and viral strains (logistic regression
model).

N Dissemination rate (N) Adjusted OR (95% Cl) p

Population AAFUNCHAL 190 81.0 (154) 1 < 0.001

AAHAITI 223 90.1 (201) 3.50 (1.80-6.79)

ALCORSICA 175 45.1 (79) 0.15 (0.08-0.26)

ALMONTPELLIER 212 42.0 (89) 0.07 (0.04-0.13)
Virus Cambodia - 7 dpi 73 27.7 (20) 0.23 (0.10-0.55) < 0.001

Cambodia - 14 dpi 86 46.5 (40) 1

Cambodia - 21 dpi 87 75.9 (66) 5.59 (2.44-12.77)

Dakar - 7 dpi 90 70.0 (63) 4,06 (1.87-8.80)

Dakar — 14 dpi 91 96.7 (88) 83.45 (22.45-310.19)

Dakar - 21 dpi 105 98.1 (103) 137.68 (29.45-643.57)

Martinique - 7 dpi 78 346 (27) 0.45 (0.20-1.00)

Martinique - 14 dpi 88 54.5 (48) 1.66 (0.78-3.56)

Martinique - 21 dpi 102 66.7 (68) 3.63 (1.70-7.76)

OR: Odd Ratio, is a measure of association which compares the odds of viral dissemination of mosquitoes exposed to the infectious blood meal to the odds of
viral dissemination of unexposed mosquitoes.

Table 3. Comparison of transmission rates between mosquito populations, day post-infection and viral strains (logistic regression
model).

N Transmission rate (N) Adjusted OR (95% Cl) p

Population — Virus AAFUNCHAL - Cambodia 37 459 (17) 1 < 0.0001

AAFUNCHAL - Dakar 73 74.0 (54) 10.10 (3.81-26.77)

AAFUNCHAL - Martinique 44 34.1 (15) 0.75 (0.30-1.88)

AAHAITI - Cambodia 62 53.2 (33) 2.19 (0.92-5.22)

AAHAITI - Dakar 72 56.9 (41) 3.36 (1.40-8.05)

AAHAITI - Martinique 67 32.8 (22) 0.77 (0.33-1.79)

ALCORSICA - Cambodia 10 10.0 (1) 0.18 (0.02-1.65)

ALCORSICA - Dakar 53 64.1 (34) 5.13 (1.93-16.63)

ALCORSICA — Martinique 16 18.7 (3) 0.33 (0.08-1.40)

ALMONTPELLIER - Cambodia 17 294 (5) 0.55 (0.16-1.94)

ALMONTPELLIER - Dakar 56 66.1 (37) 3.15 (1.29-7.72)

ALMONTPELLIER - Martinique 16 18.7 (3) 0.33 (0.80-1.40)
Dpi 7 110 13.6 (15) 0.05 (0.03-0.11) < 0.0001

14 176 62.5 (110) 1

21 237 59.1 (140) 1.02 (0.65-1.60)

OR: Odd Ratio, is a measure of association which compares the odds of viral transmission of mosquitoes exposed to the infectious blood meal to the odds of
viral transmission of unexposed mosquitoes.

In the 100 mosquitoes with viral dissemination, the ~ Log;o+0.7 (74), respectively; p<10~*) (Figure 5a). A
viral load in heads was significantly lower in Ae. albo-  strong correlation was found between the viral loads
pictus than in Ae. aegypti (3.6 Logo+1.2 (26) vs. 4.6  in bodies and heads (Figure 5b; p=0.74: p<10~*).
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Viral transmission was observed when
mosquitoes host at least 12,000 viral copies in
body

The viral load, measured in body/midguts, was signifi-
cantly higher in mosquitoes able to transmit than in
those not able to transmit (5.0 Log;o+0.5 (40) vs. 3.7
Logjo£1.3 (105), respectively; p<10_4) (Figure 6a). As
above, a ROC curve was used to evaluate the capacity
of viral load in body to discriminate mosquitoes that
could transmit from the others (Supplementary Fig.
1). The area under the curve (AUC: 0.8069) did not
reflect a good ability to well discriminate mosquitoes
with and without viral transmission based on viral
loads in bodies. When using the same threshold as
before (i.e. 4800 copies in body), all 40 mosquitoes
able to transmit had a viral load above this threshold,
but out of 60 mosquitoes unable to transmit, 53 had
a viral load above the threshold, meaning that a high
midgut infection is a prerequisite for transmission

but is not a sufficient criterion alone (Supplementary
Table 2). In fact, all mosquitoes able to transmit pre-
sented a viral load > 12,000 viral copies in the body.
In the 40 mosquitoes with viral transmission, the
viral load in saliva was significantly higher in Ae. albo-
pictus than in Ae. aegypti (respectively 2.0 Log;o+1.1
(6) vs. 1.1 Log;o+0.5 (34), when pooling the two Ae.
aegypti and the two Ae. albopictus separately; p=0.02)
(Figure 7, Supplementary Fig. 2).

Viral load in heads was not a good indicator of
successful transmission

The viral load measured in heads was also found to be
significantly higher in the mosquitoes that could trans-
mit compared to those which could not (4.8 Log;¢+0.6
(40) vs. 4.1 Log;oxl1.0 (60), respectively; p<10_3)
(Figure 6b). The area under the ROC curve was used
to evaluate the capacity of viral load in head to



Body viral load (Log10 particles)

| 1
No transmission Transmission

Emerging Microbes & Infections 1675

-

N [=2] =] o

L 1 1 ] ~~
N

N
1

Head viral load (Log10 particles)
o

No transmission  Transmission

Figure 6. Viral loads in mosquito bodies (a) and heads (b) according to viral transmission status.

discriminate mosquitoes that could transmit from the
others (AUC: 0.8069; Supplementary Fig. 3); the area
under the curve did not reflect a good ability to well
discriminate mosquitoes with and without viral trans-
mission based on viral loads in heads. The threshold
which correctly classified the largest proportion of
mosquitoes was 24,600 viral copies (Supplementary

INFECTION

Table 3). When using the same threshold 24,600 copies
in mosquito heads, of 40 mosquitoes able to transmit,
34 had a viral load above this threshold and out of 60
mosquitoes unable to transmit, 32 had a viral load
below the threshold, meaning that a high viral load
in head did not necessarily lead to transmission.
When considering another threshold of 2400 viral
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Figure 7. Infection, dissemination and transmission rates of Aedes aegypti (AAFUNCHAL and AAHAITI) and Aedes albopictus (ALCOR-
SICA and ALMONTPELLIER), 14 days after infection with ZIKV Martinique provided at a titer of 107 TCIDso/mL. Body (Abdomen plus
thorax), head and saliva were titrated on Vero cells to evaluate respectively infection, dissemination and transmission rates (rec-
tangle in red). The mean number of viral particles is provided under each rectangle. The proportion of mosquitoes that meet
the two criteria: >4800 viral copies and >12,000 viral copies in body needed to trigger dissemination and transmission respectively,

were presented for each mosquito population.
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copies, a viral load > 2400 viral copies in heads was
necessary but not sufficient to allow transmission (Sup-
plementary Table 4).

Ae. albopictus was less efficient to disseminate
and transmit ZIKV

By examining the total of 265 mosquitoes (considering
the four populations and three ZIKV strains) able to
transmit, viral load in saliva was not correlated with
the viral load in body nor in head (p>0.05). However,
virus was detected in saliva only if viral load was higher
than 12,000 viral copies in body (Supplementary Fig.
4a) or higher than 2400 viral copies in head (Sup-
plementary Fig. 4b).

Considering the threshold of 4800 particles in body
correlated to an effective dissemination and 12,000 par-
ticles in body correlated to an effective transmission,
ALMONTPELLIER was the least efficient of the four
populations tested; only 27.3% of mosquitoes were
able to disseminate and 18.2% to transmit the virus
(Figure 7).

Discussion

Our study indicates that Ae. albopictus mosquitoes
from France are less able to transmit the Asian geno-
type of ZIKV which was responsible of the last Zika
pandemic, based on two lines of evidence. First, Ae.
albopictus France (Montpellier and Corsica) were less
competent to transmit the two Asian genotypes than
the African ZIKV. Second, only a limited percentage
of Ae. albopictus France met the two main criteria
allowing effective viral dissemination and transmission,
viral load in body >4800 viral copies to allow dissemi-
nation and >12,000 viral copies to allow transmission.

Asian ZIKV better transmitted by Ae. aegypti
than Ae. albopictus

First introduced in Funchal [21] in Madeira, an auton-
omous region of Portugal, Ae. aegypti was responsible
of the last main outbreak of dengue in the European
Union [22]. This mosquito was as efficient as the typi-
cal tropical vector Ae. aegypti from Haiti to transmit all
three ZIKV (Cambodia, Dakar and Martinique) in
addition to be experimentally able to transmit dengue
virus (DENV) and chikungunya virus (CHIKV) [23].
On the other hand, Ae. albopictus is well established
in Europe since 1990 [14] and in France since 2004
[24]. Ae. albopictus from Corsica and Montpellier
were less efficient to disseminate the 3 ZIKV strains
than Ae. aegypti underlining a strong barrier limiting
viral dissemination from the midgut and accordingly,
a low viral transmission [17].

In a more global way, ZIKV Dakar was better disse-
minated and transmitted by both species. The first

evidence of ZIKV circulation was reported in Africa
[3] and in Senegal in 1962 [25]. Since then, ZIKV
was periodically notified in West Africa which experi-
enced several independent introductions of ZIKV
strains during the last century [26]. Surprisingly, up
to date, no reports on ZIKV strains exported from
West Africa were mentioned. In Europe, viremic tra-
vellers returning from regions endemic for ZIKV
were frequently reported, becoming then a potential
source of local transmission by Ae. albopictus. It is
tempting to speculate that Ae. albopictus France will
be able to sustain a local transmission of ZIKV if the
viral strain comes from West Africa; a same scenario
was lastly observed for CHIKV [27].

A threshold is needed to initiate dissemination
and transmission of ZIKV in Aedes mosquitoes

While it is admitted that to infect vectors, a minimum
level of host viremia is necessary [28], only few studies
are available on thresholds in vectors needed to trigger
the successive steps leading to transmission with virus
excreted from mosquito saliva [16,29-31]. Therefore,
we measured thresholds of viral loads in the mosquito
body to trigger dissemination and transmission of
ZIKV Martinique, which circulated in the Caribbean
in 2015 [32]. Ae. aegypti presented a higher viral load
in body compared to Ae. albopictus and mosquitoes
able to disseminate the virus harbored a higher viral
load in body suggesting a threshold to initiate viral dis-
semination. A threshold of 4800 viral copies in the
body permits viral dissemination to 92.5-97.4% of
Ae. aegypti mosquitoes and to only 27.3-45.4% of Ae.
albopictus (see Figure 7). Considering the viral loads
measured in humans (i.e. 536 Logl0 RNA copies
[33]), mosquitoes by ingesting 2-3 uL of blood [34]
absorb 400-700 RNA copies. Since, on the one hand,
mosquitoes were allowed to ingest around 30,000
viral copies (3 uL of infectious blood provided at a
titer of 10” TCIDso/mL), and on the other hand, only
18.2% of Ae. albopictus mosquitoes that received this
inoculum were able to transmit ZIKV, it is obvious
that the actual capability of European Ae. albopictus
to become infected and initiate transmission of ZIKV
after the bite on a viremic patient is extremely low.
The midgut of Ae. albopictus is clearly very efficient
to limit ZIKV dissemination and transmission [17].
In addition to the viral load, the viral genotype would
also play a role as demonstrated for CHIKV [35]; ana-
tomical barriers such as the midgut and salivary glands
may contribute to select variants with a higher poten-
tial to cause outbreaks.

In conclusion, our study highlights that the different
ZIKV genotypes were not equally transmitted by Ae.
aegypti and Ae. albopictus. ZIKV from Dakar of the
West African genotype was better transmitted by
both species with, however, a higher transmission



potential for Ae. aegypti compared to Ae. albopictus. At
a threshold of 12,000 viral copies in mosquito body,
less than 34% of Ae. albopictus were able to transmit,
stressing out the low vector competence of French
Ae. albopictus for the ZIKV responsible for the last
Zika pandemic. We have proposed a valuable tool to
predict viral dissemination and transmission in Aedes
mosquitoes based on the threshold response where all
mosquitoes are able to transmit above a threshold of
viremia in human cases. This model can be used to
infer the proportion of mosquitoes contributing to
the transmission of an arbovirus, and to build maps
to detail global ZIKV transmission risk [36]. This
assessment should be extended to other mosquito
populations as the outcome of infection depends on
three-way combination of mosquito population, virus
genotype and environmental factors [37].
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