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Abstract

Age is the most important risk factor for most diseases. Mitochondria play a central role in bioenergetics and metabolism. In
addition, several lines of evidence indicate the impact of mitochondria in lifespan determination and ageing. The best-known
hypothesis to explain ageing is the free radical theory, which proposes that cells, organs, and organisms age because they
accumulate reactive oxygen species (ROS) damage over time. Mitochondria play a central role as the principle source of intra-
cellular ROS, which are mainly formed at the level of complex I and III of the respiratory chain. Dysfunctional mitochondria gen-
erating less ATP have been observed in various aged organs. Mitochondrial dysfunction comprises different features including
reduced mitochondrial content, altered mitochondrial morphology, reduced activity of the complexes of the electron transport
chain, opening of the mitochondrial permeability transition pore, and increased ROS formation. Furthermore, abnormalities in
mitochondrial quality control or defects in mitochondrial dynamics have also been linked to senescence. Among the tissues
affected by mitochondrial dysfunction are those with a high-energy demand and thus high mitochondrial content. Therefore,
the present review focuses on the impact of mitochondria in the ageing process of heart and skeletal muscle. In this article, we
review different aspects of mitochondrial dysfunction and discuss potential therapeutic strategies to improve mitochondrial
function. Finally, novel aspects of adipose tissue biology and their involvement in the ageing process are discussed.
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Introduction

With ageing, the normal physiological functions of an organ-
ism gradually decline. Whereas the exact mechanisms re-
sponsible for senescence are not fully understood up to
now, mitochondria have emerged as central regulators of
the ageing process.1 The primary function of mitochondria
is to generate large quantities of ATP, but they are also in-
volved in processes such as apoptosis, autophagy, reactive
oxygen species (ROS) production, or calcium handling. Dys-
functional mitochondria generating less ATP have been ob-
served in various aged organs including skeletal muscle,
heart, and adipose tissue (AT). Indeed, mitochondrial func-
tion in aged skeletal muscle and aged myocardium is im-
paired at various levels including mitochondrial content and
morphology, activity of the complexes of the electron

transport chain (ETC), opening of the mitochondrial perme-
ability transition pore (MPTP), ROS formation, and mitochon-
drial dynamics.

The prevalence of cardiovascular diseases increases with
age, and dysfunctional cardiac mitochondria are considered
to contribute, e.g. to myocardial ischemia/reperfusion injury,
ventricular hypertrophy, cardiomyopathies, and heart
failure.2 However, cardiac mitochondrial subpopulations
demonstrate significant differences in respiratory capacity
or age-associated functional decline, and they also differ with
respect to their ROS-generating ability and their antioxidant
capacity in aged hearts. The expression of a variety of mito-
chondrial proteins is affected by ageing, and most of these
differentially expressed proteins are involved in metabolism,
respiratory chain function, or stress resistance, pointing to
the central role of mitochondria in cardiac ageing. In skeletal
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muscle, the aforementioned, diverse mitochondrial changes
can contribute to an age-related loss in skeletal muscle mass
and a decline in skeletal muscle function, a condition defined
as sarcopenia.3 Muscle mass and muscle strength begin to de-
cline around the fourth decade, and this decline is accelerated
with advancing age. Interventions such as physical activity that
reduce oxidative damage and improve mitochondrial function
cannot totally prevent but attenuate the age-associated rate
of muscle loss as well as the functional decline. Although the
number of mitochondria is lower in mature white adipocytes
than in cardiac or in skeletal myocytes, mitochondrial function
is essential for adipocyte function including secretion of
adipokines and has an impact on distant organs. Mitochondrial
dysfunction in AT triggers systemic insulin resistance and car-
diac dysfunction. Furthermore, maintenance of mitochondrial
function in AT is involved in the determination of lifespan,
whereas obesity seems to accelerate ageing. The present re-
view will address the different aspects of mitochondrial
changes observed in ageing skeletal muscle, heart, and AT.

Age-associated changes in the heart

Mitochondrial content and morphology in the aged
myocardium

The ultrastructure of themyocardium changes with ageing, and
this involves alterations at the level of the mitochondria.
Whereas some studies demonstrate a reduced number of mito-
chondria in the cytosol of aged cardiomyocytes,4,5 others show
that the mitochondrial volume fraction is unaltered during age-
ing.6,7 Mitochondrial shape is altered with increasing age (less
elongated and more round8), and the area of the mitochondrial
inner membrane per mitochondrion is reduced in agedmyocar-
dium9,10 although cristae configuration is not affected.11

To maintain a pool of healthy mitochondria during ageing,
it is important to preserve mitochondrial structure. The
serine/threonine protein kinases Pim are part of the proteins
regulating mitochondrial morphology. Mice deficient in three
Pim isoforms have a reduced mitochondrial area.12 The loss
of Pim kinases is associated with premature ageing, whereas
the overexpression of Pim1, the predominant isoform in the
heart, decreases the levels of senescence markers.13 Accord-
ing to the dependence of mitochondrial function on the mor-
phology of the organelle, the preservation of mitochondrial
structure may help to delay the consequences of ageing.

Oxidative phosphorylation, cardiolipin, and cardiac
ageing

Due to the high-energy demand of the heart alterations in
mitochondrial bioenergetics contribute to age-induced

myocardial dysfunction, the changes in oxidative phosphory-
lation are due to alterations at different levels, e.g. the
protein level and/or activity of complexes of the ETC or
phospholipid composition of the inner mitochondrial
membrane.

When analysing mitochondrial oxygen consumption, it has
to be taken into account that cardiomyocytes contain two mi-
tochondrial subpopulations, which differ in morphology and
function: the subsarcolemmal mitochondria (SSM), which
are present beneath the plasma membrane and the
interfibrillar mitochondria (IFM), which are located between
the myofibrils.14 The cristae of SSM are predominantly
lamelliform, whereas the cristae of IFM are mainly tubular
or consist of a mixture of lamelliform and tubular struc-
tures.15 IFM demonstrate a higher ADP-stimulated respira-
tion and are more tolerant towards a Ca2+ stimulus than
SSM,14,16,17 whereas SSM have a higher rate of protein syn-
thesis than IFM.18 Additionally, the specific ceramide distribu-
tion differs between SSM and IFM.19 The spatial localization
of mitochondria within cardiomyocytes may be associated
with the need for specific responses to various physiological
or pathophysiological stimuli.20 The data obtained from the
analysis of the respiratory capacity of mitochondria from
aged myocardium are mainly dependent of the type of mito-
chondria studied. SSM isolated from aged rodent myocar-
dium predominantly maintain their respiratory capacity,21,22

whereas IFM consume less oxygen.23,24 In line with the age-
dependent reduction of oxygen, consumption in IFM is a de-
cline in the activity of complexes of the ETC. Especially, the
activities of respiratory complexes III and IV are reduced in
IFM isolated from aged myocardium.23–25 However, mito-
chondrial function is largely preserved in permeabilized aged
cardiomyocytes.26 The age-associated decline in mitochon-
drial function23–25 may affect the production of cellular
energy, which in turn can interfere with cardiac function.
Although the ATP level may remain constant at rest, some
studies indeed suggest a reduced ATP content or produc-
tion.27,28 Furthermore, mitochondrial biogenesis is impaired,
and the expression of major regulators of mitochondrial
biogenesis such as the peroxisome proliferator-activated
receptor-gamma coactivator-1alpha (PGC-1alpha) is reduced
in the heart of aged animals and humans.27,29–32 This can re-
sult in a further limitation of the organelle’s ability to pro-
duce sufficient amounts of ATP to maintain optimal cardiac
function.

Cardiolipin, a phospholipid specifically localized to the in-
ner mitochondrial membrane, contributes to cristae structure
and thereby influences the activities of ETC protein com-
plexes.33 The majority of studies investigating cardiolipin in
the aged myocardium show decreased amounts and/or re-
modelling of this phospholipid.34,35 Based on these findings,
cardiolipin was considered to be a target in order to prevent
ageing-induced decline in mitochondrial function. The admin-
istration of acetyl-L-carnitine, a normal component of the
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mitochondrial membrane, to the aged rat heart restores the
amount of cardiolipin and the ADP-stimulated respiration to
the levels observed in young controls.34 The inhibition of
the rate limiting enzyme of the syntheses of the polyunsatu-
rated fatty acids arachidonic acid and docosahexaenoic acid
delta-6 desaturase (mainly expressed in brain, liver, lung,
and heart,36 indeed results in a reversal of the age-induced
cardiolipin remodelling, yet oxidative phosphorylation was
not affected.37 The synthetic tetrapeptide SS-31 binds to
cardiolipin and thereby protects cristae structure and en-
hances oxidative phosphorylation.38,39 Although there are
no data yet on oxygen consumption of mitochondria from
aged myocardium, SS-31 reversed the age-related decline of
mitochondrial ATP production in mitochondria from aged
skeletal muscle40 and reduced mortality in C57/BL/6 N mice
subjected to transaortic constriction.41

Contribution of reactive oxygen species to
myocardial ageing

Within cardiomyocytes, ROS are generated in different com-
partments by different enzymes, including NADPH oxidases
at the plasma membrane and xanthine oxidases in the cyto-
sol. However, mitochondria are the most important cellular
source of ROS. During ageing, activities of proteins of the
ETC decline, and thus, oxidative phosphorylation is reduced.
Impaired ETC complex activity is thereby directly linked to
leakage of electrons from the ETC. Such electrons can reduce
oxygen and thereby generate superoxide anions which in
turn can be reduced to hydroxyl radicals and hydrogen perox-
ide. Whereas older studies indicate that around 2% of the ox-
ygen consumed by mitochondria is used for ROS formation,42

a more recent study shows that this value is presumably
lower, i.e. 0.2% only.43 In the heart, ROS mainly originate
from ETC complexes I, II, and III.44 In addition to the ETC, mi-
tochondrial ROS are also produced by monoamino oxidases
(MAO), which transfer electrons from amine compounds to
oxygen and thereby generate hydrogen peroxide, and
p66Shc, which under physiological conditions resides in the
cytosol, but translocates into the mitochondria upon stress
signals.45 Here, p66Shc induces the partial reduction of oxygen
to hydrogen peroxide.46 Also, a mitochondrial localization of
NADPH oxidase 4 has been suggested using immunostaining
of isolated cardiomyocytes.47 In contrast, western blot analy-
sis of purified mitochondria from mouse ventricular tissue did
not detect the protein at the level of mitochondria under
physiological conditions,48 but this might change under path-
ophysiological conditions with ageing.49

Several studies detected an increase in ROS formation in
aged myocardium50–52 however, the exact origin of ROS in
terms of the mitochondrial subpopulation involved is still un-
der debate. According to Judge et al., hydrogen peroxide for-
mation increases in both aged SSM and IFM, whereas the

effect is more pronounced in SSM.53 However, the enhanced
level of hydrogen peroxide detected in SSM may be due to
the higher antioxidant activity observed in IFM. In contrast,
Suh et al. demonstrate increased ROS formation in old
IFM,25 whereas Hofer et al. detect no difference in ROS for-
mation between aged SSM and IFM.54 An increase in the
level of mitochondrial p66Shc may contribute to the increased
ROS formation observed in aged cardiac SSM.55 Also, the ele-
vation of MAO-A in the aged rat and MAO-B in the aged
mouse heart may participate in cardiac ROS formation.56 De-
spite the large number of studies demonstrating increased
ROS formation with ageing, some studies do not show differ-
ences in ROS formation in aged myocardium.57,58 These dif-
ferent findings might be explained by the diverse methods
used to quantify the amounts of ROS, because the age of
the animals analysed was similar between the studies and
ranged mainly from 4–6 months (young animals) to
20–24 months (aged animals).

Excessive ROS formation causes detrimental effects on
proteins and lipids, which induces cellular dysfunction and ul-
timately cell death. In addition, the proximity of the mito-
chondrial DNA to the site of ROS production in combination
with the lack of protection of mitochondrial DNA by histones
renders the mitochondrial DNA (mtDNA) highly susceptible to
oxidative stress.59 Indeed, mice with a proofreading deficient
mutant of the mitochondrial polymerase γ accumulate muta-
tions in the mitochondrial DNA and have a reduced lifespan.
Cardiomyocytes of these mice develop hypertrophy.60 Fur-
thermore, the induction of mitochondrial DNA mutations
specifically in the heart reduces the replication of the mito-
chondrial DNA, the mitochondrial mass, and the antioxidant
system. Mitochondrial dynamics are impaired in these mice,
and the animals finally develop heart failure.61 The use of
the mitochondria-targeted ROS and electron scavenger XJB-
5-131 improves respiratory function of ventricular mitochon-
dria and renders the heart more resistant to oxidative stress
during ageing.22 Figure 1 shows a scheme of the role of
ROS in myocardial ageing.

According to the free radical theory of ageing, enhanced
ROS formation is associated with reduced lifespan. Indeed,
mice with a mitochondrial-targeted overexpression of cata-
lase demonstrate an attenuation of cardiac ageing62 and ex-
tension of lifespan compared to wild-type mice.63 In
contrast, neither does the overexpression of the mitochon-
drial manganese superoxide dismutase-2 (MnSOD) prolong
lifespan in mice64 nor is the reduction of MnSOD to about
50% in heterozygous knockout mice associated with prema-
ture death.65 The low hydrogen peroxide production of heart
mitochondria from the long-lived pigeon is attributed to low
levels of ETC complex I66 and also complex I assembly is sug-
gested to play a role in longevity in mice.67 Data on the role
of p66Shc-derived ROS in longevity are controversial: whereas
the initial study on p66Shc-deficient mice shows reduced ROS
formation and prolonged lifespan in this mouse strain;68 a
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recent study with larger numbers of animals (n = 50 per
group) demonstrates no benefit of the p66Shc knockout on
lifespan.69 The maintenance of the animals under more natu-
ral conditions—i.e. the mice were kept in an outdoor enclo-
sure and had to compete for food—even displays that
p66Shc knockout mice die earlier than their wild-type litter-
mates.70 Therefore, the role of ROS in healthy ageing is
unclear.

Contribution of the mitochondrial permeability
transition pore to myocardial ageing

The MPTP represents a large conductance pore in the inner
mitochondrial membrane, which is predominantly closed un-
der non-stressed conditions. An opening of the MPTP is
favoured, e.g. by ROS, increased concentrations of Ca2+,
phosphate, or mitochondrial depolarization. MPTP opening
induces loss of mitochondrial membrane potential, mito-
chondrial swelling that leads to the rupture of the outer mi-
tochondrial membrane and thereby to a decrease in ETC
activity and a release of pro-apoptotic factors. The molecular
identity of the MPTP has been unclear for many years, how-
ever, recent studies indicate that the MPTP is formed of di-
mers of the F0F1 ATP synthase.71

Opening of the MPTP can be measured by subjecting
permeabilized cardiomyocyte bundles or isolated mitochon-
dria to Ca2+-stimuli. Consecutive pulses of defined amounts
of Ca2+ can be added until mitochondria become overloaded
with calcium and MPTP opening occurs. Thereby, the so-
called mitochondrial calcium retention capacity—i.e. the

amount of calcium that can be sequestered by mitochondria
until permeability transition occurs—can be quantified. Using
this approach, no difference in the calcium retention capacity
is detected between permeabilized cardiomyocyte bundles
from adult and senescent rats.26 However, the time interval
between the administration of a single calcium bolus and
MPTP opening is shorter in permeabilized cardiomyocyte
bundles from senescent rats than in young rats, indicating a
greater intrinsic susceptibility to MPTP opening with ageing.
In addition, the widely used MPTP inhibitor cyclosporine A
delays oxidative stress-induced MPTP opening effectively in
cardiomyocytes from young, but not from old rat hearts.72

However, when analysing MPTP opening in aged hearts, the
contribution of mitochondrial subpopulations has to be
considered. Whereas the tolerance of SSM towards a Ca2+-
stimulus to induce MPTP opening is not altered with age,73

IFM from aged myocardium display a reduced calcium reten-
tion capacity compared to IFM from young hearts.54,74

The role of mitochondrial dynamics and quality
control in cardiac ageing

Mitochondria are highly dynamic cell organelles that undergo
morphological changes including fusion and fission and a reg-
ulated turnover. However, mitochondrial fusion and fission in
cardiomyocytes may be less prominent compared with that
in other cell types.75 The recently developed MitoTimer
mouse demonstrates that newly synthesized and older mito-
chondria are heterogeneously distributed in the heart.76 Mi-
tochondrial fusion and fission contributes to the segregation

Figure 1 ROS formation in the aged myocardium. Within mitochondria, ROS are generated from the electron transport chain (ETC), from p66
Shc

in the
intermembrane space, and from monoamino oxidases (MAO) in the outer mitochondrial membrane. The amount of ROS generated by the ETC in-
creases with ageing. The expression of p66Shc and MAO is enhanced with ageing, whereas the mitochondrial ROS detoxifying system (detox) is de-
creased with ageing. NADPH oxidase 4 (Nox4) may be present in aged cardiac mitochondria under pathophysiological conditions; however, the
exact mitochondrial localization of Nox4 is unclear. The amount of ROS increases with ageing and contributes to damage of the DNA and to oxidative
modifications of proteins and lipids. In the mitochondrial matrix, enhanced levels of ROS induce damage of the mitochondrial DNA (mtDNA).
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of damaged organelles and thereby to the removal of these
organelles from the mitochondrial pool. Key proteins of mito-
chondrial fusion include mitofusin 1 and 2 (Mfn1 and Mfn2)
as well as Opa1 (optic atrophy 1). Mitochondrial fission is me-
diated—among other proteins—by Drp1 (dynamin-related
protein 1 and a GTPase) and Fis1 (mitochondrial fission 1 pro-
tein). Damaged mitochondria separated by fission are finally
removed by mitophagy. Similar to Drp1, Mfn1, and Mfn2 be-
long to the GTPase family of proteins, and their knockout re-
sults in embryonic lethality.77 Also, mice with germ-line
deleted Drp1 die at embryonic day 12.5 due to abnormalities
in the forebrain.78 Mitochondria of inducible cardiac-specific
Drp1 knockout mice become elongated and damaged mito-
chondria accumulate. The mice develop mitochondrial dys-
function, left ventricular dysfunction and finally die within
13 weeks.79 These data point to the importance of mitochon-
drial fusion and fission for growth and development. The ap-
pearance of so-called giant mitochondria with disorganized
cristae is described with age—especially after enforced en-
durance training—and is considered to be a degenerative
response.80

The analysis of the expression of proteins involved in mito-
chondrial fusion or fission demonstrates decreased amounts
of Mfn1 and Mfn2 with age. In this study, ageing has no influ-
ence on the protein levels of Opa1 and Drp1.81 In contrast,
enhanced expression of Opa1 and Drp1with age is presented
in a study by Ljubicic.55 The discrepancies between the two
studies might be explained by the different ages of the rats
investigated (25 months vs. 36 months). Because a general
knockout of Mfn2 results in embryonic lethality, mice with a
cardiomyocyte-restricted deletion of Mfn2 were generated.
These mice show an accumulation of damaged mitochondria
and finally develop heart failure. The moderate expression of
mitochondrial-targeted catalase induces a normalization of
ROS formation and reduces the structural changes occurring
in Mfn2-deficient hearts.82 Interestingly, the expression of
higher amounts of mitochondrial catalase does not improve
mitochondrial function and heart failure. These data imply
that no dose–effect relationship exists between local ROS for-
mation and cardiac degeneration.

The term autophagy refers to the degradation of cytosolic
components by the lysosome in order to maintain cellular
homeostasis, whereas mitophagy describes a type of
autophagy that sequesters dysfunctional mitochondria into
double-membrane vesicles called autophagosomes and
delivers them to the lysosome. The quality control system
of mitophagy ensures cellular structure and function of mito-
chondrial proteins. Mitochondrial fission is important for
mitophagy because mitochondrial fragmentation precedes
mitophagy: among the triggers of mitophagy are ROS, a loss
of the mitochondrial membrane potential, and MPTP open-
ing.83 Two well-known regulators of mitophagy are the
mitochondria-targeted serine/threonine kinase Pink1 (phos-
phatase and tensin homologue-induced putative kinase 1)

and the E3 ubiquitin ligase Parkin. Upon loss of the mitochon-
drial membrane potential, Pink1 accumulates on damaged
mitochondria and induces the translocation of cytosolic
Parkin and its subsequent activation, which finally leads to
the mitophagic elimination of the organelle. Pink1-deficient
mice develop left ventricular dysfunction, and in patients
with end-stage heart failure, the protein levels of Pink1 are
reduced.84 The overexpression of Parkin in mice stimulates
mitophagy.85

Besides the ubiquitin-mediated pathway, autophagy occurs
via mitochondrial lipids and proteins functioning as
mitophagy receptors. Here, Bnip3 (Bcl-2/adenovirus E1B 19-
kDa-interacting protein 3) and Nix (Nip-like protein) are im-
portant. These proteins induce mitophagy by recruiting LC3II
(a cleavage product of LC3 and the microtubule-associated
protein 1 light chain 3). The protein Beclin1 localizes autoph-
agic proteins to a pre-autophagosomal structure. A recent
study shows that also Kruppel-like factor 4 is important for
autophagy because its ablation leads to the accumulation of
damaged mitochondria.86

An interrelation between mitochondrial fission/fusion and
autophagy/mitophagy is observed in cardiomyocytes follow-
ing the deletion of Drp1 that induces the expression of
Parkin, a protein expressed only at low levels under physio-
logical conditions.85 Parkin-deficient mitochondria are
smaller and more disorganized than wild-type mitochondria,
and this effect is associated with increased expression of
the fission protein Fis1.87 The overexpression of Bnip3 in
cardiomyocytes leads to the translocation of Drp1 from the
cytosol to the mitochondria, and silencing of Drp1 reduces
autophagy elicited by Bnip3 overexpression.88 Bnip3 expres-
sion also reduces the protein level of the fusion protein
Mfn1. Mfn2 represents a target of Pink1 and aids in the re-
cruitment of Parkin.89

The efficiency of autophagy/mitophagy declines with ad-
vancing age in the heart.90 This is suggested to increase the
number of damaged proteins and/or mitochondria and
thereby to contribute to the development of cardiovascular
diseases.90 Therefore, the stimulation of autophagy should
delay ageing, and indeed, several studies have demonstrated
increased lifespan by the activation of autophagy (reviewed
in Leon and Gustafsson91). In contrast, cardiac-specific knock-
down of Atg5 (autophagy-related protein 5), a protein con-
tributing to autophagosomes formation, results in the
accelerated onset of heart failure, and the mice die prema-
turely starting at the age of 6 months.92

However, data on autophagy/mitophagy in the ageing
heart are controversial. Indeed, decreased numbers of mito-
chondria incorporated in autophagosomes are observed in
aged mouse hearts.93 Here, the protein expression of Pink2
and Parkin is similar in young and aged hearts; however,
the translocation of Parkin is reduced with ageing. In
Parkin-deficient hearts, damaged mitochondria accumulate
with increasing age.94 A decreased expression of LC3II in aged
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hearts is suggested to confer a decline in mitophagic activ-
ity.92 In contrast, increased protein levels of Beclin1 and LC3II
with age as observed by Boyle et al. are considered to con-
tribute to increased autophagy with age.95 A study by Zhou
et al.96 also shows enhanced expression of LC3II in aged myo-
cardium; however, Beclin1 expression is not affected by age.
When analysing young and aged hearts, Inuzuka et al. de-
tected increased mRNA levels of Beclin1, but no difference
in the amount of LC3II between young and aged hearts.97

The reason for the different findings is unclear, but it has to
be considered that the differential expression of proteins in-
volved in autophagy does not indicate whether or not au-
tophagic flux is altered. A summary of the proteins involved
in autophagy/mitophagy and ageing is given in Table 1.

Proteomic analysis of aged cardiac mitochondria

To gain further insight into mitochondrial function and their
disease-dependent98,99 and age-dependent variations, the
unbiased analysis of the mitochondrial proteome represents
an important tool. During the last years, the methodological
approach to identify mitochondrial proteins has been more
and more refined. Currently, the human mitochondrial pro-
tein database lists about 1500 proteins, and in cardiac SSM
alone, around 1000 proteins have been identified.100

Recently, we analysed the proteome of SSM and IFM from
ventricular tissue of young (5 months) and aged (23–
25 months) male C57BL/6 mice by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis and isoelectric focusing

(equal protein amounts of SSM and IFM were pooled and in-
vestigated). A total of 98 spots were up-regulated or down-
regulated with ageing. These spots were picked and analysed
by liquid chromatography-mass spectrometry/mass spec-
trometry. Because a protein may be detected in more than
one spot due to different isoforms or post-translational mod-
ifications, it is not possible to quantify the exact change in the
expression level of a protein. Therefore, we provide data on
the 24 proteins that are differentially expressed between
young and aged mitochondria with a ratio >1.2, and these
proteins are listed in Table 2. Some of the proteins detected
are already described to be regulated by ageing using prote-
omic or other approaches. Proteins central to mitochondrial
energy metabolism are up-regulated by ageing, among them
are malate dehydrogenase, isocitrate dehydrogenase,
aconitate hydratase, and 2-oxoglutarate dehydrogenase. An
enhanced amount of malate dehydrogenase in aged female
hearts has already been detected using a proteomic ap-
proach,101 and also malate dehydrogenase activity is shown
to increase with age.102 However, others also observed de-
creased activity of the malate dehydrogenase in aged
hearts.103 Chakravarti et al.104 detected decreased amounts
of the isocitrate dehydrogenase and unchanged levels of
the aconitate hydratase in aged mouse myocardial mitochon-
dria. The activity of the aconitate hydratase is found to
decline with age.105 Deviating data also exist for the
2-oxoglutarate dehydrogenase, which is described to be
either down-regulated103,106 or unchanged in aged hearts.104

The reason for the conflicting results is unclear; however, it
has to be considered that in our recent study both SSM and
IFM were investigated, whereas others studied only SSM.103

Furthermore, species differences106 or gender differences
might exist.101

The amount of the succinyl-CoA:3-ketoacid CoA transfer-
ase 1 (Scot1), which is involved in the breakdown of ketone
bodies, is increased in aged mitochondria (Table 2).104 In ad-
dition, increased Scot1 activity is measured in aged rat heart
mitochondria; however, the amount of Scot1 is not altered in
this model.107

Cellular stress resistance is associated with longevity, and
therefore, one would expect decreased expression of heat
shock proteins with ageing. Indeed, we detected lower
amounts of heat shock protein 60 (Hsp60) in mitochondria
from aged ventricles. This finding is in line with previous data
demonstrating decreased Hsp60 mRNA and protein in aged
rat hearts.108

The enzyme aldehyde dehydrogenase 2 (Aldh2) belongs to
a family of proteins that are involved in the detoxifying pro-
cess of aldehydes. Aldh2 contributes to ageing because a
knockout of the protein decreases lifespan in mice.109 The
authors of this study found that ageing is associated with a
decline in the cardiac Aldh2 activity, whereas the amount of
Aldh2 is not affected with age. In our study using the proteo-
mic approach, we found Aldh2 to be up-regulated. Our data

Table 1 Factors involved in autophagy/mitophagy and their expression
in ageing hearts

Name Species Age mRNA Protein Reference

Pink2 Mouse Y: 10 months nd ≈ Hoshino
et al.93O: 20 months

Parkin Mouse Y: 10 months nd ≈ Hoshino
et al.93O: 20 months translocation

↓
LC3II Mouse Y: 10 weeks nd ↓ Taneike

et al.92O: 6, 12, and
24 months

Mouse Y: 2 months ≈ ↑ Boyle
et al.95O: 18 months

Mouse Y: 3 months nd ↑ Zhou
et al.96O: 12 m,

24 months
Mouse Y: 3 months ≈ ≈ Inuzuka

et al.97O: 20–24 months
Beclin1 Mouse Y: 2 months ≈ ↑ Boyle

et al.95O: 18 months
Mouse Y: 10 weeks nd ≈ Zhou

et al.96O: 12 and
24 months

Mouse Y: 3 months ↑ nd Inuzuka
et al.97O: 20–24 months

Y, young; O, old; nd, not determined; ≈, not affected with ageing;
↑, increased with ageing; ↓, decreased with ageing.
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are confirmed by Lancaster et al.101 who display enhanced
amounts of the aldehyde dehydrogenase pre-protein in aged
female mitochondria.

Mitochondrial ubiquinone plays a role in mitochondrial
electron transport and superoxide generation. Whereas a
global loss of ubiquinone shortens lifespan, the loss of ubiqui-
none in the heart has no influence on cardiac function.110 In
the rat heart, a decrease in the ubiquinone biosynthesis pro-
tein Coq9 is found in 28 months old, but not in 19-months-
old animals. The data of our present study on 23- to
25-months-old mice confirm these data.

In addition to the aforementioned proteins, which have
already been described to be dysregulated in aged hearts,
some of the proteins identified in our study are found to be
associated with ageing in other organs than the heart. Among
these proteins is the voltage-dependent anion channel 2,
which is up-regulated in skeletal muscle,111 the branched-
chain amino acid transaminase (down-regulated with age in
mouse liver112), and the sepiapterin reductase, which is in-
volved in tetrahydrobiopterin biosynthesis and reduced in
the mesenteric arteries of aged mice.113 Other proteins such
as DJ-1, methylmalonyl-CoA epimerase, or enoyl-CoA delta
isomerase 2, which we found to be present in reduced
amounts in aged mitochondria have not been linked to age-
ing before. Further studies are required to confirm the differ-
ential expression of the proteins with independent
techniques and to evaluate their roles in the process of car-
diac ageing.

Age-associated changes in skeletal
muscle

Mitochondrial function and ROS production in
aged skeletal muscle

Sarcopenia, the atrophy of skeletal muscle and, consequently,
the decline in muscle strength, is a hallmark of the ageing
process. The sarcopenic phenotype is characterized by a re-
duction of muscle mass and quality, a shift in fibre-type distri-
bution, changes in protein synthesis, reduced satellite cell
regeneration, replacement of muscle fibres with fat, and an
increase in fibrosis. Sarcopenia is partially attributed to
changes in the mitochondrial compartment but also involves
cytosolic pro-inflammatory mediators, proteolytic activation,
and apoptosis signalling pathways.114

Interestingly, cachexia, a muscle wasting disease in re-
sponse to a chronic disease such as cancer, shows not only
some similarities in the underlying mechanisms of muscle
loss but also a number of significant differences compared
with sarcopenia.114,115 Cancer-associated cachexia, which is
characterized by severe muscle wasting, systemic inflamma-
tion, and malnutrition, is a complex metabolic disorder with

profound mitochondrial alterations. Impaired mitochondrial
biogenesis, reduced mitochondrial oxidative capacities,
mitochondrial energetic inefficiency, and enhanced
mitophagy and fission strongly contribute to cancer-induced
muscle wasting and muscle weakness.116–118 Furthermore,
mitochondria can be affected by the toxic effects of cancer
therapeutics. Among the commonly applied therapies, mito-
chondrial dysfunction with defective mitochondrial biogene-
sis and increased ROS formation occurs after doxorubicin or
oxaliplatin treatment.119 Both substances induce deleterious
effects in skeletal muscle, resulting in significant reductions
in muscle mass and strength in cancer patients.119

Age-associated mitochondrial changes in skeletal muscle
show many similarities but only a few differences compared
to the heart (Table 3). Similar to the heart, two populations
of mitochondria (SSM and IFM) exist in skeletal muscle. These
two subpopulations exhibit a distinct behavuior in skeletal
muscle during ageing. SSM produce greater amounts of ROS
and show higher rates of fragmentation and degradation,
while IFM are more susceptible to apoptotic stimuli and
MPTP opening.120 Recently, the existence of these two sepa-
rate subpopulations was challenged by demonstrating that
SSM and IFM are physically interconnected in skeletal mus-
cle.121 Age-associated mitochondrial decay (Figure 2) is an
important factor driving skeletal muscle ageing and
sarcopenia. Slower walking speed, which is among the clinical
parameters for sarcopenia case finding in older individuals,
correlates with lower mitochondrial capacity and effi-
ciency.122 Skeletal muscles of human subjects demonstrate
an age-related decline in mtDNA and mRNA abundance, mi-
tochondrial ATP production and oxygen consump-
tion.120,123,124 Interestingly, the age-associated decline in
ATP content and production was observed in isolated rat mi-
tochondria from the gastrocnemius muscle but not in heart
mitochondria from the same animals125 (Table 3). Further-
more, mitochondrial content has been reported to be re-
duced in ageing muscle, while other studies found no
change.126 Mitochondria in aged skeletal muscle appear en-
larged with matrix vacuolization and shorter cristae. A greater
proportion of mitochondria in the elderly are depolarized or
nonfunctional, and mitochondrial density is reduced.127–129

Complexes I and IV activities are decreased in aged muscle,
probably because these complexes contain subunits encoded
by the mtDNA, which is more vulnerable to ROS derived from
the respiratory chain.127 The decline in mitochondrial func-
tion (Figure 2) is a consequence of physical inactivity and
may partially be normalized by endurance training.114,130,131

Enhanced ROS production together with an increase in the
DNA repair enzyme 8-oxoguanine glycosylase 1 occurs in rat
senescent skeletal muscle.132 This increase in ROS production
is associated with a lower mitochondrial content and protein
expression of PGC-1alpha together with an increased
mitochondrial apoptotic susceptibility, which may all be in-
volved in age-related sarcopenia.132 Mice expressing a
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proofreading-deficient version of the mitochondrial DNA po-
lymerase gamma (mtDNA mutator mice) accumulate mtDNA
mutations and display a prematurely aged, sarcopenic pheno-
type of skeletal muscle.133 In these mice, mtDNA mutations

impair the assembly of functional ETC complexes, resulting
in a decrease in oxidative phosphorylation, and finally the in-
duction of skeletal muscle apoptosis and sarcopenia.134 The
involvement of the mitochondrial free radical vicious cycle

Table 3 Comparison of age-associated mitochondrial changes in the heart and skeletal muscle

Heart Skeletal muscle

Mitochondrial volume (% cell) 30–4075,249 3–8250

Stem cells -Extremely low numbers251 -Low numbers
(satellite cells)252

-Functional decline with
ageing253

Aged heart Aged skeletal muscle
Mitochondrial function -Impaired mainly in IFM23–25

-Largely preserved26
-Impaired120,124,127,129

ATP production/ATP content -Not altered125-Reduced27,28 -Reduced123–125

Mitochondrial biogenesis
or expression of major
regulators of mito. biogenesis

Reduced27,29–32 -Reduced120,124,127–129,132

Mitochondrial content -Reduced4,5-No change6,7

-Increased27
-Reduced123,124,129,132

-No change126

Cardiolipin content -Reduced34,35 -Reduced254,255

Mitochondrial shape -Shortened, more round8,75

-Giant mitochondria80
-Enlarged mitochondria128,129,144,256

Mitochondrial fusion -Decreased amounts of Mfn1
and Mfn281

-increased Opa1 expression55

-Shortened, hypodynamic
organelles lacking
remodelling75

-Increased fusion resulting in
enlarged mitochondria128,129,144,256

-Reduced fusion due to
reduced Mfn2257,258

Mitochondrial fission -Increased Drp1 expression55 -Smaller, fragmented
mitochondria; higher
expression of Fis1 and Drp1257

-Lower Fis1 expression144

Mitophagy -Decreased90,92,93

-Increased95,96
-Impaired120,137

Mitochondrial ROS -Increased25,53,55 -Increased120,127–129,132

Susceptibility for mPTP
opening

-increased mainly in
IFM54,72,74

-Increased123,126,132,137

Figure 2 Sarcopenia in aged individuals’ role of mitochondria. A sedentary lifestyle significantly contributes to the progression of sarcopenia though
various mito-based mechanisms. In particular, resistance exercise training can attenuate the progression of sarcopenia, which involves also a number
of changes in mitochondrial function. Whether or not a total prevention of sarcopenia can be achieved by exercise training is still a matter of debate.
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in muscle ageing in humans has also been shown in a study
by Bua et al.: they demonstrated that the number of muscle
fibres exhibiting mitochondrial electron–transport–system
abnormalities increases from 6% at age 49 years to 31% at
age 92 years together with a clonal expansions of mtDNA
deletion mutations in electron–transport–system-abnormal
regions of single fibres.135

Mitochondrial dynamics and quality control in
aged skeletal muscle

One of the consequences of mitochondrial dysfunction is the
activation of skeletal muscle apoptosis. Indeed, apoptotic ac-
tivation in aged skeletal muscle has been observed in various
studies132,136 and occurs even when the persons remain
physically active.137 Activation of apoptosis correlates with
reduced muscle volume in older persons and slower walking
speed.138 In the mtDNA mutator mouse,133 the accumulation
of mtDNA mutations is associated with the induction of apo-
ptotic markers not only in a skeletal muscle but also in a num-
ber of other organs.

Damaged mitochondria separated by fission are finally re-
moved by mitophagy. The AMP-activated protein kinase
(AMPK) triggers the destruction of defective, fragmented mi-
tochondria through FoxO3-dependent mitophagy.139,140 Ac-
cordingly, muscle atrophy involves the activation of the
ubiquitin–proteasome and the autophagy–lysosome systems
and requires AMPK activation.139 Aged skeletal muscle
seems to accumulate dysfunctional mitochondria with exag-
gerated sensitivity to MPTP opening because of impaired
mitophagy,120,137 resulting in a progressive accumulation of
a non-degradable, polymeric, autofluorescent material called
lipofuscin in lysosomes. This interrelated mitochondrial and
lysosomal damage has been suggested to contribute to the
functional impairment in skeletal muscle with advanced
age.128,141

Inhibition of mitochondrial fusion results in an accumula-
tion of mtDNA mutations triggering mitochondrial dysfunc-
tion, the loss of the mitochondrial genome and finally
accelerated muscle loss.142 Aged skeletal muscle has long
ago been shown to contain giant mitochondria with irregu-
larly spaced cristae and lipofuscin in close relationship with
the damaged mitochondria.143 The accumulation of such en-
larged mitochondria, which may be the consequence of
hyperfusion, suggests that mitochondrial dynamics are dis-
turbed in aged skeletal muscle. While aged mouse muscles
exhibit higher levels of markers of mitochondrial fusion and
lower levels of markers of autophagy, muscles from mtDNA
mutator mice, however, display higher mitochondrial fission
and autophagy levels.144 Thus, mtDNA-based mechanisms
are unable to sufficiently explain the phenotypic changes in
aged skeletal muscle and may not be the primary cause of
sarcopenia.

Not only mitophagy but also the generation of new organ-
elles via mitochondrial biogenesis is impaired in aged skeletal
muscle,120 and mitochondrial content declines with age in
sedentary individuals.124 Transcriptional complexes that con-
tain PGC-1alpha control mitochondrial oxidative function and
mitochondrial biogenesis. However, the mitochondrial bio-
genesis signalling activated by PGC-1alpha is reduced with in-
creasing age.127 AMPK promotes mitochondrial biogenesis via
PGC-1alpha up-regulation and activation.145,146 AMPK
phosphorylates PGC-1alpha at Thr177 and Ser538, which is
required for the PGC-1alpha dependent induction of the
PGC-1alpha promoter and the mitochondrial biogenic re-
sponse.146 In addition, PGC-1alpha modulates mitochondrial
turnover in skeletal muscle via Mfn2 and via degradation
using the autophagy–lysosome machinery.147,148

Impact of exercise training in aged skeletal muscle

Among the modifiable lifestyle factors, physical activity is the
most effective intervention to attenuate loss of muscle
strength and mass.114,131 Several studies suggest that the de-
cline in mitochondrial function is partially normalized by exer-
cise training (Figure 2).130 It increases type II muscle fibres
and cytochrome oxidase activity, decreases oxidative damage
to DNA, and increases the mitochondrial content in older
adults.124,129,149–151 The beneficial effects of exercise include
the multifaceted activation of pathways involved in mito-
chondrial turnover.152 Among those, PGC-1alpha increases
mitochondrial content and mitochondrial quality by modulat-
ing mitochondrial fusion/fission and mitophagy.147,148 PGC-
1alpha also prevents the excessive activation of proteolytic
systems during muscle atrophy.153 A splice variant of the
PGC-1alpha gene, PGC-1alpha4, is highly expressed in
exercised skeletal muscle and controls muscle mass through
induction of IGF1 and repression of myostatin without affect-
ing ‘classical’ PGC-1alpha targets involved in mitochondrial
biogenesis.154 In humans, controversial results have been ob-
tained with regard to the induction of this splice variant in
skeletal muscle after exercise.155,156 As described earlier,
the mtDNA mutator mouse displays skeletal muscle
sarcopenia.133,134 Interestingly, 5 months of endurance exer-
cise induce systemic mitochondrial biogenesis, prevent
mtDNA depletion, increase mitochondrial oxidative capacity,
and prevent dysfunction in various organs including skeletal
muscle sarcopenia in these mtDNA mutator mice.157 This
demonstrates that endurance exercise is an effective thera-
peutic approach to attenuate or even prevent mitochondrial
dysfunction in ageing skeletal muscle.

Exercise training causes an increase in ROS produc-
tion.158,159 These ROS play an important role in the stimula-
tion of major signalling pathways that regulate skeletal
muscle quality control and dynamics of mitochondria. Low
levels of ROS mediate positive effects on muscle physiological
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responses and play a crucial role in mitochondrial mainte-
nance during physical activity including activation of autoph-
agy.129,158–162 Accordingly, antioxidant treatment impairs
exercise tolerance in wild-type mice.162 On the other hand,
high levels of ROS contribute to contractile dysfunction
resulting in muscle weakness and fatigue,159 and mitochon-
drial ROS production is required to induce muscle atrophy
through activation of diverse proteolytic pathways in muscle
fibres exposed to prolonged inactivity.163 In addition, an en-
durance training-induced increase in cellular antioxidant de-
fence has been reported,129,164 which may contribute to the
maintenance of low-ROS levels.

However, there are also a number of unresolved questions
related to the effects of endurance training in aged skeletal
muscle, and the role of exercise training in reversing
sarcopenia in individuals older than 80 years still remains to
be determined. First, only a few studies were performed in
the elderly, while most endurance exercise-related studies
have examined young subjects.124,165 In humans, skeletal
muscle mitochondrial content is suggested to remain adapt-
able only until the age of 80 years or below126,166,167 due to
a failure to up-regulate the mitochondrial biogenesis machin-
ery. Similarly, single muscle fibre contractile function and my-
osin heavy chain distribution are unaltered in very old men
(>80 years) in response to progressive resistance training in-
dicating limited muscle plasticity.168 Furthermore, the most
effective type of exercise and the frequency of exercise to at-
tenuate or even prevent sarcopenia are still under discus-
sion.169,170 The specific effects of endurance exercise
training vs. strength exercise training on skeletal muscle
physiology in younger people are well known, but their role
in reversing sarcopenia in elderly individuals over 80 years
of age remains to be determined.124 Even an interference be-
tween different types of exercise (endurance and resistance
exercises), resulting in a blunted response, has been sug-
gested,129 while others reported that the order of exercise
modes does not affect training-induced changes in mitochon-
drial enzyme activity or improvements in muscle function.171

Impact of caloric restriction on skeletal muscle
ageing

Caloric restriction (CR), which typically involves consuming
20–40% calories less than normal in most experimental stud-
ies, delays the age-associated loss of muscle fibres, in part, by
improving mitochondrial function. Already early studies in-
vestigating the impact of CR on skeletal muscle mitochondrial
function reported that the age-associated decline in activities
of respiratory chain complexes was prevented with strongest
effects on complex IV.172–175 Thus, CR reduces the age-
associated accumulation of complex IV-negative and complex
II-hyperactive fibres.176,177 CR augments PGC-1alpha signal-
ling and the mitochondrial biogenic response and increases

mitochondrial density and function.178–180 AMPK, which is ac-
tivated under low-nutrient conditions, directly phosphory-
lates PGC-1alpha, resulting in a mitochondrial biogenic
response in skeletal muscle.146 Accordingly, a significant in-
crease in mitochondrial biogenesis occurs in multiple tissues
in mice after CR, a condition with chronically low nutri-
ents.181 The mechanistic target of rapamycin (mTOR) com-
plex 1 (mTORC1) signalling pathway is also critically
involved in physiological adaptations to nutrient supply and
considered a main player mediating CR effects. Inhibition of
mTOR robustly extends the lifespan of model organisms in-
cluding mice. Furthermore, mTORC1 has been identified to
influence mitochondrial content and function in skeletal mus-
cle.182–184 Muscle-specific inactivation of mTOR leads to im-
paired oxidative metabolism and altered mitochondrial
biogenesis,182,183 while TORC1 activation promotes mito-
chondrial biogenesis.184

CR also induces a reduction in mitochondrial ROS
generation, a lower amount of oxidatively damaged
mitochondrial proteins and less mtDNA mutations in aged
animals.125,185–189 CR animals from different species are
characterized by an attenuation of the age-related impair-
ment of autophagy or ubiquitin–proteasome activity190,191

and reduced susceptibility for apoptotic cell death.190,192,193

Furthermore, CR prevents the age-related decline in skeletal
muscle aerobic function173 and increases insulin-stimulated
glucose uptake in skeletal muscle,194 and CR-fed rats retain
motor activity even in old age.188 Even when started late in
life, CR is sufficient to inhibit ageing-induced muscle loss
through changes in mitochondrial biogenesis and apoptotic
proteins.195 Interestingly, these protective effects appear to
occur in a fibre type-specific manner with glycolytic muscle
being more responsive to CR.195

Thus, experimental data suggest that the impact of ageing
on skeletal muscle and skeletal muscle mitochondria can be
delayed. Controlled trials on the effects of long-term CR on
skeletal muscle function in humans are lacking for obvious
reasons including unresolved safety issues or difficulties in
lifelong observation of participants. The Comprehensive As-
sessment of the Long-term Effects of Reducing Intake of En-
ergy (CALERIE) trials systematically investigate the effects of
CR in healthy, non-obese human beings.196 Phase 1 of
CALERIE used short-term CR (6–12 months), while phase 2
of CALERIE is a randomized, multicentre study that uses die-
tary and behavioural interventions to achieve 25% CR for
2 years.196 However, currently, there are no comprehensive
data available related to mitochondrial parameters from the
skeletal muscle of patients from these controlled trials. An-
other study performed in humans shows that the skeletal
muscle transcriptional profile of voluntary CR practitioners
resembles that of younger individuals.197 Furthermore, a shift
in skeletal muscle gene expression towards oxidative metab-
olism including a set of genes related to long-term CR has
been reported in obese patients after weight loss.198 CR in
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young overweight adults results in an increased expression of
genes involved in mitochondrial biogenesis and function, an
increase in muscle mitochondrial DNA in association with a
decrease in DNA damage compared to controls.199 Similar
to the results obtained in animals, CR also reduces the sus-
ceptibility for apoptotic cell death in human skeletal mus-
cle.200 For this limitations and undisputed hazards of CR
such as hypotension, loss of libido, menstrual irregularities,
infertility, osteoporosis, cold sensitivity, slower wound
healing, depression, or emotional deadening to be over-
come,201 pharmacological approaches to mimic the effects
of CR such as resveratrol, metformin, or rapamycin have been
proposed.202

Impact of obesity on skeletal muscle ageing

Obesity and type 2 diabetes mellitus accelerate ageing or in-
duce a prematurely aged phenotype in humans in various or-
gans such as liver,203 heart,30 AT,204 or skeletal muscle,205 and
telomere length is inversely associated with obesity.204 The
ETC activity and mtDNA content are reduced in the skeletal
muscle of type 2 diabetics and in obese patients compared
with lean subjects.206 Furthermore, healthy subjects with a
family history of type 2 diabetes have reduced mtDNA con-
tent and high-fat diet-induced fat oxidation.207 They also
demonstrate a metabolic inflexibility, suggesting that reduced
mitochondrial capacity may be a cause rather than a conse-
quence of insulin resistance.207 Accordingly, impaired mito-
chondrial activity not only in skeletal muscle but also in AT
(see below) could predispose to obesity and induce a prema-
ture ageing process. In skeletal muscle, obesity is often ac-
companied by sarcopenia and vice versa, a scenario termed
sarcopenic obesity. Obesity appears to be a sarcopenia pro-
moting factor, but the underlying mechanisms are poorly un-
derstood.208 Sarcopenia and obesity both pose a health risk
for elderly people, but in combination, they synergistically in-
crease the risk for negative health outcomes.209

Therapeutic strategies to target mitochondria

Recent studies suggest that maintenance of mitochondrial
function is beneficial in the delay of age-associated diseases.
Experimental strategies to target mitochondria range from
regulation of mitochondrial biogenesis, targeting of mito-
chondrial dynamics, enhancement of respiratory chain func-
tion to scavenging of toxic substances. The pan-PPAR
agonist bezafibrate increases mitochondrial biogenesis and
oxidative phosphorylation (OXPHOS) activity.210 In addition,
certain hormones such as estrogens, thyroid hormone or
erythropoietin, and various AMPK activators such as AICAR,
A-769662, metformin, resveratrol, quercetin, or
hydroxytyrosol mediate some of their protective effects

through increased mitochondrial biogenesis in various
organs.211,212 However, more work is warranted to substanti-
ate their therapeutic potential in aged muscular tissues.

The use of untargeted antioxidant compounds including
lipoic acid, vitamin C, vitamin E, or ubiquinol has so far
failed to demonstrate benefits in larger clinical trials and
some preclinical models. Mitochondria-targeted antioxi-
dants such as MitoQ, MitoTEMPO, SS-31, or Tiron were
shown to improve mitochondrial function in preclinical set-
tings, but larger clinical applications have not yet been per-
formed. Homologues of coenzyme Q10 such as idebenone
or Epi-743 are known to enhance mitochondrial function,
the latter being successfully used in patients with inherited
mitochondrial disease.213

As mitochondrial dynamics influence mitochondrial func-
tion, pharmacological approaches to target the involved
pathways are increasingly attracting interest. Specific
inhibitors of mitochondrial fission (mdivi-1, Dynasore, and
P110) or activators of fusion (M1-hydrazone and 15-
Oxospriramilactone) have been developed. Inhibition of
Drp1-mediated mitochondrial fission by usage of Dynasore,
P110, or mdivi-1 has been shown to confer cardioprotection
in various preclinical models.214 However, inhibition of mito-
chondrial fission with mdivi-1 was also shown to induce a
reduction in mitochondrial mass and impair myogenic differ-
entiation.215 Furthermore, prolonged treatment with these
fission inhibitors can result in mitochondrial hyperfusion with
deleterious consequences. Thus, a balance between the rates
of fission and fusion or a partial reduction of mitochondrial
fission appears to be necessary for normal mitochondrial ad-
aptations. With better understanding of the molecular mech-
anisms in aged muscular tissues, more therapeutics can be
developed to modulate mitochondrial dynamics. Given the
major impact of mitochondrial dysfunction in cancer-induced
muscle wasting as well as cancer therapy-induced toxicity, the
aforementioned novel strategies that target mitochondrial
biogenesis, dynamics, or ROS could also turn out to be useful
in cancer-induced mitochondrial defects. In addition, anti-
inflammatory therapies and exercise training constitute
promising therapeutic countermeasures to cancer-associated
cachexia, in part by improving mitochondrial function.

Adipose tissue

Lipotoxicity

Adipose tissue is a key organ in the regulation of energy bal-
ance, participating in both energy storage and energy expen-
diture.216 However, it is now also considered as an endocrine
organ through the release of various adipokines, orchestrat-
ing crucial interactions with other organs including heart
and skeletal muscle. Similar to other cells, mitochondria
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represent the main site of ATP production in adipocytes. Ad-
ipocyte development and differentiation are associated with
increases in mtDNA content and mtDNA encoded compo-
nents of the OXPHOS system.217 However, the number of mi-
tochondria in mature white adipocytes is significantly lower
than during differentiation.217 Although the number of mito-
chondria is low, mitochondrial function is essential for adipo-
cyte function including secretion of adipokines such as
adiponectin.218 The mitochondria in AT play an important
role in lipogenesis by providing key intermediates (glycerol
3-phosphate and acetyl-CoA) for the synthesis of triglycer-
ides, and mtDNA content is strongly related to lipogenesis
in white adipocytes.219 Impaired mitochondrial activity in ad-
ipocytes is usually associated with reduced fatty acid oxida-
tion, leading to an increase in cytosolic free fatty acids that
can cause deterioration in other organs function. The AT ex-
pandability hypothesis220 states that AT possesses a limited
expandability, resulting in limited oxidative capacity and stor-
age capacity of adipocytes. The capacity of AT to expand
seems to be influenced by genes, environmental factors,
and the individual’s age.220,221 Once AT storage capacity is
exceeded, lipids will be deposited ectopically in skeletal mus-
cle or cardiac myocytes, hepatocytes, or pancreatic beta cells.
Ectopic lipid deposition can cause toxic effects such as insulin
resistance and cardiovascular complications.222 This
lipotoxicity can be initiated through entrance of fatty acids
into deleterious pathways such as ceramide production,
which causes apoptosis of lipid-loaded cells. In addition,
changes in the mitochondrial phosphoproteome caused by
alterations in kinase activities have been suggested to play
a major role in the initiation of cellular dysfunction in
lipotoxicity.223 Lipotoxicity and lipoapoptosis can be
prevented by caloric restriction, PPARgamma agonist treat-
ment, or leptin.222,224,225 The PPARgamma agonist
rosiglitazone triggers mitochondrial biogenesis in white adi-
pocytes from leptin-deficient mice, accompanied by a remod-
elling of adipocyte mitochondria in shape, size, and
function.226

Potential role in the ageing process

Adipose tissue is also involved in the determination of lifespan
and whole body metabolisms.227,228 Obesity is associated
with a poor performance of mitochondria in WAT, accelerates
ageing, and induces a prematurely aged phenotype in AT.204

Telomere length in AT is inversely associated with obesity.204

Oxygen consumption of human and rat AT is negatively re-
lated to age and the degree of obesity.229,230 Furthermore, mi-
tochondrial content, copy number of mtDNA, and expression
of genes for mitochondrial proteins in WAT are reduced in
obese patients and animals.231,232

There is growing evidence that the insulin/insulin-like
growth factor (IGF) signalling pathway is important in

controlling the rate of ageing in mammals.233,234 Mice with
a fat-specific insulin receptor knockout (FIRKO), which show
increases in median and maximum lifespans, have reduced
fat mass and are protected against age-related obesity and
its subsequent metabolic abnormalities despite a normal or
even increased food intake.227,235 Furthermore, white adi-
pose tissue (WAT) of FIRKO mice shows a high expression
of nuclear-encoded mitochondrial genes involved in glycoly-
sis, tricarboxylic acid cycle, fatty acid oxidation, and oxidative
phosphorylation even at high age, while wild-type mice show
a decline in many of these genes with increasing age.236 In
addition, old FIRKO mice demonstrate signs of increased
mitochondrial activity and an increased number or mass of
mitochondria in WAT,236 suggesting that maintenance of
mitochondrial function in AT may be an important contribu-
tor to the increased lifespan. Similarly, genetically induced,
severe mitochondrial dysfunction in AT with decreased ex-
pression and OXPHOS activity in adipocytes not only results
in whole body insulin resistance but also induces hyperten-
sion and cardiac dysfunction.228

Brown adipose tissue

Brown adipose tissue (BAT) is abundant in humans during
early postnatal development, but absent or present only in
small amounts in adults. It is located in interscapular and
supraclavicular regions of the adult thorax. BAT originates
from the myogenic (Myf5þ) lineage, while WAT has a mes-
enchymal origin. Brown adipocytes are thermogenic cells
and maintain the balance between energy storage and
energy expenditure through matching oxidative phosphory-
lation and dissipation of the proton gradient. The high-
oxidative capacity of BAT is due to its high mitochondrial
density. WAT can undergo a process known as browning
where WAT takes on characteristics of BAT such as expres-
sion of uncoupling protein 1 and an increase in mitochon-
dria and oxidative metabolism,237 resulting in higher
energy expenditure. These inducible or beige adipocytes
have unique molecular and developmental characteristics
compared to classical brown adipocytes,238,239 but both in-
crease energy expenditure through the uncoupling of oxida-
tive phosphorylation from ATP production as a result of a
transmembrane proton leak mediated by uncoupling protein
1. Browning of WAT can be induced by chronic cold expo-
sure, PPARgamma agonists, leptin, natriuretic peptides, or
beta-adrenergic stimulation.240 The three core transcrip-
tional regulators of inducible brown fat are PPARgamma,
PGC-1α, and the PR domain zinc finger protein 16.237,238

The activity of BAT negatively correlates with BMI,241 and
browning of WAT has been shown to have anti-obesity
and anti-diabetic effects in rodent models.238 Conversely,
genetically induced, severe mitochondrial dysfunction in AT
results in whitening of BAT.228 The prevalence and glucose-
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uptake activity of BAT is negatively correlated with patient’s
age242 and with obesity.243 CR on the other hand increases
BAT activity and attenuates the age-related decline in mito-
chondrial mass and mitochondrial function in BAT of
rats.244,245 Manipulations that increase BAT activity have
also been shown to increase cellular stress resistance.246

Thus, brown fat activation results in increased energy expen-
diture and limits weight gain. Browning of WAT through
targeted pharmaceutical interventions may be an efficient
way to increase energy consumption also in humans, making
AT a good candidate organ to treat obesity and possibly also
to slow the ageing process. However, parathyroid hormone-
related protein (PTHrP)-regulated and IL-6-regulated brow-
ning of AT also occurs in cancer patients.247,248 Here, it
enhances energy dissipation and thus contributes to the
progression of cancer-associated cachexia.

Summary

Mitochondria are central regulators of the ageing process in
the heart, in skeletal muscle. A decline in mitochondrial con-
tent and mitochondrial function plays a major role in ageing
heart and skeletal muscle, contributing to the development
of cardiac dysfunction or sarcopenia, respectively. However,
the exact mechanisms by which aged mitochondria affect car-
diac or skeletal muscle function are diverse, but the following
effects can be envisioned: the reduced respiratory capacity
can result in an energetic deficit of cardiac and skeletal
myocytes. An increased susceptibility of MPTP opening could

increase apoptotic cell death of cardiomyocytes or skeletal
muscle cells. Replacement of cardiomyocytes by fibroblast
in the heart as well as the low regenerative capacity of aged
skeletal muscle could then facilitate functional impairment of
heart and muscle. Furthermore, an increase in ROS produc-
tion by mitochondria could evoke an increase of mitochon-
drial damage and consequently removal of these damaged
organelles, again resulting in an energetic deficit.

Even in AT, which exhibits a much lower mitochondrial
density than both muscular tissues, mitochondria have
emerged as major regulators of the ageing process. Impaired
mitochondrial activity in adipocytes is associated with alter-
ations in AT metabolism, differentiation, and adipokine re-
lease. In addition, mitochondrial dysfunction in AT can
cause deterioration in other organs’ function and has an im-
pact on lifespan. However, exact mechanisms involved in
the latter effect remain to be fully elucidated.
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