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Pancreatic regulation of glucose homeostasis

Pia V Röder1, Bingbing Wu2, Yixian Liu2 and Weiping Han1,2

In order to ensure normal body function, the human body is dependent on a tight control of its blood glucose levels. This is

accomplished by a highly sophisticated network of various hormones and neuropeptides released mainly from the brain,

pancreas, liver, intestine as well as adipose and muscle tissue. Within this network, the pancreas represents a key player by

secreting the blood sugar-lowering hormone insulin and its opponent glucagon. However, disturbances in the interplay of the

hormones and peptides involved may lead to metabolic disorders such as type 2 diabetes mellitus (T2DM) whose prevalence,

comorbidities and medical costs take on a dramatic scale. Therefore, it is of utmost importance to uncover and understand the

mechanisms underlying the various interactions to improve existing anti-diabetic therapies and drugs on the one hand and to

develop new therapeutic approaches on the other. This review summarizes the interplay of the pancreas with various other

organs and tissues that maintain glucose homeostasis. Furthermore, anti-diabetic drugs and their impact on signaling pathways

underlying the network will be discussed.
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THE PANCREAS IS AN EXOCRINE AND ENDOCRINE

ORGAN

The pancreas has key roles in the regulation of macronutrient
digestion and hence metabolism/energy homeostasis by releas-
ing various digestive enzymes and pancreatic hormones. It is
located behind the stomach within the left upper abdominal
cavity and is partitioned into head, body and tail. The majority
of this secretory organ consists of acinar—or exocrine—cells
that secrete the pancreatic juice containing digestive enzymes,
such as amylase, pancreatic lipase and trypsinogen, into the
ducts, that is, the main pancreatic and the accessory pancreatic
duct. In contrast, pancreatic hormones are released in an
endocrine manner, that is, direct secretion into the blood
stream. The endocrine cells are clustered together, thereby
forming the so-called islets of Langerhans, which are small,
island-like structures within the exocrine pancreatic tissue that
account for only 1–2% of the entire organ (Figure 1).1 There
are five different cell types releasing various hormones from
the endocrine system: glucagon-producing α-cells,2 which
represent 15–20% of the total islet cells; amylin-, C-peptide-
and insulin-producing β-cells,2 which account for 65–80% of
the total cells; pancreatic polypeptide (PP)-producing γ-cells,3
which comprise 3–5% of the total islet cells; somatostatin-
producing δ-cells,2 which constitute 3–10% of the total cells;
and ghrelin-producing ε-cells,4 which comprise o1% of the

total islet cells. Each of the hormones has distinct functions.
Glucagon increases blood glucose levels, whereas insulin
decreases them.5 Somatostatin inhibits both, glucagon and
insulin release,6 whereas PP regulates the exocrine and
endocrine secretion activity of the pancreas.3,7 Altogether, these
hormones regulate glucose homeostasis in vertebrates, as
described in more detail below. Although the islets have a
similar cellular composition among different species, that is,
human, rat and mouse, their cytoarchitecture differs greatly.
Although islets in rodents are primarily composed of β-cells
located in the center with other cell types in the periphery,
human islets exhibit interconnected α- and β-cells.2,8

Through its various hormones, particularly glucagon and
insulin, the pancreas maintains blood glucose levels within a
very narrow range of 4–6mM. This preservation is accom-
plished by the opposing and balanced actions of glucagon and
insulin, referred to as glucose homeostasis. During sleep or in
between meals, when blood glucose levels are low, glucagon is
released from α-cells to promote hepatic glycogenolysis. In
addition, glucagon drives hepatic and renal gluconeogenesis to
increase endogenous blood glucose levels9 during prolonged
fasting. In contrast, insulin secretion from β-cells is stimulated
by elevated exogenous glucose levels, such as those occurring
after a meal.10 After docking to its receptor on muscle and
adipose tissue, insulin enables the insulin-dependent uptake of
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glucose into these tissues and hence lowers blood glucose
levels by removing the exogenous glucose from the blood
stream (Figure 2).11–13 Furthermore, insulin promotes
glycogenesis,14–26 lipogenesis27,28 and the incorporation of
amino acids into proteins;29 thus, it is an anabolic hormone,
in contrast to the catabolic activity of glucagon.

THE INSULIN SECRETION SIGNALING PATHWAY

Endocrine cells secrete their respective hormones in response
to external signals, such as nutrient intake or stress, via
humoral, neural or hormonal signaling pathways. The under-
lying molecular process that translates the stimulus into the
actual hormone release is called stimulus-secretion coupling
which is known as the stimulus-dependent exocytosis of a
particular substance, such as glucose-stimulated β-cell insulin
release.30

In β-cells, the main stimulus for insulin release are elevated
blood glucose levels following a meal.10 The circulating blood
glucose is taken up by the facilitative glucose transporter
GLUT2 (SLC2A2), which is located on the surface of the
β-cells. Once inside the cell, glucose undergoes glycolysis,
thereby generating adenosine triphosphate (ATP), resulting in
an increased ATP/ADP ratio. This altered ratio then leads to
the closure of ATP-sensitive K+-channels (KATP-channels).
Under non-stimulated conditions, these channels are open to
ensure the maintenance of the resting potential by transporting
positively charged K+-ions down their concentration gradient
out of the cell. Upon closure, the subsequent decrease in the
magnitude of the outwardly directed K+-current elicits the
depolarization of the membrane, followed by the opening of

voltage-dependent Ca+-channels (VDCCs). The increase in
intracellular calcium concentrations eventually triggers the
fusion of insulin-containing granules with the membrane and
the subsequent release of their content.31 The whole secretory
process is biphasic with the first phase peaking around 5
minutes after the glucose stimulus with the majority of insulin
being released during this first phase. In the second, somewhat
slower, phase, the remaining insulin is secreted.32–34 Insulin is
stored in large dense-core vesicles that are recruited to the
proximity of the plasma membrane following stimulation such
that insulin is readily available.35,36 The key molecules that
mediate the fusion of the insulin-containing large dense-core
vesicles are the synaptosomal-associated protein of 25 kDa
(SNAP-25), syntaxin-1 and synaptobrevin 2 (or vesicle-
associated membrane protein VAMP2), all of which belong
to the superfamily of the soluble N-ethylmaleimide-sensitive
factor attachment protein (SNAP) receptor proteins (SNAREs).
Together with the Sec1/Munc18-like (SM) proteins they
form the so-called SNARE complex.37 To initiate fusion,
synaptobrevin 2, a vesicle (v-)SNARE that is integrated into
the vesicle’s membrane, fuses with the target (t-)SNAREs
syntaxin-1 and SNAP-25, which are located in the target cell
membrane,38,39 with mammalian uncoordinated (munc)-18
playing a key regulatory role (Figure 3).40,41

To date, numerous SNARE isoforms, including syntaxin-1,
-3 and -4, SNAP-25 and -23, as well as syntaptobrevins 2 and 3
(VAMP2 and 3), have been shown to be involved in
glucose-stimulated insulin secretion,42–46 whereas VAMP8,
a non-essential SNARE protein for glucose-stimulated insulin
secretion, has a role in the regulation of the glucagon-like

Figure 1 Anatomical organization of the pancreas. The exocrine function of the pancreas is mediated by acinar cells that secrete digestive
enzymes into the upper small intestine via the pancreatic duct. Its endocrine function involves the secretion of various hormones from
different cell types within the pancreatic islets of Langerhans. The micrograph shows the pancreatic islets. LM×760 (Micrograph provided
by the Regents of University of Michigan Medical School © 2012). Adapted from Human Anatomy and Physiology, an OpenStax College
resource.404
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peptide-1-potentiated insulin secretion.47 In addition to
SNARE and SM proteins, a calcium sensor is required for
the initiation of membrane fusion. Synaptotagmins, which are
highly expressed in neurons and endocrine cells, were shown to

participate in Ca2+-dependent exocytosis processes. To date,
17 synaptotagmins (Syts 1–17) have been identified and only
eight of them, namely Syt-1, -2, -3, -5, -6, -7, -9 and -10, are
able to bind calcium.48 Following Ca2+-binding,

Figure 2 Maintenance of blood glucose levels by glucagon and insulin. When blood glucose levels are low, the pancreas secretes glucagon,
which increases endogenous blood glucose levels through glycogenolysis. After a meal, when exogenous blood glucose levels are high,
insulin is released to trigger glucose uptake into insulin-dependent muscle and adipose tissues as well as to promote glycogenesis.

Figure 3 Glucose-stimulated insulin release from a pancreatic β-cell. Exogenous glucose is taken up by GLUT2 and undergoes glycolysis
inside the cell. Elevated adenosine triphosphate (ATP) levels alter the ATP/ADP ratio, which in turn leads to the closure of ATP-sensitive
K+-channels. The subsequent membrane depolarization opens voltage-dependent Ca2+-channels in response to increasing intracellular
calcium levels, which eventually trigger insulin secretion following vesicle fusion with the membrane.
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synaptotagmins form a complex with the SNAREs to facilitate
and trigger the vesicle-membrane fusion process. Among the
synaptotagmin family, Syt-3, -5, -7, -8 and -9 are implicated in
insulin exocytosis.49–52

EXTERNAL FACTORS AFFECTING PANCREATIC

HORMONE SECRETION

Metabolism–cAMP coupling
The glucose-triggered stimulus-secretion coupling is an
established paradigm of insulin secretion from β-cells and
includes a great variety of modulators that trigger, potentiate or
inhibit glucose-stimulated insulin secretion, primarily through
G-protein-coupled receptors (GPCRs). The most traditional
external factor that initiates insulin secretion is glucose. In
addition to its trigger function, glucose also induces pathways
that amplify insulin secretion through metabolism-cAMP
(cyclic adenosine monophosphate) coupling or the incretin
hormones glucagon-like peptide (GLP)-1 and glucose-
dependent insulinotropic peptide (GIP).31 Metabolism–cAMP
coupling refers to the signaling cascade that occurs after the
conversion of ATP, which is generated during intracellular
glucose metabolism, into cAMP by adenylate cyclase (AC),53

which in turn activates protein kinase A (PKA)54 and
cAMP-regulated guanine nucleotide exchange factors, also
referred to as exchange protein directly activated by cAMP
(Epac) 2.55,56 Although Epac2 activation amplifies insulin
secretion by mobilizing calcium from internal stores to increase
Ca2+ levels57,58 and by controlling the granule density in
proximity to the plasma membrane,59 activated PKA exerts
its effects by modulating KATP-channel

60,61 and calcium
channel62,63 activity through phosphorylation, thereby
enhancing the number of highly Ca2+-sensitive insulin-
containing granules64 and the probability of releasing secretory
vesicles from the readily releasable pool,65 respectively.

The incretins GLP-1 and GIP
The gut-derived hormones GLP-1 and GIP, which are secreted
from enteroendocrine L-cells66 and K-cells,67 respectively,
upon glucose,66,68 fructose,69 amino acid70 and free fatty acid
(FFA)71,72 ingestion, also potentiate insulin release through the
so-called incretin effect. This effect describes the observation
that orally, but not intravenously, administered glucose
enhances insulin secretion by triggering GLP-1 and GIP
secretion;73–75 the resulting potentiation of insulin secretion
may account for up to 50% of the total release. The underlying
mechanism includes GLP-1 and GIP binding to their GPCRs
(GLP-1R and GIPR), both of which are expressed in pancreatic
β-cells.76 The binding induces a conformational change in the
receptors’ structure, followed by the exchange of guanosine
diphosphate for guanosine triphosphate and the subsequent
dissociation of the Gsα-subunit from the receptors. This
subunit, in turn, activates adenylate cyclase to convert ATP
into cAMP, thereby stimulating the cAMP signaling pathway
described above.77–82 Furthermore, GLP-1 increases intra-
cellular calcium concentrations by mobilizing Ca2+ from
ryanodine-sensitive stores83,84 or, similar to GIP, by acting

on voltage-dependent Ca2+-channels,85 thereby potentiating
insulin release.85–87 Recent studies have also shown that
GLP-1R agonists, such as exendin-488, induce the PKA-
mediated phosphorylation of Snapin or Synaptotagmin-7,
which in turn enhances GSIS by Snapin interacting with
SNAP-2589 or by directly enhancing glucose- and Ca2+-trig-
gered insulin release.90

Free Fatty Acids
FFAs not only stimulate incretin secretion but are also known
to modulate insulin release through fatty acid metabolism.
Although long-chain FFAs augment insulin secretion, short-
chain FFAs inhibit it. The binding and subsequent interaction
of long-chain FFAs with the G-protein-coupled free fatty acid
receptor (FFAR) 1 in the pancreatic β-cells leads to the
activation of phospholipase C. PLC then hydrolyzes phospha-
tidylinositol-4,5-bisphosphate (PIP2) to diacylglycerol and
inositol-1,4,5-triphosphate (IP3), with the latter docking on a
calcium channel in the endoplasmic reticulum. The subsequent
release of Ca2+ into the cytosol increases the intracellular Ca2+

concentration, which eventually triggers insulin secretion.91–94

In contrast, short-chain FFAs inhibit glucose-stimulated insulin
secretion due to decreased glucose oxidation and the
subsequently decreased ATP/ADP ratio.95 Another inhibitor
of insulin release is stress, specifically norepinephrine (nora-
drenaline) produced in response to stress.96 Norepinephrine
binds to its α2-adrenergic receptors, which are linked to
GPCRs, resulting in the inhibition of AC as well as in
hyperpolarization. This prevents an increase in the cytosolic
Ca2+ concentration and, subsequently, insulin secretion.97,98

INTERPLAY BETWEEN THE PANCREATIC ISLETS AND

OTHER ORGANS

The brain–islet axis
Just as insulin exerts its effects on other organs and tissues,
other organs interact with the pancreas to modulate insulin
secretion (Figure 4). One of these interacting organs is the
brain, which comprises the mutual brain–islet axis that
interacts with the pancreas and vice versa. The pancreas is
highly innervated with both, parasympathetic99,100 and
sympathetic100,101 nerve fibers from the autonomic nervous
system. At the same time, insulin receptors are widely
distributed within the brain, including the hypothalamus,
cerebral cortex, cerebellum102 and hippocampal formation103

in humans, as well as the olfactory and limbic areas,104,105

hypothalamus106—particularly the periventricular nucleus107

and the arcuate nucleus108,109—hippocampus and the choroid
plexus105 in rat brains. Lesions in various brain regions were
shown to affect pancreatic hormone secretion. The destruction
of the ventromedial hypothalamus results not only in insulin
hypersecretion110–112 due to loss of the ventromedial
hypothalamus-mediated inhibitory impact on pancreatic
β-cells113 but also in higher glucagon levels.111,112 Glucagon
secretion may also be modulated by the hypothalamic brain-
derived neurotrophic factor114 via efferent nerves,115 whereas
the melanocortin system directly reduces basal insulin levels by
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stimulating sympathetic nerve fibers via α-adrenoceptors.116
Acting via α-adrenoceptors,117 norepinephrine also inhibits
insulin secretion,96 which is an important aspect of the fight-
or-flight response. The neurotransmitter Neuropeptide Y
(NPY), which is mainly expressed in the sympathetic nerve
fibers of the autonomic nervous system, also blunts insulin
release,118,119 and the loss of NPY’s inhibitory action results in
elevated basal and glucose-stimulated insulin secretion as well
as in increased islet mass.120 NPY binding to its GPCR Y1
causes the activated Giα-subunit to block adenylate cyclase
activation, which in turn inhibits the cAMP pathway.121

Furthermore, the NPY-mediated inhibition was shown to be
Gβγ- and Ca2+-independent.122 In addition to the well-known
insulin stimulator acetylcholine, which exerts its effects via M3

muscarinic receptors,123 melanin concentrating hormone,
vasoactive intestinal peptide (VIP), its close relative pituitary
adenylate cyclase-activating polypeptide (PACAP) and gastrin-
releasing peptide also promote insulin and, in the case of
VIP124 and PACAP,125 glucagon release. The various neuro-
peptides exert their effects through various pathways, including
the extracellular signal-regulated kinase (ERK)/Akt pathway,
and modulation of Ca2+-influx (melanin concentrating
hormone),126 cAMP and, to a lesser extent, PI3K signaling
(VIP and PACAP),127,128 muscarinic/β-adrenoceptors signaling,
PI3K/PKC signaling and Ca2+-mobilization from intracellular
stores (gastrin-releasing peptide).129,130

Likewise, insulin release is stimulated by the so-called
cephalic phase, which represents the conditioned reflex of
increased hormone secretion, referred to as cephalic phase
insulin response,131 even in the absence of nutrients/glucose as
a trigger,132–134 such as when anticipating a meal, to prepare
the organism to adequately respond to incoming nutrients.135

Moreover, cephalic phase insulin response is pivotal for
ensuring normal postprandial glucose management.136 The
neural mechanism underlying cephalic phase insulin response
was found to include cholinergic and non-cholinergic
processes136 as well as the dorsal vagal complex located in
the medulla oblongata.137 Conversely, insulin released in
response to a meal enters the brain via the blood–brain–
barrier138 to decrease food intake139,140 by stimulating
hypothalamic pro-opiomelanocortin neurons141 and initiating
the PI3K signaling pathway142 in these pro-opiomelanocortin
neurons.143 In contrast to its pro-opiomelanocortin-
stimulating action, insulin inhibits NPY expression144 in
Agouti-related peptide (AgRP/NPY) neurons, which are known
to secrete the orexigenic neuropeptides NPY145–147 and
AgRP.148,149 Both, peripheral and central insulin signaling are
impaired in obese or diabetic states.150–154

The liver–islet axis
The second group represents the liver–islet axis. The liver has a
key role in glucose homeostasis by storing (glycogenesis) or
releasing (glycogenolysis/gluconeogenesis) glucose upon

Figure 4 The interplay of the pancreas with the brain, liver, gut as well as adipose and muscle tissue. The pancreas interacts with the
brain, liver, gut and adipose and muscle tissue in a highly sophisticated network via various hormones, neurotransmitters and cytokines.
BNDF, brain-derived neurotrophic factor; CCK, cholecystokinin; GIP, glucose-dependent insulinotropic peptide; GLP-1, glucagon-like
peptide 1; GRP, gastrin-releasing peptide; IL-6, Interleukin 6; MCH, melanin concentrating hormone; NPY, neuropeptide Y; PACAP,
pituitary adenylate cyclase-activating polypeptide; POMC, pro-opiomelanocortin; VIP, vasoactive intestinal peptide.
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interaction with insulin and glucagon, respectively. The binding
of glucagon to its hepatic GPCR evokes the signaling cascade
described under ‘External factors affecting pancreatic hormone
secretion’, eventually resulting in the activation of PKA,
which in turn stimulates two processes; one promotes
glycogenolysis/gluconeogenesis and the other inhibits
glycolysis/glycogenesis.155,156 Glycogenolysis is a multistep
process that includes the PKA-mediated phosphorylation of
phosphorylase kinase,157 cleavage of glucose-1-phosphate
(G-1-P) from glycogen by activated glycogen phosphorylase
a158 and the conversion of G-1-P into G-6-P,159 eventually
resulting in phosphate and free glucose. Hepatic gluconeo-
genesis is promoted by the PKA-mediated phosphorylation of
the cAMP response element-binding protein, which in
turn upregulates peroxisome proliferator-activated receptor-γ
coactivator (PGC)-1.160 Together with the hepatocyte nuclear
factor (HNF)-4, PGC-1 induces the transcription of phospho-
enolpyruvate carboxykinase,161 which catalyzes the conversion
of oxaloacetate into phosphoenolpyruvate, a rate-limiting step
in gluconeogenesis. This is followed by reversed glycolysis,
during which stimulation of the bifunctional PFK-2/FBPase-2
leads to both, enhanced gluconeogenesis through the
abrogation of disabled fructose-1,6-bisphosphatase (FBPase)-1,
which facilitates the successive conversion of substrates into
G-6-P, and to suppressed glycolysis.162,163 Glycolysis is further
inhibited by the PKA-mediated inactivation of pyruvate
kinase,164–166 resulting in the production of glucose instead
of pyruvate. In addition, glucagon was found to suppress
pyruvate kinase gene expression as well as to enhance pyruvate
kinase mRNA degradation.167,168 Finally, the PKA-induced
inactivation of hepatic glycogen synthase169–171 decreases
glycogen synthesis and concomitantly increases the hepatic
glucose pool.

As glucagon’s opponent, insulin stimulates glycolysis via
enhanced expression of the hepatic glucokinase gene,14,15 a key
enzyme that converts glucose into G-6-P. This increase is
mediated by the sterol regulatory element binding protein-1c15

and requires the absence of cAMP.14 Furthermore, insulin
inactivates glycogen phosphorylase and glycogen synthase
kinase (GSK)-3172 through the PI3K pathway, which in turn
activates glycogen synthase.18–20 The second liver-specific
effect of insulin is to repress the expression of the phospho-
enolpyruvate carboxykinase and G-6-Pase genes; the first by
disrupting the association of cAMP response element-binding
protein and RNA polymerase II with the phosphoenolpyruvate
carboxykinase gene promoter,23 whereas G-6-P suppression
requires PKBα/Akt and forkhead transcription factor
(FOXO1),24,25 whose expression was shown to be diminished
by the inhibition of GSK-3.26

It is not only insulin and glucagon acting on the liver;
hepatocyte-derived factors conversely influence the pancreas
and/or insulin secretion. Although HNF3β was proposed to be
pivotal for the transcription of the pancreatic and duodenal
homeobox 1 (pdx1 or insulin promotor factor 1 (IPF-1)) gene,
a transcription factor regulating pancreatic development173,174175,
it is the loss of HNF1α resulting in an almost abolished insulin

secretion, likely due to a decreased response to intracellular
calcium. These findings support the importance of HNF1α in
maintaining β-cell function176 and its involvement in maturity-
onset diabetes of the young (MODY3).177

The hepatokine betatrophin, also known as TD26, re-feeding
induced fat and liver (RIFL), lipasin or angiopoietin-like
(ANGPTL) 8, was first identified as a factor that drives β-cell
proliferation and thus increases β-cell mass in a murine model
of insulin resistance.178 Subsequent studies, however, did not
reveal impairments in glucose homeostasis179 or β-cell expan-
sion in Angptl8 knockout mice.180 Moreover, betatrophin does
not have an effect on human β-cell replication, challenging its
usefulness in diabetes therapy.181 This is substantiated by the
fact that betatrophin levels are higher in T2DM patients,182–184

although they were lower in one study.185 However, this is
likely to be due to technical issues.186

The gut–islet axis
Another important axis is the gut–islet axis. The gut releases
various hormones upon nutrient ingestion, including GLP-1
and GIP, that bind to their respective receptors on pancreatic
β-cells to potentiate insulin secretion, as described under
‘External factors affecting pancreatic hormone secretion’.
Furthermore, both hormones exert pancreatic effects, such as
GLP-1-stimulated insulin gene expression,77,187 incretin-
induced β-cell neogenesis, proliferation188–191 and survival,192

the prevention of β-cell apoptosis in general193,194 and in
response to glucolipotoxicity.195 The extrapancreatic actions
of GLP-1 include suppression of endogenous glucose
production196/glycogenolysis,197 glucagon secretion,197,198

appetite,199,200 a delay in gastric emptying198,199 and improved
β-cell insulin sensitivity199,201,202 and glucose disposal,203,204

whereas GIP positively affects lipid205–207 and bone
metabolism.208–211 Thus, GLP-1 and GIP mediate insulin
secretion and concomitantly, insulin modulates GIP212 and
GLP-1 release; the latter ocurring through the PI3K/Akt-
and mitogen-activated protein kinase kinase (MAPKK or
MEK)/ERK1/2 pathway.213 The importance of this interplay
is also demonstrated by defective insulin responses and
consequent glucose intolerance in GLP-1R−/− and GIPR−/−

mice214–218 as well as in the pathogenesis of T2DM.219–223

In addition to incretins, there are the so-called decretins,
namely limostatin and Neuromedin U (NmU), which are
secreted during fasting to suppress insulin release. NmU, a
(neuro)peptide that mediates the contraction of smooth
muscles in the uterus (hence the ‘U’) among others, was first
isolated from the pig spinal cord.224 Further mRNA expression
studies, however, revealed NmU to be highly expressed in the
gastrointestinal (GI) tract with the highest levels found in the
upper GI, that is, duodenum and jejunum.225,226 Within the GI
structure, NmU is mainly located in submucosal and myenteric
cells,227,228 indicating its possible involvement in the neuronal
control of GI function.229 In addition to this, NmU is likely to
regulate insulin secretion; the G-protein-coupled NmU
receptor 1 (NmUR1) is expressed in pancreatic islets and its
simulation dose dependently decreased insulin release.230,231
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The underlying mechanism involves the simultaneous
release of somatostatin—a known modulator of insulin
secretion6—upon NmUR1 activation.232 A very recent study
showed231 that the peptide hormone limostatin, which is
expressed in Drosophila melanogaster, also reduces insulin
secretion and its absence caused hyperinsulinemia, hypo-
glycemia and obesity. Moreover, knockdown of the fly NmUR
orthologue not only reproduced the consequences of limostatin
deficiency but also diminished its insulin-suppressing ability.
Limostatin release is initiated by food depletion and hence may
represent a novel mechanism for modulating insulin secretion
during fasting.

Other gastrointestinal hormones that interact with the
pancreas are gastrin and cholecystokinin (CCK). Gastrin, which
is secreted from G-cells in the stomach and duodenum, acts as
an islet growth factor, together with transforming growth
factor-α, by promoting differentiation of ductular precursor
cells233 and β-cell neogenesis as well as by enhancing the islet
mass from transdifferentiated exocrine pancreatic tissue.234

Furthermore, it induces the expression of glucagon genes in
α-cells.235 Along the same lines, CCK, which is synthesized and
released from duodenal I-cells, potentiates basal, glucose-236,237

and amino acid-induced insulin secretion,238 and augments
glucagon secretion.237,239 The pivotal role of CCK in
modulating glucose homeostasis is reflected in postprandial
hyperglycemia, which is due to reduced CCK plasma levels in
noninsulin-dependent diabetes mellitus.240

Another important factor that is related to metabolic
disorders such as obesity, T2DM and type 1 DM (T1DM) is
the gut microbiota. Obesity, T2DM and T1DM patients display
alterations in the composition of their microbiota that may
initiate and/or promote the respective disorder. Recent findings
linked an aberrant microbiome, which is generally represented
by diminished diversity, including fewer butyrate-producing
(butyrate was shown to trigger mucin production and
hence gut integrity) and mucin-degrading bacteria,241 to the
development of autoimmunity in T1DM.242 An altered
microbiota composition may also contribute to obesity243,244

as well as to T2DM245–247 and ‘correction’ by antibiotics,248

probiotics249 or prebiotics, the last of which causing a short-
chain FFA-stimulated increase in GLP-1,250 may improve the
disease condition.251

The adipocytes/myocytes–islet axis
On one hand, insulin’s interplay with adipose and muscle
tissues is broadly based on facilitating insulin-dependent
glucose uptake through the glucose transporter 4
(GLUT4).11–13 On the other hand, adipokines and myokines
secreted from the adipose and muscle tissue, respectively,
modulate insulin release. As part of the so-called adipoinsular
axis,252 leptin, the most famous adipokine, mainly acts on its
receptors in the hypothalamic arcuate nucleus to inhibit food
intake and control whole body homeostasis.253 However, leptin
receptor (Ob-R) mRNA expression was also observed in
pancreatic islets254 and its stimulation caused a reduction in
insulin secretion255–257 due to the activation of KATP-channels,

which in turn prevented Ca2+-influx258 and the subsequent
signaling pathway. Furthermore, leptin was shown to suppress
insulin gene expression,259,260 representing a negative feedback
loop. Conversely, insulin enhances ob gene expression
and leptin secretion.261–264 Likewise, insulin modulates the
expression of adiponectin, another well-known adipokine, the
abundance of its receptor in adipose and muscle tissue265,266 as
well as its secretion.267,268 Adiponectin is not only involved in
glucose and fatty acid metabolism269 but it also forestalls
β-cell apoptosis and induces insulin gene expression and
release;270 the latter was mediated by the ERK/Akt pathway
in one study270 and by the AMPK pathway in another study.271

Other adipokines, such as apelin,272,273 chemerin,274–276

omentin,277,278 resistin279 and visfatin,280,281 were also shown
to directly interact with insulin, whereas retinol-binding
protein 4, tumor necrosis factor-α and vaspin are related to
insulin in an indirect manner.282 In addition to adipokine
secretion by adipocytes, myocytes release cytokines, which are
referred to as myokines. Fibroblast growth factor-21 is a widely
expressed protein with a broad mode of action, including the
regulation of carbohydrate and fatty acid metabolism283 and
may be considered as a myokine due to its secretion from
muscle cells.284 Fibroblast growth factor-21 is regulated by
insulin285 through the PI3K/Akt1 signaling pathway.286 Inter-
leukin
(IL)-6, which is both an adipokine and myokine,287 was shown
to influence the pancreas by controlling the expression of
pro-glucagon mRNA as well as glucagon secretion. It also
increases α-cell proliferation and islet mass while protecting
the pancreas from metabolic stress-induced apoptosis.288

Furthermore, IL-6 increased GLP-1 production from
proglucagon in pancreatic α-cells and its secretion from α-cells
and intestinal L-cells, eventually resulting in a GLP-1-mediated
increase in insulin secretion.289

MODULATING INSULIN SECRETION AS A MEANS OF

DIABETES THERAPY

Due to the worldwide, still spreading epidemic of T2DM, there
is an urgent need for (new) anti-diabetic drugs and therapies
that are more effective and have fewer side effects. Currently,
the most commonly used drugs can be classified into
agents that enhance insulin secretion (secretagogues such as
sulfonylureas (SUs) and incretin mimetics), sensitize the target
organs of insulin (for example, metformin from the class of
biguanides or thiazolidinediones), or reduce glucose absorption
from the gastrointestinal tract (inhibitors of gastrointestinal
α-glucosidase). Different therapies address different problems
and stages of T2DM and may be prescribed in combination to
exert synergistic effects.

Sulfonylureas
Α-glucosidase inhibitors and sensitizers do not target the
pancreas or insulin secretion itself but instead target the
upstream (slowed intestinal glucose absorption) or downstream
(improved insulin sensitivity) processes. In contrast, insulin
secretagogues directly modulate insulin release. The SUs are the
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first broadly applied oral anti-hyperglycemic drugs. To date,
there are two generations of agents: acetohexamide, chlorpro-
pamide, tolazamide and tolbutamide, which constitute the first
generation and glibenclamide/glyburide, gliclazide, glimepiride,
glipizide and gliquidone, which comprise the second
generation. First-generation SUs are rarely used these days
since tolbutamide intake was associated with an increase in
lethal cardiac events.290,291 More importantly, the second-
generation SUs are more potent due to modifications in their
side chains’ structure, resulting in improved SUR-affinity,
accompanied by lower effective plasma levels, which in turn
may reduce undesirable drug-protein interactions.

All SUs share a central SU backbone but differ in their side
chains. Despite having different pharmacokinetics, they work
in the same way, namely by triggering endogenous insulin
release by blocking KATP-channels and hence activating the
insulin signaling pathway. More precisely, SUs bind to the
sulfonylurea receptor (SUR) subunit of the KATP-channel with
high affinity.292,293 SUR, together with the pore-forming
subunit Kir6.x, forms a hetero–octameric complex consisting
of four inner Kir6.x subunits surrounded by four SUR subunits
(4:4 stoichiometry).294,295 Moreover, different isoforms of the
two subunits are expressed, depending on the tissue-specific
expression of the KATP-channels: SUR1 and Kir6.2 are
expressed in the pancreas and brain,296 Kir6.2 and SUR2A
are expressed in the heart and skeletal muscle,297 while SUR2B
is expressed in the brain and smooth muscle,298 and Kir6.1 and
SUR2B are expressed in vascular smooth muscle.299 Although
SUs bind to both, SURs and Kir6.2, the interactions with the
latter are of low affinity300,301 and hence only SUR-interacting
agents are used for diabetes treatment. In addition to their
mode of action as inhibitors of KATP-channels, SUs were
shown to improve glucose uptake into insulin-dependent
tissues and glucose disposal as well as to reduce hepatic
glycogenolysis/gluconeogenesis.302–304

In contrast to SUs inactivating the KATP-channels by binding
to the SUR1 subunit, ATP closes them by interacting with
Kir6.2.305 Moreover, while the binding of only one ATP
molecule is sufficient to completely close the channel,306

inhibition by SUs is incomplete as the channel might still open
even when SUs are bound to SUR1.299 Nonetheless, second-
generation SUs reduce the glycated hemoglobin or HbA1c,
which represent the average plasma glucose concentrations
over time and thus serve as a diagnostic measure for diabetes
mellitus, by 1.0–2.0%. In addition to the weight gain attributed
to the anabolic effects of increased insulin secretion, the main
side effect of SUs is hypoglycemia307,308 due to excess circulat-
ing insulin levels and due to the fact that SUs evoke insulin
secretion in a glucose-independent manner.309

Although they are not SUs per se, meglitinides, that is,
repaglinide and nateglinide, share their mode of action of
inhibiting KATP-channels.

310 However, meglitinides and some
of the second-generation SUs, for example, glibenclamide,
interact with both, the SUR1 and the SUR2A or B isoforms.311

Despite the possible disadvantage of this generalized binding that
may cause undesirable effects on other KATP-channel types, for

example, those in the heart,312 meglitinides, namely nateglinide,
have an earlier onset of action and a faster dissociation rate from
the sulfonylurea receptor,313–315 resulting in a diminished risk of
hypoglycemia.316 Like SUs, meglitinides also cause weight
gain.317,318

Incretin mimetics
Another group of insulin secretagogues is comprised of the
incretins GLP-1 and GIP. As both incretins are rapidly in-
activated by the enzyme dipeptidyl peptidase IV (DPP-IV),319

their application in T2DM treatment focuses on modified
analogues320–325 or receptor agonists, including the well-
known, short-acting exenatide.326–328 The long-lasting agonists
exenatide LAR,329,330 liraglutide331,332 and lixisenatide333–335

are currently under investigation. However, based on the
lipogenetic properties205–207 of GIP, insufficient insulin-
potentiating effects in T2DM patients220,336 and a possible
worsening effect by GIP,337,338 the focus is on GLP-1
analogues/receptor agonists for T2DM treatment. By acting
on its receptor, GLP-1 induces the signaling cascade described
under ‘External factors affecting pancreatic hormone secretion’,
resulting in its main effect: potentiating insulin secretion.
In addition to reducing the HbA1C levels, GLP-1 analogues/
receptor agonists promote weight loss and, more importantly,
do not evoke hypoglycemia, as do SUs,326–334 due to the
glucose-dependent mode of action and the self-regulating
mechanism of GLP-1.68,336,339 When blood glucose levels are
lowered to physiological levels, GLP-1 is incapable of enhan-
cing insulin secretion, thereby preventing hypoglycemia.79,340

In addition, GLP-1 (analogues/receptor agonists) exerts further
pancreatic and extrapancreatic actions, as mentioned under
‘Interplay between the pancreatic islets and other organs’.
Although GLP-1 (analogues/receptor agonists) exhibits some
minor side effects, including nausea, vomiting or gastro-
intestinal impairments,326–335 the beneficial properties out-
weigh the negative effects, and thus, GLP-1 is a promising
anti-diabetic agent.

Insulin sensitizers
Metformin, which is generally the most widely used first-line
anti-diabetic medication,341 is a so-called (insulin) sensitizer.
It not only diminishes hepatic glucose output due to
glycogenolysis/gluconeogenesis342 but it also enhances glucose
uptake into peripheral tissues, such as skeletal muscle, by
activating 5′-adenosine monophosphate-activated protein
kinase (AMPK-α2).343 Furthermore, it supports weight loss344

by reducing food consumption.345 With respect to its effects on
β-cell function, metformin was shown to increase insulin gene
expression,346 possibly by nuclear accumulation of pdx1 and its
subsequently improved DNA-binding activity.347 Interestingly,
metformin exerts opposing effects on β-cell proliferation
and/or apoptosis; on the one hand, it suppresses β-cell
proliferation and enhances apoptosis through an AMPK-
dependent and autophagy-mediated mechanism348 following
the metformin-induced activation of c-Jun-N-terminal kinase
and caspase-3.349 On the other hand, metformin reduces
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caspase-3- and -8-mediated apoptosis in isolated islets from
T2DM patients350 and protects against lipotoxicity-induced
β-cell defects.348,351

The other members of the sensitizer group include the
thiazolidinediones (or glitazones). Currently, only pioglitazone
is available; troglitazone was withdrawn from the market in
2000 and rosiglitazone was withdrawn in 2010 due to liver
toxicity, drug-induced hepatitis352–354 and the increased risk of
cardiovascular events, respectively.355 Their mode of action
involves activation of the peroxisome proliferator-activated
receptor (PPARγ), a nuclear transcription factor that is highly
expressed in adipose tissue, and the subsequent regulation of
genes that are involved in glucose and fat metabolism.356–358 By
promoting lipogenesis, FFAs are removed from the blood
stream, whereupon cells become dependent on glucose as an
energy substrate. However, enhanced lipogenesis also leads to
the weight gain observed in thiazolidinedione-treated T2DM
patients.359 In contrast to metformin, pioglitazone prevents
(oxidative stress-induced) apoptosis360,361 by decreasing the
expression of apoptosis-promoting genes, while increasing
anti-apoptotic and anti-oxidative gene expression. However,
this may depend on the disease state.362,363 Furthermore,
pioglitazone increases β-cell mass by upregulating cell
differentiation/proliferation genes.364 Although they have
partially different modes of action, both groups of sensitizers
cause a reduction in the HbA1c level by 1.5–2.0%.

Α-glucosidase inhibitors
Α-glucosidase inhibitors, such as acarbose, miglitol and
voglibose, not only decelerate the breakdown of starch
into glucose in the small intestine but also decrease its
bioavailability, resulting in reduced levels of glucose entering
the blood stream and hence attenuated postprandial glucose
excursions.365–370 In addition, they support weight loss371,372

and ameliorate blood pressure,373 insulin sensitivity367,368 and
triglyceride levels.369,370 Similar to pioglitazone, α-glucosidase
inhibitors attenuate reductions in β-cell mass, which may delay
the onset of diabetes.374–376 As α-glucosidase inhibitors only
mildly reduce HbA1c levels (0.5–1.0%), they are usually only
used in the early stage of T2DM, that is, impaired glucose
tolerance or in combination with other drugs.377

CONCLUSIONS AND OUTLOOK

The pancreas has key roles in maintaining normal blood
glucose levels by producing and releasing insulin and glucagon.
These opponents interact not only with each other through the
intra-islet insulin axis378–381 but also with other organs/tissues,
that is, the brain, liver, gut as well as insulin-dependent adipose
and muscle tissues. Altogether, the islet–organ/tissues axes
described here form a highly sophisticated network that
includes, but is not limited to, various signaling molecules,
that is, neuropeptides (brain-derived neurotrophic factor, NPY,
melanin concentrating hormone, gastrin-releasing peptide,
VIP and PACAP), hepatokines (betatrophin and HNFs),
enteroendocrine hormones (the incretins GLP-1 and GIP, the
decretins NmU and limostatin, gastrin and CCK) as well as

adipokines (leptin and adiponectin) and myokines (fibroblast
growth factor-21 and IL-6) that mainly interact through GPCR
signaling pathways, such as the cAMP cascade. In good health,
the well-functioning interactions between all of the organs
and tissues involved ensure glucose homeostasis. However,
impairments in the secretion of and/or sensitivity to insulin
may result in metabolic diseases, such as T2DM. Referring to the
American Diabetes Association, T2DM and noninsulin-depen-
dent diabetes mellitus are characterized by insulin resistance,
hyperglycemia and a relative insulin deficiency. Furthermore,
T2DM is associated with low-grade inflammation,382,383 cardio-
vascular disease,384,385 nephropathy386,387 and alterations in the
secretion of various hormones, including IL-6, IL-18, tumor
necrosis factor-α,388 adiponectin and leptin,389 neuropeptides,390

ghrelin391,392 and the incretins GLP-1 and GIP.219–223 Although
lifestyle interventions393 and weight loss394 reverse T2DM in early
stages, when insulin is still secreted, T2DM patients may become
dependent on anti-diabetic drugs in later stages. Currently, there
are three classes of agents: insulin secretatogues, insulin sensitizers
and α-glucosidase inhibitors, all of which have different modes of
action and hence target different stages and symptoms of T2DM.
Treatments that modulate insulin release—on condition of an
appropriate insulin sensitivity of the target organs—appear to be
promising approaches. Current research is unveiling new mole-
cules, enzymes and interactions that are involved in the signaling
pathways underlying insulin secretion, among others, and is likely
to introduce new therapeutic approaches. Strategies that target
these mediating molecules may include, but are not limited to,
the calcium sensor Syt-7,90,395 the SNARE-associated protein
Snapin,89 the t-SNARE SNAP-25,396 cyclin-dependent kinase
(Cdk) 5,397 ryanodine receptor (RyR) 2,398 the nucleotide
exchange factor and intracellular cAMP sensor Epac2,57–59,399

mammalian uncoordinated proteins (munc)13400,401 and
munc1840,41 as well as the Ras-related proteins (Rab) 3A402

and 27A.403
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