Supporting Information

A Unified Photoredox-Catalysis Strategy for C(sp ${ }^{3}$)-H

Hydroxylation and Amidation Using Hypervalent Iodine

Guo-Xing Li, ${ }^{[a]}$ Cristian A. Morales-Rivera, ${ }^{[b]}$ Fang Gao, ${ }^{[a]}$ Yaxin Wang, ${ }^{[a]}$
Gang He, ${ }^{[a]}$ Peng Liu, ${ }^{[b]}$ and Gong Chen $*[a, c]$

${ }^{\text {a }}$ State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
 ${ }^{\text {b }}$ Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
 ${ }^{\text {c }}$ Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania

16802, USA

Content

1. Reagents, S2
2. Instruments, S2
3. Synthesis of hypervalent iodines, $S 3$
4. Synthesis of substrates for hydroxylation and amidation, S6
5. Optimization for tertiary C-H hydroxylation, S18
6. General procedures and substrate scope of tertiary C-H hydroxylation with PFBI-OH, S18
7. General procedures and substrate scope of benzylic C-H hydroxylation with Bl-OH, S27
8. Scale-up reaction for hydroxylation, S33
9. General procedures and substrate scope of $\mathrm{C}\left(\mathbf{s p}^{\mathbf{3}}\right)$-H amidation with PFBI-OH, S34
10. General procedures and substrate scope of benzylic C-H amidation with Bl-OH, S37
11. Measurement of quantum yield (Φ) for \mathbf{C}-H hydroxylation of 7, S39
12. The luminescence quenching (Stern-Volmer) experiments, S42
13. DFT calculations, $S 43$
14. References, S57
15. ${ }^{1} \mathrm{H}$-NMR, ${ }^{13} \mathrm{C}$-NMR and ${ }^{19} \mathrm{~F}$-NMR spectra, S 60

1. Reagents

All commercial materials were used as received unless otherwise noted. DCM was dried by distillation over CaH_{2}. THF was dried by distillation over sodium/benzophenone. Anhydrous $\mathrm{CH}_{3} \mathrm{CN}$ was purchased from Acros Organics and stored under nitrogen atmosphere. TLC were performed on silica gel Huanghai HSGF254 plates and visualization of the developed chromatogram was performed by fluorescence quenching ($\lambda_{\max }=254 \mathrm{~nm}$). Flash chromatography was performed using Silica gel (200-300 mesh) purchased from Qingdao Haiyang Chemical Co., China. Zhdankin reagent (azidobenziodoxole, BI- $\left.\mathrm{N}_{3}, 11\right)^{1}$, acetoxybenziodoxole (BI-OAc, 12) ${ }^{1}$, hydroxylbenziodoxole (BI-OH, 13) ${ }^{1}$, 4-methoxyl hydroxylbenziodoxole (4MOBI-OH, 18) ${ }^{2}$, and $\left[\mathrm{Ru}(\mathrm{bpz})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}{ }^{3}$ were synthesized according to reported procedures and used as freshly prepared. $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right] \mathrm{Cl}_{2}(98 \%, \mathrm{Ru}>15.75 \%$, Energy Chemical), HFIP (99.0%, ACS grade, J\&K Chemical,) and $\mathrm{H}_{2}{ }^{18} \mathrm{O}\left(97 \%{ }^{18} \mathrm{O}\right.$, J\&K Chemical) were used as received unless otherwise noted.

2. Instruments

NMR spectra were recorded on Bruker AVANCE AV 400 instruments and all NMR experiments were reported in units, parts per million (ppm). Peaks recorded are relative to internal standards: TMS $(\delta=0.00)$ for ${ }^{1} \mathrm{H}$ and $\mathrm{CDCl}_{3}(\delta=77.00)$ for ${ }^{13} \mathrm{C}$ spectra. Multiplicities are recorded as: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{br} \mathrm{s}=$ broad singlet, $\mathrm{m}=$ multiplet. High resolution ESI mass experiments were operated on a Waters LCT Premier instrument. All reactions were carried out in a 22 mL glass vial (Thermo SCIENTIFIC National B7999-5, made from clear borosilicate glass), sealed with PTEF cap on bench top.

3. Synthesis of hypervalent iodines

3.1 Procedure for synthesis of 14 and 15:

Scheme S1

To a solution of AcOH in water $(30 \% \mathrm{v} / \mathrm{v}, 30 \mathrm{~mL}) \mathrm{NaIO}_{4}(20.4 \mathrm{mmol}, 1.02$ equiv) and corresponding benzoic acid ($20 \mathrm{mmol}, 1.00$ equiv) were added at room temperature. The suspension mixture was vigorously stirred and refluxed for 4 h under air. The reaction mixture was cooled to room temperature then poured into cold water (50 mL). The mixture is then filtered and the filter cake was further washed with water and acetone. The residue was collected and dried under high vacuum in dark to give the desired product.

14
Compound 14 was obtained in 75% yield as white solid. M.p. $=222-223{ }^{\circ} \mathrm{C}($ decomp. $)$; IR (KBr) : $\tilde{v}=3083,2416,1742,1609,1472,1210,885,781,668 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400$ $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.00(\mathrm{dd}, J=8.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13}$ C NMR (101 MHz, DMSO- d_{6}) $\delta 166.85,166.07(\mathrm{~d}, J=255.3 \mathrm{~Hz}), 132.93,128.33$, $122.86,118.06(\mathrm{~d}, J=20.8 \mathrm{~Hz}), 113.60(\mathrm{~d}, J=28.6 \mathrm{~Hz}) ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{DMSO}-$ $\left.d_{6}\right) \delta-105.53(\mathrm{~s}, 1 \mathrm{~F}) ;$ HRMS Calcd for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{FIO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 282.9267$, Found: 282.9260.

Compound 15 was obtained in 67% yield as white solid. M.p. $=244-245^{\circ} \mathrm{C}($ decomp. $) ;$

IR (KBr) : $\tilde{v}=3050,2440,1830,1562,1398,1321,1186,1133,782,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d d_{6}) 8.40 (br s, 1 H), 8.18 (d, $\left.J=7.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.09(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.04 (br s, 1 H); ${ }^{13} \mathbf{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 166.99,135.83,134.42$ $(\mathrm{q}, J=32.5 \mathrm{~Hz}), 132.38,128.08(\mathrm{q}, J=7.1 \mathrm{~Hz}), 123.88(\mathrm{q}, J=273.3 \mathrm{~Hz}), 123.65(\mathrm{q}, J$ $=3.8 \mathrm{~Hz}$), 122.52; ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR (376 MHz, DMSO- d_{6}) $\delta-61.24$ ($\mathrm{s}, 3 \mathrm{~F}$); HRMS Calcd for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{IO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 332.9235$, Found: 332.9228 .

3.2 Procedure for synthesis of 16 and 17:

Scheme S2

A modified literature procedure was followed for the synthesis of hypervalent iodine 16 and $17 .{ }^{4}$ To a solution of the corresponding benzoic acid ($77 \mathrm{mmol}, 1.0$ equiv) in anhydrous THF, n-Butyllithium ($77 \mathrm{~mL}, 2.4 \mathrm{M}$ in hexanes, $185 \mathrm{mmol}, 2.4$ equiv) was added dropwisely at $-78^{\circ} \mathrm{C}$ under Ar atmosphere. The resulting suspension was stirred at $-78{ }^{\circ} \mathrm{C}$ for 3 h . Then a solution of iodine ($93 \mathrm{mmol}, 1.2$ equiv) in anhydrous THF (50 mL) was added slowly until the brown color of the iodine persisted in the solution. After the addition was completed, the reaction mixture was warmed to room temperature. The reaction was carefully quenched by dropwise addition of saturated aqueous solution of NaHSO_{3} until the brown color just faded (Note: excessive addition of NaHSO_{3} could cause low yield, or even no product was obtained), and the reaction mixture was concentrated in vacuo. To the residue, water (100 mL) and ethyl acetate (80 mL) was added. The resulting mixture was acidified with aqueous $2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ to pH 1-2 under vigorous stirring at $0{ }^{\circ} \mathrm{C}$. The organic phase was separated, and the aqueous phase was extracted with ethyl acetate ($80 \mathrm{~mL} \times 2$). The combined organic phase was washed with saturated aqueous NaHSO_{3} solution (5 mL), water (50 mL), brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtrated. The filtrate was concentrated in vacuo and the residue was precipitated with petroleum ether $(60 \mathrm{~mL})$ for 4 h . The resultant precipitate was collected by filtration, washed with petroleum ether (20 mL), the
desired product was obtained as a white solid and used without further purification . The corresponding 2-iodobenzoic acid (50 mmol) and $\mathrm{NaIO}_{4}(10.9 \mathrm{~g}, 51 \mathrm{mmol})$ were added into a solution of TFA (trifluoroacetic acid, 100 mL) in water $(100 \mathrm{~mL})$, the resulting mixture was heated at reflux for 3 h then cooled to $35^{\circ} \mathrm{C}$. The resultant precipitate was collected by filtration, carefully washed with water (400 mL) and petroleum ether (50 mL). The residue was collected and dried under high vacuum to give the desired product.

Compound 16 was obtained in 62% yield (for 2 steps) as white solid. M.p. $=219-220$ ${ }^{\circ} \mathrm{C}$ (decomp.); IR (KBr) : $\tilde{v}=3652,2994,1649,1499,1354,1128,1059,793,739 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 13.87$ (br s, 1H), 7.79 (ddd, $J=10.7,7.3,2.1 \mathrm{~Hz}$, 1 H); ${ }^{13}$ C NMR (101 MHz , DMSO- d_{6}) $\delta 165.65,152.25(\mathrm{dd}, J=253.2,10.6 \mathrm{~Hz}$), 151.59 (dd, $J=259.0,12.7 \mathrm{~Hz}$), $143.87(\mathrm{dt}, J=257.2,16.4 \mathrm{~Hz}), 130.49(\mathrm{dd}, J=5.9,2.0 \mathrm{~Hz})$, $114.62(\mathrm{dd}, J=18.6,2.3 \mathrm{~Hz}), 100.23(\mathrm{dd}, J=12.3,1.8 \mathrm{~Hz}) ;{ }^{19}$ F NMR $(376 \mathrm{MHz}$, DMSO- d_{6}) $\delta-129.90(\mathrm{dd}, J=20.4,8.8 \mathrm{~Hz}, 1 \mathrm{~F}),-133.67(\mathrm{dd}, J=20.8,8.8 \mathrm{~Hz}, 1 \mathrm{~F})$, 151.51 (dd, $J=20.4,20.8 \mathrm{~Hz}, 1 \mathrm{~F}$); HRMS Calcd for $\mathrm{C}_{7} \mathrm{HF}_{3} \mathrm{IO}_{3}[\mathrm{M}-\mathrm{H}]: 316.8922$, Found: 316.8925.

Compound $\mathbf{1 7}$ was obtained in 58% yield (for 2 steps) following the above procedure. Spectra data are consistent with those reported in the literature. ${ }^{4}$

4. Synthesis of substrates for hydroxylation and amidation:

7

20-1

24-1

29-1

36-1

42-1

51-1

54-1

43-1

Scheme S3 List of all substrates used in this study
 used as received.

4.1 General procedure for synthesis 7, 20-1, 21-1, 22-1, 31-1, 40-1 and 54-1:

Scheme S4

To a solution of alcohols (5 mmol) and trimethylamine (TEA, $12.5 \mathrm{mmol}, 2.5$ equiv) in $\mathrm{CH}_{2} \mathrm{C1}_{2}$ (50 mL) was added appropriate acyl chloride ($7.5 \mathrm{mmol}, 1.5$ equiv) dropwisely at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was warmed to room temperature and stirred until corresponding alcohol was completely consumed monitoring by TLC. The mixture was diluted with $\mathrm{DCM}(200 \mathrm{~mL})$, washed with saturated aqueous NaHCO_{3} solution $(20 \mathrm{~mL})$, $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$, water $(20 \mathrm{~mL})$ and brine (20 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtrated. The filtrate was concentrated in vacuo and the residue was purified by flash chromatography on silica gel to afford desired product.

Compound 7 was prepared in 92% yield following the general procedure. Spectra data are consistent with those reported in the literature. ${ }^{5}$

Compound 20-1 was prepared in 89% yield as a colorless oil following the general
procedure. $\mathrm{IR}(\mathrm{KBr}): \tilde{\mathrm{v}}=3465,2953,1717,1586,1271,1108,1008,753 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.18-$ $5.10(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~d}, \mathrm{~J}=6.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.24-1.16(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $165.57,137.53,130.91,130.29,100.35,72.02,38.61,36.12,27.73,23.12,22.51,22.47$, 19.98; HRMS Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{IO}_{2}[\mathrm{M}]^{+}: 360.0586$, Found: 360.0581.

Compound 21-1 was prepared in 97% yield as a white solid following the general procedure. M.p. $=47-48^{\circ} \mathrm{C} ; \mathrm{IR}(\mathrm{KBr}): \tilde{v}=2954,2232,1721,1464,1277,1110,862$, $768 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 H), 5.26-5.09(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.29(\mathrm{~m}, 5 \mathrm{H}), 1.27-$ $1.14(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 164.51, 134.68, $132.12,129.98,118.03,116.11,72.90,38.62,36.09,27.76,23.13,22.50,22.46,19.94 ;$ HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{2}[\mathrm{M}]^{+}: 259.1572$, Found: 259.0933.

Compound 22-1 was prepared in 84% yield following the general procedure. Spectra data are consistent with those reported in the literature. ${ }^{5}$

Compound 31-1 was prepared in 78\% yield following the general procedure. Spectra data are consistent with those reported in the literature. ${ }^{6}$

40-1
Compound $\mathbf{4 0 - 1}$ was prepared in 70% yield as a colorless oil following the general
procedure. $\mathrm{IR}(\mathrm{KBr}): \tilde{v}=3424,2929,1719,1452,1274,1114,747,710 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.29-$ 7.25 (m, 2H), 7.19-7.15 (m, 3H), $4.31(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-$ $1.72(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.34(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.46, 142.56, 132.64, 130.36, 129.38, 128.24, 128.16, 128.09, 125.46, 64.91, 35.79, 31.28, 29.03, 29.01, 28.57, 25.85; HRMS Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 319.1674$, Found: 319.1661.

54-1
Compound 54-1 was prepared in $\mathbf{7 4 \%}$ yield following the general procedure. Spectra data are consistent with those reported in the literature. ${ }^{7}$

4.2 Procedure for synthesis of phthalimide 23-1 and 25-1:

Scheme S5

The corresponding amine ($5 \mathrm{mmol}, 1.0$ equiv) and phthalic anhydride ($5 \mathrm{mmol}, 1.0$ equiv) were heated at $140^{\circ} \mathrm{C}$ in a sealed tube equipped with a stir bar for 2 h . After been cooled to room temperature, the reaction mixture was dissolved in ethyl acetate (200 mL), washed with water $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtrated. The filtrate was concentrated in vacuo and the residue was purified by flash chromatography on silica gel $($ ethyl acetate/petroleum ether $=5: 95(\mathrm{v} / \mathrm{v}))$ to afford the desired product.

 23-1

Compound 23-1 was prepared in 82% yield following the general procedure. Spectra data are consistent with those reported in the literature. ${ }^{6}$

25-1
Compound 25-1 was prepared in 78\% yield following the general procedure. Spectra data are consistent with those reported in the literature. ${ }^{8}$

4.3 Synthesis of compound 24-1:

Scheme S6

4-(tert-butyl)pyridine ($270 \mathrm{mg}, 2 \mathrm{mmol}, 1.0$ equiv), (5 -methylhexyl)boronic acid (432 $\mathrm{mg}, 3 \mathrm{mmol}, 1.5$ equiv) and BI-OAc ($1.22 \mathrm{~g}, 4 \mathrm{mmol}, 2.0$ equiv) were added to a solution of $\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2}$ ($0.02 \mathrm{mmol}, 0.01$ equiv) in $\operatorname{HFIP}(5 \mathrm{~mL})$. The reaction vial was purged with Ar for 1 min and then the mixture was stirred at $30^{\circ} \mathrm{C}$ under the irradiation of fluorescent light for 48 h . The solvent was removed in vacuo and the residue was dissolved in DCM (30 mL). To the solution was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ (approximate 1.5 g), and the resulting mixture was vigorously stirred for 5 min . Then the mixture was filtrated through a pad of Celite and washed with DCM. The filtrate was concentrated in vacuo and the residue was purified by flash chromatography on silica gel (eluted with ethyl acetate/petroleum ether $=5: 95(\mathrm{v} / \mathrm{v}))$ to afford the desired product 24-1 as a colorless oil ($289 \mathrm{mg}, 62 \%$). IR (KBr) : $\tilde{\mathrm{v}}=2957,2867,1600,1465,836,743 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.42(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=$
$5.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.74-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.40-$ $1.33(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 1.24-1.19(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.18,160.10,148.91,119.49,117.95,38.75,38.61,34.50,30.50$, 30.28, 27.81, 27.16, 22.57; HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 234.2222$, Found: 234.2220.

4.4 Procedure for synthesis of 26-1 and 28-1:

Scheme S7

The corresponding imine ($10 \mathrm{mmol}, 1.0$ equiv), 1-chloro-5-methylhexane ($1.62 \mathrm{~g}, 12$ mmol, 1.2 equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($2.07 \mathrm{~g}, 15 \mathrm{mmol}, 1.5$ equiv) were added into DMF (15 $\mathrm{mL})$. The reaction mixture was heated at $60^{\circ} \mathrm{C}$ for 6 h . After been cooled to room temperature, the reaction mixture was poured into brine (200 mL). The aqueous phase was extracted with ethyl ether (20 mL x 4). The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtrated. The filtrate was concentrated in vacuo and the residue was purified by flash chromatography on silica gel (ethyl acetate/petroleum ether $=10: 90$ $(\mathrm{v} / \mathrm{v}))$ to afford the desired product.

Compound 26-1 was prepared in 85% yield as a colorless oil following the general procedure. $\operatorname{IR}(\mathrm{KBr}): \tilde{v}=2955,1768,1703,1403,1177,999,685 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.55-1.46(\mathrm{~m}, 3 \mathrm{H}), 1.32-1.26(\mathrm{~m}$, $2 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.19-1.14(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR
(101 MHz, CDCl_{3}) $\delta 173.84,38.30,38.16,35.21,33.42,28.11,27.72,26.11,24.69$, 22.43, 15.55; HRMS Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 238.1807$, Found: 238.1800.

Compound 28-1 was prepared in 81% yield as a pale yellow oil following the general procedure. IR (KBr) : $\tilde{v}=2954,2916,1782,1718,1680,1390,1266,1132,749,615$ $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl_{3}) δ 7.91-7.87 (m, 2H), 7.79-7.75 (m, 2H), 5.00-4.95 $(\mathrm{m}, 1 \mathrm{H}), 3.85-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.00-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.09(\mathrm{~m}, 1 \mathrm{H})$, 1.56-1.49 (m, 3H), 1.34-1.26 (m, 2H), 1.21-1.15 (m, 2H), $0.85(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 170.79,168.38,167.41,134.36,131.76,123.69,50.15$, 40.77, 38.42, 32.02, 27.98, 27.82, 24.63, 22.54, 22.50, 22.00; HRMS Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 357.1814$, Found: 357.1807.

4.5 Synthesis of compound 27-1:

Scheme S8

Sulbactam acid ($466 \mathrm{mg}, 2.0 \mathrm{mmol}$, 1.0 equiv), 1-bromo-4-methylpentane ($400 \mathrm{mg}, 2.4$ mmol, 1.2 equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(415 \mathrm{mg}, 3.0 \mathrm{mmol}, 1.5$ equiv) were added into DMF (5 $\mathrm{mL})$. The reaction mixture was stirred overnight, then poured into brine $(60 \mathrm{~mL})$, the aqueous phase was extracted with ethyl ether (10 mL x 4). The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtrated. The filtrate was concentrated in vacuo and the residue was purified by flash chromatography on silica gel (ethyl acetate/petroleum ether $=10: 90(\mathrm{v} / \mathrm{v}))$ to afford the desired product as a colorless oil ($482 \mathrm{mg}, 76 \%$). IR $(\mathrm{KBr}): \tilde{\mathrm{v}}=3007,1798,1752,1466,1275,1262,751 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 4.62(\mathrm{dd}, J=4.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.53-3.42(\mathrm{~m}$, $2 \mathrm{H}), 1.72-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.21(\mathrm{~m}$, 2H), $0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.75,166.98,66.85$, 63.18, 62.61, 61.03, 38.25, 34.81, 27.58, 26.26, 22.40, 22.37, 20.30, 18.52; HRMS Calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 340.1195$, Found: 340.1188.

4.6 Synthesis of compound 29-1:

Scheme S9

To a solution of citronellyl acid ($3.4 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv) in 40 mL of MeOH was added $\mathrm{Pd} / \mathrm{C}(0.6 \mathrm{~g}, 5 \%$ on carbon, wetted with ca. 55% water). The reaction mixture was stirred under H_{2} for 24 h at room temperature. The reaction mixture was filtered through a pad of celite and the solvent was removed in vacuo. The residue was dissolved in MeOH (50 mL), thionyl chloride ($9.5 \mathrm{~g}, 80 \mathrm{mmol}, 4.0$ equiv) was dropwisely added at $0^{\circ} \mathrm{C}$. After the addition was completed, the reaction mixture was warmed to room temperature and stirred for 2 h . The solvent was removed under reduced pressure and the resulting residue was purified by silica gel column chromatography (EtOAc/petroleum ether 1:100 (v/v)) to give compound 29-1 as a colorless oil (87% yield for 2 steps), spectra data are consistent with those reported in the literature. ${ }^{5}$

4.7 Synthesis of compound 30-1:

Scheme S10

Compound 30-1 was prepared following a reported procedure ${ }^{9}$: To a solution of DMAP ($0.61 \mathrm{~g}, 5 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added trimethylamine $(1.01 \mathrm{~g}, 10 \mathrm{mmol}, 2.0$ equiv), benzoyl chloride $(0.84 \mathrm{~g}, 6 \mathrm{mmol}, 1.2$ equiv), and finally L-Menthol ($0.78 \mathrm{~g}, 5 \mathrm{mmol}, 1.0$ equiv). The mixture was stirred at room temperature for 2 h , and then diluted with ethyl ether (60 mL). The resulting mixture was washed with of $1 \mathrm{~N} \mathrm{HCl}\left(25 \mathrm{~mL} x 3\right.$), saturated aqueous NaHCO_{3} solution (25 mL) and brine $(25 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtrated. The filtrate was concentrated in vacuo and the residue was purified by flash chromatography on silica gel (ethyl acetate/petroleum ether $=5: 95(\mathrm{v} / \mathrm{v}))$ to afford $\mathbf{3 0 - 1}(1.20 \mathrm{~g}, 92 \%)$ as a colorless oil. Spectra data are consistent with those reported in the literature. ${ }^{8}$

4.8 Procedure for synthesis of 32-1, 34 and 43-1:

Scheme S11

To the solution of the carboxylic acid (10 mmol) in $\mathrm{MeOH}(100 \mathrm{~mL})$ was added thionyl chloride ($4.8 \mathrm{~g}, 40 \mathrm{mmol}, 4.0$ equiv) dropwisely at $0{ }^{\circ} \mathrm{C}$. After the addition was completed, the reaction mixture was warmed to room temperature and stirred overnight. The solvent was removed under reduced pressure and the resulting residue was purified by silica gel column chromatography to give the desired product.

Compound 32-1 was prepared in 72% yield following the general procedure. Spectra data are consistent with those reported in the literature. ${ }^{10}$

Compound $\mathbf{3 4}$ was prepared in 76% yield following the general procedure. Spectra data are consistent with those reported in the literature. ${ }^{11}$

Compound 43-1 was prepared in 99% yield following the general procedure. Spectra data are consistent with those reported in the literature. ${ }^{12}$

4.9 Procedure for synthesis of $\mathbf{3 4}$ and 36-1:

Scheme S12

To a suspension of the carboxylic acid (5 mmol) in 50 mL of DCM was added EDCI (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride, $7.5 \mathrm{mmol}, 1.5$ equiv) and HOBt (1-hydroxybenzotriazole, $7.5 \mathrm{mmol}, 1.5$ equiv) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 20 min . at $0^{\circ} \mathrm{C}$. Then corresponding amine hydrochloride $(6.0 \mathrm{mmol}$, 1.2 equiv) and DIPEA ($10 \mathrm{mmol}, 2.0$ equiv) were added successively. The reaction mixture was warmed to room temperature and stirred overnight. Removed the solvent under reduced pressure, and the residue was dissolved in EtOAc (100 mL). The resulting solution was washed with aqueous $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$, water $(20 \mathrm{~mL})$, brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtrated. The solvent was removed under reduced pressure and the resulting residue was purified by silica gel column chromatography to give the desired product.

Compound $\mathbf{3 4}$ was prepared in 81% yield following the general procedure. Spectra data are consistent with those reported in the literature. ${ }^{13}$

Compound 36-1 was prepared in 70% yield as a white oil following the general procedure. M.p. $=198-199{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}): \tilde{v}=3290,3075,2956,2923,1776,1730$, 1677, 1648, 1550, 1415, 1240, 1194, 743, $712 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.90-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.87-4.83 (m, 1H), 4.54-4.49 (m, 1H), $4.39(\mathrm{q}, ~ J=16.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}$, $3 \mathrm{H}), 3.04(\mathrm{dd}, J=17.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=17.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.68-1.59(\mathrm{~m}, 3 \mathrm{H})$, $0.94(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.65,172.58,169.85,167.58$, $166.21,134.18,131.85,123.51,52.16,52.13,51.07,49.18,40.62,40.59,35.50,24.69$, 22.70, 21.59; HRMS Calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{NaO}_{6}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 484.1696, Found: 484.1682.

4.10 Procedure for synthesis of 49-1:

Scheme S13

To a solution of 6-methylheptanoic acid ($1.44 \mathrm{~g}, 10 \mathrm{mmol}$) and oxazolidin-2-one (1.04 $\mathrm{g}, 12 \mathrm{mmol}, 1.2$ equiv) in 50 mL of DCM was added DCC (dicyclohexylcarbodiimide, $3.09 \mathrm{~g}, 15 \mathrm{mmol}, 1.5$ equiv). The reaction mixture was stirred overnight at room
temperature. The reaction mixture was washed with water (10 mL), brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtrated. The filtrate was concentrated in vacuo and the residue was purified by flash chromatography on silica gel (ethyl acetate/petroleum ether $=$ 20:80 (v/v)) to afford 49-1 (1.34 g, 63\%) as a white solid. M.p. $=45-46^{\circ} \mathrm{C}$; IR (KBr) : $\tilde{v}=3453,2953,1765,1699,1386,1042,757,701 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right)$ $\delta 4.41(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.59$ $(\mathrm{m}, 2 \mathrm{H}), 1.57-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.17(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.57,153.52,61.96,42.49,38.59,35.12,27.80$, 26.89, 24.45, 22.54; HRMS Calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{NNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 236.1263$, Found: 236.1252.

4.11 Synthesis of amide 50-1:

Scheme S14

To a solution of 6-methylheptan-2-amine ($1.29 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv) and TEA (1.52 $\mathrm{g}, 15.0 \mathrm{mmol}, 1.5$ equiv) in 50 mL of DCM was added a solution of TFAA (trifluoroacetic anhydride, $2.52 \mathrm{~g}, 12.0 \mathrm{mmol}, 1.2$ equiv) in $\mathrm{DCM}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h . The reaction mixture was washed with aqueous $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$, water $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtrated. The solvent was removed under reduced pressure and the resulting residue was purified by flash chromatography on silica gel (eluted with EtOAc/petroleum ether 5:95 (v/v)) to give compound $\mathbf{5 0 - 1}$ as a colorless oil ($1.89 \mathrm{~g}, 84 \%$ yield), spectra data are consistent with those reported in the literature. ${ }^{5}$

5. Optimization for tertiary C-H hydroxylation

Oxidants	Equiv.	Conversion (\%)	Yield (\%) ${ }^{b}$
PIDA	2.5	<5	<2
PIFA	2.5	<5	<2
BPO	2.5	22	11
$\mathrm{~K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	2.5	<5	<2
NalO_{4}	2.5	<5	<2

(a) Based on recovered starting material 7. (b) Isolated yield.

6. General procedures and substrate scope of tertiary C-H hydroxylation with PFBI-OH

Scheme S15

General condition: To a solution of HFIP (4 mL) and water (0.15 mL) (Note: HFIP and water were bubbled with argon gas for 10 minutes to remove oxygen), were added substrate ($0.2 \mathrm{mmol}, 1.0$ equiv), PFBI-OH ($0.5 \mathrm{mmol}, 2.5$ equiv) and $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right] \mathrm{Cl}_{2}$ ($0.005 \mathrm{mmol}, 0.025$ equiv). The reaction vial was purged with Ar for 1 min , then sealed with PTEF cap. The mixture was stirred at $30{ }^{\circ} \mathrm{C}$ under the irradiation of 23 W fluorescent light for 10-36 h. $\mathrm{K}_{2} \mathrm{CO}_{3}$ (approximate 150 mg) was added to the solution, and the resulting mixture was vigorously stirred for 5 min . The solvent was removed in vacuo and the residue was dissolved in $\mathrm{DCM}(5 \mathrm{~mL})$. Then the mixture was filtrated through a pad of Celite and washed with DCM. The filtrate was concentrated in vacuo and the residue was purified by preparative thin layer chromatography or flash chromatography on silica gel to afford the desired product.

$\mathrm{R}_{f}=0.26,20 \%$ EtOAc in Hexane
Compound $\mathbf{8}$ was isolated in 64% yield as a colorless oil following the general procedure (36 h). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 1 \mathrm{H})$, 7.46-7.43 (m, 2H), $4.35(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.27$ $(\mathrm{s}, 6 \mathrm{H})$. Spectra data are consistent with those reported in the literature. ${ }^{5}$

$\mathrm{R}_{f}=0.50,5 \%$ EtOAc in Hexane
Compound 9 was isolated in 58% yield as a colorless oil following the general procedure ($36 \mathrm{~h}, 2$ equiv of $\mathbf{1 1}\left(\mathrm{BI}-\mathrm{N}_{3}\right)$ was used, without water addition). IR (KBr) : \tilde{v} $=3429,2925,2096,1721,1456,1275,1114,712 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.07-8.01 (m, 2H), 7.60-7.53 (m, 1H), 7.49-7.42 (m, 2H), $4.34(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.90-$ $1.82(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.53$, 132.90, 130.22, 129.56, 129.51, 128.33, 64.81, 61.14, 37.80, 25.95, 23.79; HRMS Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 270.1218, Found: 270.1212.

Compound $\mathbf{1 9}$ was isolated in 61% yield (88% incorporation of ${ }^{18} \mathrm{O}$) as a colorless oil following the general procedure (Note: HFIP was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ overnight, then bubbled with argon gas for 10 minutes to remove oxygen before the experiment. $36 \mathrm{~h}, 0.15 \mathrm{~mL}$ of $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ was used, $97 \%{ }^{18} \mathrm{O}$).

High Resolution Mass Spectrum (HRMS) of Compound 8:

m / z	Abund (NL)
245.1154	$1.08^{*} 10^{9}$
247.1199	$1.05^{*} 10^{7}$

High Resolution Mass Spectrum (HRMS) of Compound 19:

m / z	Abund (NL)
245.1143	$1.45 * 10^{7}$
247.1186	$1.08 * 10^{8}$

88% incorporation of ${ }^{18} \mathrm{O}$ was estimated based on the relative abundance (NL) of the peaks at 245.1143 and 247.1186.

Compound 20 was isolated in 67% yield as a colorless oil following the general procedure (24 h , conversion based on RSM 20-1: 80\%, yield based on RSM: 84\%). IR $(\mathrm{KBr}): \tilde{\mathrm{v}}=3394,2922,1714,1586,1275,1115,1007,754 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.20-5.13(\mathrm{~m}, 1 \mathrm{H}), 1.80-$ $1.72(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.44(\mathrm{~m}, 6 \mathrm{H}), 1.34(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.72,137.62,130.96,130.24,100.45,71.86,70.80,43.47,36.40$, 29.27, 29.19, 20.16, 20.03; HRMS Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{INa}[\mathrm{M}+\mathrm{Na}]^{+}: 399.0433$, Found: 399.0419.

$\mathrm{R}_{f}=0.20,20 \%$ EtOAc in Hexane
Compound 21 was isolated in 63% yield as a colorless oil following the general procedure (24 h , conversion based on RSM 21-1: 77\%, yield based on RSM: 82\%). IR $(\mathrm{KBr}): \tilde{\mathrm{v}}=3730,2921,2232,1719,1462,1278,1112,863,768,691 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.24-5.17(\mathrm{~m}$, $1 \mathrm{H}), 1.83-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.37(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$, $1.21(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.55,134.58,132.20,132.15,130.00$, 118.02, 116.15, 72.67, 70.77, 43.40, 36.34, 29.29, 29.23, 20.12, 19.98; HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+}: 298.1419$, Found: 298.1407.

$\mathrm{R}_{f}=0.28,20 \%$ EtOAc in Hexane
Compound 22 was isolated in 54% yield as a colorless oil following the general procedure (36 h , conversion based on RSM 22-1: 67\%, yield based on RSM: 80\%). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 2 \mathrm{H})$, $4.50(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{td}, J=6.9,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.59(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{~s}$, $3 \mathrm{H}), 0.96(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$. Spectra data are consistent with those reported in the literature. ${ }^{5}$

Compound 23 was isolated in 77% yield as a white solid following the general procedure (24 h). M.p. $=54-55^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}): \tilde{\mathrm{v}}=3396,2923,1770,1710,1398,1186$, $1038,720 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.69(\mathrm{~m}, 2 \mathrm{H})$, $3.71(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.74-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.21$ (s, 6H); ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.48,133.87,132.11,123.17,70.77,43.13$, 37.74, 29.20, 28.94, 21.40; HRMS Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+}: 284.1263$, Found: 284.1250.

$\mathrm{R}_{f}=0.22,40 \%$ EtOAc in Hexane
Compound 24 was isolated in 57% yield as a colorless oil following the general procedure (24 h , conversion based on RSM 24-1: 78\%, yield based on RSM: 73\%). IR $(\mathrm{KBr}): \tilde{v}=3358,2925,1724,1632,1467,1210,954,736 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.43(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H})$, $1.21(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.73,160.70,148.61,119.77,118.25$, 70.92, 43.52, 38.12, 34.64, 30.50, 30.42, 29.20, 23.97; HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+}: \mathbf{2 5 0 . 2 1 7 1}$, Found: 250.2169.

$\mathrm{R}_{f}=0.36,10 \%$ EtOAc in Hexane
Compound 25 was isolated e in 81% yield as a white solid following the general procedure (10 h). M.p. $=161-162{ }^{\circ} \mathrm{C}$; IR (KBr) : $\tilde{v}=3454,2948,1769,1706,1505$, 1456, 1353, 1114, 966, $720 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78-7.75(\mathrm{~m}, 2 \mathrm{H})$, 7.71-7.68 (m, 2H), $2.91(\mathrm{~s}, 2 \mathrm{H}), 2.25-2.16(\mathrm{~m}, 4 \mathrm{H}), 2.02(\mathrm{~s}, 4 \mathrm{H}), 1.57(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.28$ (s, 2H), 1.04 (s, 6H); ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 169.40, 133.90, 131.67, 122.72, 85.75, 62.02, 49.07, 45.84, 44.97, 42.40, 34.50, 29.35; HRMS Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3}$ $[\mathrm{M}]^{+}: 325.1678$, Found: 325.1675 .

$\mathrm{R}_{f}=0.46,20 \%$ Acetone in Hexane
Compound 26 was isolated in 74% yield as a colorless oil following the general procedure (24 h). IR (KBr) : $\tilde{v}=3368,2936,1766,1697,1504,1370,1017,751,686$ $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 2 \mathrm{H}), 1.58-1.47$
$(\mathrm{m}, 4 \mathrm{H}), 1.40-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.01,70.70,43.08,37.93,35.44,33.50,29.12,28.29,26.16,21.55$, 15.62; HRMS Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{2}$ [M-OH] ${ }^{+}: 236.1651$, Found: 236.1642.

$\mathrm{R}_{f}=0.23,50 \%$ EtOAc in Hexane
To a solution of HFIP (4 mL) and water (0.15 mL), were added compound 27-1 (64.0 $\mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv), PFBI-OH ($168.8 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5$ equiv) and $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right] \mathrm{Cl}_{2}$ ($3.4 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.025$ equiv). The reaction vial was purged with Ar for 1 min and then the mixture was stirred at $30^{\circ} \mathrm{C}$ under the irradiation of fluorescent light for 24 h . The solvent was removed in vacuo and the residue was purified by flash chromatography on silica gel $(\mathrm{MeOH} / \mathrm{DCM}=2: 98(\mathrm{v} / \mathrm{v}))$ to afford compound 27 as a colorless oil ($38.0 \mathrm{mg}, 65 \%$). IR (KBr) : $\tilde{v}=3391,2920,1796,1752,1646,1466,1373$, 1221, 1119, 951, $749 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.60(\mathrm{dd}, J=4.1,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.37(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.50-3.40(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.60$ (s, 3H), 1.52-1.48 (m, 2H), $1.40(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $170.78,166.94,70.36,66.86,63.22,62.66,61.07,39.49,38.28,29.34,29.30,23.49$, 20.29, 18.58; HRMS Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 334.1324$, Found: 334.1318.

28 $\mathrm{R}_{f}=0.68,5 \% \mathrm{MeOH}$ in DCM

Compound 28 was isolated in 62% yield as a colorless oil following the general procedure (24 h). $\mathrm{IR}(\mathrm{KBr}): \tilde{\mathrm{v}}=3476,2966,1717,1678,1391,1193,1081,890,721$ $\mathrm{cm}^{-1}{ }^{\mathbf{1}}{ }^{\mathbf{H}} \mathbf{N}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.76(\mathrm{~m}, 2 \mathrm{H}), 5.01-4.97$ $(\mathrm{m}, 1 \mathrm{H}), 3.84(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.03-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.10(\mathrm{~m}$, $1 \mathrm{H}), 1.60-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 170.86,168.53,167.42,134.41,131.69,123.70,70.75,50.11$,
43.25, 40.42, 31.96, 29.16, 29.07, 28.11, 21.96, 21.34; HRMS Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}$ $[\mathrm{M}-\mathrm{OH}]^{+}: 355.1658$, Found: 355.1651.

29
$\mathrm{R}_{f}=0.32,20 \%$ EtOAc in Hexane
Compound 29 was isolated in 80% yield as a colorless oil following the general procedure (24 h). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 3.67$ (s, 3 H), 2.31 (dd, $J=14.7,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.13$ (dd, $J=14.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.29(\mathrm{~m}, 6 \mathrm{H}), 1.21$ (s, $6 \mathrm{H}), 0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$. Spectra data are consistent with those reported in the literature. ${ }^{5}$

$\mathrm{R}_{f}=0.45,20 \%$ EtOAc in Hexane
Compound $\mathbf{3 0}$ was isolated in 52% yield as a colorless oil following the general procedure (24 h , conversion based on RSM 30-1: 84\%, yield based on RSM: 62\%). ${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.04-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 2 \mathrm{H})$, $5.10(\mathrm{td}, J=10.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.19-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.94(\mathrm{~m}, 1 \mathrm{H})$, $1.90-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H})$, 1.14-0.96 (m, 3H), $0.94(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$. Spectra data are consistent with those reported in the literature. ${ }^{14}$

Scheme S16

$\mathrm{R}_{f}=0.2,20 \%$ EtOAc in Hexane
Compound $\mathbf{3 1}$-cis was isolated in 30% yield as a colorless oil following the general
procedure (36 h , conversion based on RSM: 77%, yield based on RSM: 39%). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{dd}, J=8.2,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.42(\mathrm{~m}$, $2 H), 5.03-4.96(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.81-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 3 \mathrm{H}), 1.29$ $(s, 3 H)$. Spectra data are consistent with those reported in the literature. ${ }^{15}$

Compound 31-trans was isolated in 28% yield as a colorless oil following the general procedure (36 h , conversion based on RSM: 77%, yield based on RSM: 36%). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H})$, 5.23-5.20 (m, 1H), 2.06-2.00 (m, 2H), 1.84-1.78 (m, 4H), 1.60-1.57 (m, 2H), $1.32(\mathrm{~s}$, $3 H)$. Spectra data are consistent with those reported in the literature. ${ }^{15}$

Compound $\mathbf{3 2}$ was isolated in 29% yield as a colorless solid following the general procedure (36 h , conversion based on RSM: 36%, yield based on RSM: 80%). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl_{3}) δ 7.92-7.90 (m, 2H), 7.80-7.78 (m, 2H), $4.90(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 1 \mathrm{H})$, $3.76(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H})$. Spectra data are consistent with those reported in the literature. ${ }^{16}$

Compound $\mathbf{3 3}$ was isolated in 52% yield as a white solid following the general procedure (36 h , conversion based on RSM: 59%, yield based on RSM: 88%). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.74(\mathrm{~m}, 2 \mathrm{H}), 5.24(\mathrm{dd}, J=11.5,9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.60(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=12.3,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}$, $3 H)$. Spectra data are consistent with those reported in the literature. ${ }^{13}$

$\mathrm{R}_{f}=0.28,60 \%$ EtOAc in Hexane
Compound 35 was isolated in 44% yield as a white solid following the general procedure (36 h , conversion based on RSM: 49%, yield based on RSM: 90%). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.12(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.55(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{dd}, J=15.3,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.20(\mathrm{dd}, J=15.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.40(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~s}$, $3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H})$. Spectra data are consistent with those reported in the literature. ${ }^{13}$

36

$\mathrm{R}_{f}=0.50,5 \% \mathrm{MeOH}$ in DCM

Compound 36 was isolated in 39% yield as a white solid following the general procedure (36 h , conversion based on RSM: 51\%, yield based on RSM: 76\%). M.p. = $188-190{ }^{\circ} \mathrm{C}$; IR (KBr) : $\tilde{v}=3435,2922,2852,1772,1721,1652,1547,1419,1377$, 1193, 1160, 1113, 956, $712 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88-7.84(\mathrm{~m}, 2 \mathrm{H})$, $7.76-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.93-4.88(\mathrm{~m}, 1 \mathrm{H})$, 4.80-4.73 (m, 1H), 4.47-4.33 (m, 2H), $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{dd}, J=17.1,4.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.77(\mathrm{dd}, J=17.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=12.5,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{dd}, J=12.5,11.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 1.52 (s, 3H), 1.43 (s, 3H); ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 174.02, 172.52, 170.32, 167.77, 166.66, 134.27, 131.90, 123.61, 82.42, 52.26, 50.35, 49.40, 40.80, 35.15, 28.81, 27.16; HRMS Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{8} \mathrm{~N}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 468.1383$, Found: 468.1367.

7. General procedures and substrate scope of benzylic C-H hydroxylation with Bl-OH

Scheme S17

General condition: To a solution of HFIP (4 mL) and water $(0.45 \mathrm{~mL})$ (Note: HFIP and water were bubbled with argon gas for 10 minutes to remove oxygen), were added substrate ($0.2 \mathrm{mmol}, 1.0$ equiv), $\mathrm{BI}-\mathrm{OH}\left(0.4 \mathrm{mmol}, 2.0\right.$ equiv) and $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right] \mathrm{Cl}_{2}(0.005$ $\mathrm{mmol}, 0.025$ equiv). The reaction vial was purged with Ar for 1 min , then sealed with PTEF cap. The reaction mixture was stirred at $30^{\circ} \mathrm{C}$ under the irradiation of fluorescent light for $10 \mathrm{~h} . \mathrm{K}_{2} \mathrm{CO}_{3}$ (approximate 20 mg) was added to the solution, and the resulting mixture was vigorously stirred for 5 min . The solvent was removed in vacuo and the residue was dissolved in DCM (5 mL). Then the mixture was filtrated through a pad of Celite and washed with DCM. The filtrate was concentrated in vacuo and the residue was purified by preparative thin layer chromatography or flash chromatography on silica gel to afford the desired product.

$\mathrm{R}_{f}=0.44,20 \% \mathrm{EtOAc}$ in Hexane
Compound 37 was isolated in 71% yield as a colorless oil following the general procedure. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.11(\mathrm{~m}, 2 \mathrm{H}), 4.85$ $(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.46(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$. Spectra data are consistent with those reported in the literature. ${ }^{17}$

$\mathrm{R}_{f}=0.44,20 \%$ EtOAc in Hexane

Compound $\mathbf{3 7}^{\prime}$ was isolated in 8% yield as a light yellow solid following the general procedure. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $87.85-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.65(\mathrm{~m}, 2 \mathrm{H}), 2.58$ $(\mathrm{s}, 3 \mathrm{H})$. Spectra data are consistent with those reported in the literature. ${ }^{18}$

$\mathrm{R}_{f}=0.32,20 \%$ EtOAc in Hexane
Compound 38 was isolated in 82% yield as colorless oil following the general procedure (1.5 equiv. BI-OH was used). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.28(\mathrm{~m}$, $2 \mathrm{H}), 6.90-6.86(\mathrm{~m}, 2 \mathrm{H}), 4.85(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.48(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$. Spectra data are consistent with those reported in the literature. ${ }^{19}$

$\mathrm{R}_{f}=0.32,20 \%$ EtOAc in Hexane
Compound $\mathbf{3 8}^{\prime}$ was isolated in 10% yield as a white solid following the general procedure (1.5 equiv. BI-OH was used). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96-7.93(\mathrm{~m}$, $2 \mathrm{H}), 6.96-6.92(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H})$. Spectra data are consistent with those reported in the literature. ${ }^{20}$

$\mathrm{R}_{f}=0.17,60 \%$ EtOAc in Hexane
Compound 39 was isolated in 76% yield as a colorless oil following the general procedure ($16 \mathrm{~h}, 4.0$ equiv. BI-OH was used). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49$ (br $\mathrm{s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.86(\mathrm{q}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.15$ $(\mathrm{s}, 3 \mathrm{H}), 2.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.47(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$. Spectra data are consistent with those reported in the literature. ${ }^{21}$

$$
\mathrm{R}_{f}=0.43,20 \% \text { EtOAc in Hexane }
$$

Compound 40 was isolated in 78% yield as a colorless oil following the general procedure. $\operatorname{IR}(\mathrm{KBr}): \tilde{v}=3365,2929,1717,1452,1315,1274,1116,742,709 \mathrm{~cm}^{-1},{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H})$, 7.37-7.32 (m, 4H), 7.30-7.25 (m, 1H), 4.67 (dd, $J=7.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.89 (br s, 1H), 1.86-1.67 (m, 4H), 1.49-1.27 (m, 6H); ${ }^{13}$ C NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.63,144.82,132.74,130.36,129.45,128.34,128.24,127.39,125.80$, 74.46, 64.96, 38.90, 29.07, 28.55, 25.87, 25.62; HRMS Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}$ [M+Na]+: 335.1623, Found: 335.1609.

$\mathrm{R}_{f}=0.77,20 \% \mathrm{EtOAc}$ in Hexane
Compound 40^{\prime} was isolated in 6% yield as a colorless oil following the general procedure. IR (KBr) : $\tilde{v}=3416,3062,2932,2857,1967,1912,1718,1685,1451$, $1276,1116,971,804,714 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{dd}, J=8.0,0.9$ Hz, 2H), 7.96 (dd, $J=8.0,0.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.58-7.54 (m, 2H), 7.48-7.42 (m, 4H), 4.33 (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.43(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.32,166.66,137.02,132.91,132.81,130.45,129.52$, 128.56, 128.31, 128.02, 64.94, 38.42, 28.98, 28.58, 25.94, 24.13; HRMS Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 333.1467$, Found: 333.1453.

Compound 41 was isolated in 57% yield as a pale yellow oil following the general procedure ($16 \mathrm{~h}, 4.0$ equiv. BI-OH was used). IR (KBr) : $\tilde{\mathrm{v}}=3440$, 2958, 1931, 1679, 1607, 1414, 1360, 1271, 960, 836, $750 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.76(\mathrm{dd}, J=7.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H})$, $2.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.82-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.28(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.85,150.29,136.28,128.53,125.95,73.83,41.27,26.61$, 18.83, 13.88; HRMS Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]:$: 191.1072, Found: 191.1068.

$\mathrm{R}_{f}=0.58,20 \%$ EtOAc in Hexane
Compound $\mathbf{4 1}^{\prime}$ was isolated in 9% yield as a white solid following the general procedure ($16 \mathrm{~h}, 4.0$ equiv. BI-OH was used). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04$ (br $\mathrm{s}, 4 \mathrm{H}), 2.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 H)$. Spectra data are consistent with those reported in the literature. ${ }^{22}$

$\mathrm{R}_{f}=0.38,20 \%$ EtOAc in Hexane
Compound $\mathbf{4 2}$ was isolated in 50% yield as a colorless oil following the general procedure (4.0 equiv. BI-OH was used). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.92(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.49$ $(\mathrm{d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 12 \mathrm{H})$. Spectra data are consistent with those reported in the literature. ${ }^{23}$

$\mathrm{R}_{f}=0.36,20 \% \mathrm{EtOAc}$ in Hexane
Compound 43 was isolated in 64% yield as a colorless oil following the general procedure. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~s}, 4 \mathrm{H}), 4.34(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$. Spectra data are consistent with those reported in the literature. ${ }^{24}$

$$
\mathrm{R}_{f}=0.4, \mathrm{DCM}
$$

Compound $\mathbf{4 3}^{\prime}$ was isolated in 10% yield as a colorless oil following the general procedure. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.79(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.59-3.48(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.21(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$. Spectra data are consistent with those reported in the literature. ${ }^{25}$

Compound 44 was isolated in 60% yield (93% incorporation of ${ }^{18} \mathrm{O}$) as a colorless oil following the general procedure (Note: HFIP was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ overnight, then bubbled with argon gas for 10 minutes to remove oxygen before the experiment. $10 \mathrm{~h}, 0.45 \mathrm{~mL}$ of $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ was used, $97 \%{ }^{18} \mathrm{O}$).

High Resolution Mass Spectrum (HRMS) of Compound 43:

m / z	Abund (NL)
259.1297	$1.58^{*} 10^{9}$
261.1354	$1.85 * 10^{7}$

High Resolution Mass Spectrum (HRMS) of Compound 44:

m / z	Abund (NL)
259.1302	$1.18 * 10^{8}$
261.1339	$1.68 * 10^{9}$

93% incorporation of ${ }^{18} \mathrm{O}$ was estimated based on the relative abundance (NL) of the peaks at 259.1302 and 261.1339.

$\mathrm{R}_{f}=0.63,20 \% \mathrm{EtOAc}$ in Hexane
Compound $\mathbf{4 5}$ was isolated in 90% yield as a white solid following the general procedure (1.5 equiv. BI-OH was used). M.p. $=59-60^{\circ} \mathrm{C} ; \mathrm{IR}(\mathrm{KBr}): \tilde{\mathrm{v}}=3494$, 2954, 2865, 1792, 1664, 1460, 1362, 1238, 1060, 889, 778, $704 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{ddd}, J=7.6,3.9,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{dd}, J=13.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.05$ (dd, $J=13.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 202.70,154.34,152.22,142.21,133.62,126.21,124.63,73.19,48.71,42.79$, 34.88, 31.40, 30.92, 29.88, 27.96; HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 283.1674$,

Found: 283.1660.

8. Scale-up reaction for hydroxylation

8.1 Scale-up reaction for hydroxylation of 28-1:

Scheme S18

Reaction condition: To a solution of HFIP (60 mL) and water $(2.25 \mathrm{~mL})$ (Note: HFIP and water were bubbled with argon gas for 10 minutes to remove oxygen), were added compound 28-1 ($1.07 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.0$ equiv), PFBI-OH ($2.54 \mathrm{~g}, 7.5 \mathrm{mmol}, 2.5$ equiv) and $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right] \mathrm{Cl}_{2}(48.0 \mathrm{mg}, 0.075 \mathrm{mmol}, 0.025$ equiv). The reaction vial was purged with Ar for 5 min , sealed with PTEF cap. The reaction mixture was stirred at $30^{\circ} \mathrm{C}$ under the irradiation of fluorescent light for $46 \mathrm{~h} . \mathrm{K}_{2} \mathrm{CO}_{3}(1.05 \mathrm{~g})$ was added to the solution, and the resulting mixture was vigorously stirred for 10 min . The solvent was removed in vacuo and the residue was dissolved in $\mathrm{MeOH}(50 \mathrm{~mL})$. Then silica gel (8.0 g) was added into the solution. The solvent was removed in vacuo and the residue was purified by flash chromatography on silica gel (ethyl acetate/petroleum ether $=50: 50$ (v/v)) to afford compound 28 as a colorless oil ($667 \mathrm{mg}, 60 \%$). 119 mg of starting material 28-1 was recovered. Conversion based on RSM: 89\%. Yield based on RSM: 67%.

8.2 Scale-up reaction for hydroxylation of 43-1:

Scheme S19

Reaction condition: To a solution of HFIP (100 mL) and water (11.25 mL) (Note: HFIP and water were bubbled with argon gas for 10 minutes to remove oxygen), were added compound 43-1 ($1.10 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv), BI-OH ($2.66 \mathrm{~g}, 10.0 \mathrm{mmol}, 2.0$ equiv) and $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right] \mathrm{Cl}_{2}$ ($80.0 \mathrm{mg}, 0.125 \mathrm{mmol}, 0.025$ equiv). The reaction vial was purged with Ar for 5 min , sealed with PTEF cap. The reaction mixture was stirred at $30^{\circ} \mathrm{C}$ under the irradiation of fluorescent light for $20 \mathrm{~h} . \mathrm{K}_{2} \mathrm{CO}_{3}(3.75 \mathrm{~g})$ was added to the solution, and the resulting mixture was vigorously stirred for 10 min . The solvent was removed in vacuo and the residue was dissolved in $\mathrm{MeOH}(50 \mathrm{~mL}$). Then silica gel $(10.0 \mathrm{~g})$ was added into the solution. The solvent was removed in vacuo and the residue was purified by flash chromatography on silica gel (ethyl acetate/petroleum ether $=$ 15:85 (v / v)) to afford compound $\mathbf{4 3}$ as a colorless oil ($680 \mathrm{mg}, 58 \%$). 137 mg of starting material 43-1 was recovered. Conversion based on RSM: 88\%. Yield based on RSM: 66%.

9. General procedures and substrate scope of $\mathbf{C}\left(\mathbf{s p}^{3}\right)$-H amidation with PFBI-OH

Scheme S20

General condition: To a solution of HFIP (4 mL) and acetonitrile (3 mL) (Note: HFIP and acetonitrile were dried over $4 \AA$ molecular sieves overnight, then bubbled with argon gas for 10 minutes to remove oxygen before the experiment), were added substrate ($0.2 \mathrm{mmol}, 1.0$ equiv), PFBI-OH ($0.5 \mathrm{mmol}, 2.5$ equiv) and $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right] \mathrm{Cl}_{2}$ ($0.005 \mathrm{mmol}, 0.025$ equiv). The reaction vial was purged with Ar for 1 min , then sealed with PTEF cap. The mixture was stirred at $30^{\circ} \mathrm{C}$ under the irradiation of 23 W fluorescent light for $10-24 \mathrm{~h} . \mathrm{K}_{2} \mathrm{CO}_{3}$ (approximate 150 mg) was added to the solution, and the resulting mixture was vigorously stirred for 5 min . The solvent was removed in
vacuo and the residue was dissolved in DCM (5 mL). Then the mixture was filtrated through a pad of Celite and washed with DCM. The filtrate was concentrated in vacuo and the residue was purified by preparative thin layer chromatography or flash chromatography on silica gel to afford the desired product.

$\mathrm{R}_{f}=0.38,50 \%$ EtOAc in Hexane
Compound $\mathbf{1 0}$ was isolated in 56% yield as a white solid following the general procedure $(36 \mathrm{~h}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-$ 7.53 (m, 1H), 7.46-7.43 (m, 2H), $5.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.32(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H})$, 1.91-1.86 (m, 2H), 1.78-1.72 (m, 2H), $1.33(\mathrm{~s}, 6 \mathrm{H})$. Spectra data are consistent with those reported in the literature. ${ }^{26}$

Compound 46 was isolated in 67% yield as a white solid following the general procedure (24 h). M.p. $=142-143{ }^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}): \tilde{\mathrm{v}}=3303,2928,1771,1712,1657$, $1545,1439,1397,1369,1041,720 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (~} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86-7.83(\mathrm{~m}$, $2 \mathrm{H}), 7.74-7.71(\mathrm{~m}, 2 \mathrm{H}), 5.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.70(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.66$ $(\mathrm{m}, 4 \mathrm{H}), 1.35-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 6 \mathrm{H}), 0.96(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $169.57,168.58,133.94,132.04,123.18,77.32,77.00,76.68,53.41,39.75,37.44,28.65$, 26.73, 24.42, 21.01; HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 325.1528$, Found: 325.1522.

$\mathrm{R}_{f}=0.22,20 \%$ Acetone in Hexane
Compound $\mathbf{4 7}$ was isolated in 71% yield as a colorless oil following the general procedure (24 h). M.p. $=142-143{ }^{\circ} \mathrm{C}$; IR (KBr) : $\tilde{v}=3306,3080,2925,1737,1656$, 1548, 1460, 1372, $1192 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.67$ (s,
$3 \mathrm{H}), 2.30$ (dd, $J=14.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dd}, J=14.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.93$ (m, 1H), $1.92(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.17(\mathrm{~m}, 4 \mathrm{H}), 1.29(\mathrm{~s}, 6 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, 3H); ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.74,169.36,53.66,51.38,41.62,40.12,36.91$, 30.28, 26.95, 26.89, 24.51, 21.46, 19.74; HRMS Calcd for $\mathrm{C}_{13} \mathrm{H}_{2} \mathrm{NO}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 266.1732, Found: 266.1725.

Compound 48 was isolated in 60% yield as a white solid following the general procedure (10 h). M.p. $=186-187^{\circ} \mathrm{C}$; IR (KBr) : $\tilde{\mathrm{v}}=3304,3068,2922,1770,1708$, 1656, 1548, 1348, 1316, $720 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.77-7.73 (m, 2H), 7.70-7.66 (m, 2H), 5.28 (br s, 1H), 2.61 (s, 2H), $2.14(\mathrm{~s}, 4 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.70$ (m, 4H), 1.22 ($\mathrm{s}, 2 \mathrm{H}$), 0.96 ($\mathrm{s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 169.56, 169.37, $133.79,131.77,122.60,61.73,54.29,49.23,46.27,45.14,42.59,33.38,29.53,24.60$; HRMS Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 389.1841$, Found: 389.1834.

49

$$
\mathrm{R}_{f}=0.32, \mathrm{EtOAc}
$$

Compound 49 was isolated in 71% yield as a white solid following the general procedure (24 h). M.p. $=86-87^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}): \tilde{\mathrm{v}}=3386,3081,2923,1778,1698,1656$, 1545, 1386, 1221, 1037, $761 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.19$ (br s, 1H), 4.42 (t, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.74-$ $1.62(\mathrm{~m}, 4 \mathrm{H}), 1.37-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.28$, 169.43, 153.53, 61.98, 53.57, 42.46, 39.72, 34.95, 26.88, 24.45, 23.61; HRMS Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 293.1477, Found: 293.1469

$$
\mathrm{R}_{f}=0.54,40 \% \text { Acetone in Hexane }
$$

Compound $\mathbf{5 0}$ was isolated in 64% yield as a colorless oil following the general
procedure (24 h). IR (KBr) : $\tilde{\mathrm{v}}=3363,3082,2924,1706,1658,1552,1460,1373,1188$, $1159 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.28(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 4.11-4.00 (m, 1H), 1.93 (s, 3H), 1.76-1.69 (m, 2H), 1.54-1.43 (m, 2H), 1.33-1.20 (m, $2 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.07,156.85(\mathrm{q}, J=36.5 \mathrm{~Hz}), 115.93(\mathrm{q}, J=287.9 \mathrm{~Hz}), 53.59,46.18,39.31,36.52$, 27.28, 26.67, 24.10, 20.59, 20.42; HRMS Calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 305.1453, Found: 305.1447.

$51 \quad \mathrm{R}_{f}=0.21,20 \%$ Acetone in Hexane
Compound $\mathbf{5 1}$ was isolated in 63% yield as a white solid following the general procedure ($24 \mathrm{~h}, 0.5 \mathrm{mmol}$ scale, 1.0 equiv of cyclohexane was used). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.79-3.70(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.89(\mathrm{~m}, 2 \mathrm{H})$, 1.73-1.68 (m, 2H), 1.64-1.60 (m, 1H), 1.41-1.30 (m, 2H), 1.20-1.06 (m, 3H). Spectra data are consistent with those reported in the literature. ${ }^{27}$

10. General procedures and substrate scope of benzylic C-H amidation with Bl-OH

Scheme S21

General condition: To a solution of HFIP (4 mL) and acetonitrile (1.5 mL) (Note: HFIP and acetonitrile were dried over $4 \AA$ molecular sieves overnight, then bubbled with argon gas for 10 minutes to remove oxygen before the experiment), were added substrate ($0.2 \mathrm{mmol}, 1.0$ equiv), $\mathrm{BI}-\mathrm{OH}\left(0.4 \mathrm{mmol}, 2.0\right.$ equiv) and $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right] \mathrm{Cl}_{2}(0.005$ mmol, 0.025 equiv). The reaction vial was purged with Ar for 1 min , then sealed with PTEF cap. The reaction mixture was stirred at $30^{\circ} \mathrm{C}$ under the irradiation of fluorescent
light for $10 \mathrm{~h} . \mathrm{K}_{2} \mathrm{CO}_{3}$ (approximate 20 mg) was added to the solution, and the resulting mixture was vigorously stirred for 5 min . The solvent was removed in vacuo and the residue was dissolved in DCM (5 mL). Then the mixture was filtrated through a pad of Celite and washed with DCM. The filtrate was concentrated in vacuo and the residue was purified by preparative thin layer chromatography or flash chromatography on silica gel to afford the desired product.

Compound $\mathbf{5 2}$ was isolated in 67% yield as a colorless oil following the general procedure. IR (KBr) : $\tilde{v}=3292,2926,1737,1646,1546,1460,1375,1210,1166,856$ $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.94(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{dd}, J=8.9,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ (s, 3H), 2.05-1.96 (m, 1H), $1.98(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.99,174.95,169.29$, $140.47,139.18,127.49,127.18,58.75,51.99,44.98,44.96,33.27,23.43,19.75,18.78$, 18.53, 18.50; HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 300.1576$, Found: 300.1568 .

Compound $\mathbf{5 3}$ was isolated in 74% yield as a pale yellow solid following the general procedure. M.p. $=103-104{ }^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}): \tilde{v}=3426,3064,2925,1647,1545,1374$, $1274,821,754 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.06(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.85(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.01(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.48,142.80,137.67,128.16,92.68$, 48.43, 23.29, 21.55; HRMS Calcd for $\mathrm{C}_{10} \mathrm{H}_{13}$ INO $\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 290.0042, Found: 290.0033.

Compound 54 was isolated in 62% yield as a white solid following the general procedure (2.5 mL PhCN was used). M.p. $=146-147{ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): \tilde{\mathrm{v}}=3315,3062$, 2924, 1717, 1637, 1533, 1276, 1116, $708 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{dd}$, $J=8.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.47(\mathrm{~m}$, $1 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 8 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.29-5.23(\mathrm{~m}, 1 \mathrm{H})$, 4.35 (td, $J=6.4,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.17-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.74(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.77,166.55,141.74,134.43,132.88,131.47,130.19$, $129.51,128.82,128.50,128.31,127.62,126.92,126.62,64.48,53.66,32.55,25.85$; HRMS Calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 396.1576, Found: 396.1566.

11. Measurement of quantum yield (Φ) for C-H hydroxylation of $\mathbf{7}^{\mathbf{2 8}}$

11. 1 Determination of light intensity

11. 1. 1 Determination of the light intensity at 436 nm :

A 0.15 M solution of ferrioxalate was prepared by dissolving 2.3848 g of potassium ferrioxalate hydrate $\left(\mathrm{K}_{3} \mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right)$ in 30.00 mL of $0.05 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. A buffer of phenanthroline was prepared by dissolving 50.0 mg of phenanthroline and 11.25 g of sodium acetate in 50.00 mL of $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. The above solutions were both stored in the dark after preparation. To determine the photon flux of the spectrophotometer, 2.0 mL of the ferrioxalate solution was placed in a cuvette and irradiated for 90.0 seconds at $\lambda=436 \mathrm{~nm}$ with an emission slit width at 10.0 nm . After irradiation completed, 0.35 mL of the phenanthroline solution was added to the cuvette. Then the solution was allowed to rest in dark for 1 h . The absorbance of the solution was measured at 510 nm . A non-irradiated sample was also prepared and the absorbance at 510 nm measured. Conversion was calculated using equation 1 :

$$
\mathrm{mol} \mathrm{Fe}^{2+}=\frac{\mathrm{V} \bullet \Delta \mathrm{~A}}{1 \cdot \varepsilon} \quad(\text { Equation 1) }
$$

In the equation $1, \mathrm{~V}$ is the total volume $(0.00235 \mathrm{~L})$ of the solution after addition of phenanthroline, $\Delta \mathrm{A}$ is the difference in absorbance at 510 nm between the irradiated and non-irradiated solutions, 1 is the path length $(1.000 \mathrm{~cm})$, and ε is the molar absorptivity at $510 \mathrm{~nm}\left(11,100 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$. The photon flux can be calculated using equation 2 :

$$
\text { Photon flux }=\frac{\operatorname{mol~Fe}^{2+}}{\Phi \bullet \mathrm{t} \bullet \mathrm{f}} \quad(\text { Equation 2) }
$$

In the equation $2, \Phi$ is the quantum yield for the ferrioxalate actinometer (1.01 for a 0.15 M solution at $\lambda=436 \mathrm{~nm})$, t is the time $(90.0 \mathrm{~s})$, and f is the fraction of light absorbed at $\lambda=436 \mathrm{~nm}$ (0.99990 , vide infra). The photon flux was calculated (average of three experiments) to be 4.29×10^{-10} einstein s ${ }^{-1}$.

Sample calculation:

$$
\begin{aligned}
& \mathrm{mol} \mathrm{Fe}^{2+}=\frac{\mathrm{V} \cdot \Delta \mathrm{~A}}{\mathrm{l} \bullet \varepsilon}=\frac{0.00235 \mathrm{~L} \bullet 0.184}{1 \mathrm{~cm} \bullet 11100 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}}=3.90 \times 10^{-8} \mathrm{~mol} \\
& \text { Photon flux }=\frac{\mathrm{mol} \mathrm{Fe}^{2+}}{\Phi \bullet \mathrm{t} \bullet \mathrm{f}}=\frac{3.90 \times 10^{-8}}{1.01 \bullet 90 \mathrm{~s} \bullet 0.99990}=4.29 \times 10^{-10}{\text { einstein } \mathrm{s}^{-1}}^{\text {en }}
\end{aligned}
$$

11. 1. 2 Determination of fraction of light absorbed at 436 nm for the ferrioxalate solution:

The absorbance of the above ferrioxalate solution at 436 nm was measured to be 4.009. The fraction of light absorbed (f) was calculated using equation 3 , where A (absorbance) is the measured absorbance at 436 nm .

$$
\begin{array}{r}
\mathrm{f}=1-10^{-\mathrm{A}} \quad(\text { Equation 3) } \\
\mathrm{f}=1-10^{-\mathrm{A}}=1-10^{-4.009}=0.99990
\end{array}
$$

Figure S1. Absorbance of the ferrioxalate actinometer solution.

11. 2 Determination of quantum yield:

Scheme S22

A cuvette was charged with compound 7 ($0.1 \mathrm{mmol}, 1.0$ equiv), PFBI-OH (0.25 mmol , 2.5 equiv) and $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right] \mathrm{Cl}_{2}$ ($0.0025 \mathrm{mmol}, 0.025$ equiv). HFIP (2 mL) and water $(0.075 \mathrm{~mL})$ (Note: HFIP and water were bubbled with argon gas for 10 minutes to remove oxygen), The reaction cuvette was purged with Ar for 1 min , then sealed with PTEF cap. The sample was stirred to make a clear solution (about 5 min .) and irradiated $(\lambda=436 \mathrm{~nm}$, slit width $=10.0 \mathrm{~nm})$ for $10800 \mathrm{~s}(3 \mathrm{~h})$. After irradiation, the solvent was removed under reduced pressure. The yield of product formed was determined by ${ }^{1} \mathrm{H}$ NMR based on a TCE (1,1,2,2-tetrachloroethane, $\sim 20 \mu \mathrm{~L}$) standard to be 3.9%. The quantum yield was determined using equation 4 :

$$
\begin{gathered}
\Phi=\frac{\text { mol product }}{\text { flux } \bullet \mathrm{t} \bullet \mathrm{f}}(\text { Equation 4) } \\
\Phi=\frac{3.93 \times 10^{-6} \mathrm{~mol}}{4.29 \times 10^{-10} \text { einstein s }^{-1} \bullet 10800 \mathrm{~s} \bullet 1.00}=0.85
\end{gathered}
$$

The quantum yield was calculated to be $\Phi(3.9 \%)=0.85$, indicating that a chain reaction mechanism can be excluded.

11. 3 Absorbance of catalyst:

The A (absorbance) of $[\mathrm{Ru}(\mathrm{bpy}) 3] \mathrm{Cl} 2$ in HFIP was measured at the reaction concentration of $1.25 \times 10^{-3} \mathrm{M}$ and also at a substantially more dilute concentration of $1.25 \times 10^{-5} \mathrm{M}$. The A at 436 nm for a $1.25 \times 10^{-3} \mathrm{M}$ solution is >10, while the A for $1.25 \times 10^{-5} \mathrm{M}$ solution is 0.188 . This result indicated that the fraction of light absorbed (f) is about 1.00 .

$$
\mathrm{f}=1-10^{-\mathrm{A}}=1-10^{-10}=1.00
$$

Figure S2. Absorbance of a $1.25 \times 10^{-3} \mathrm{M}$ solution of $[\mathrm{Ru}(\mathrm{bpy}) 3] \mathrm{Cl} 2$ in HFIP.

Figure S3. Absorbance of a $1.25 \times 10^{-5} \mathrm{M}$ solution of $[\mathrm{Ru}(\mathrm{bpy}) 3] \mathrm{Cl} 2$ in HFIP.

12. The luminescence quenching (Stern-Volmer) experiments

The luminescence quenching experiments were carried out on a fluorescence spectrophotometer. To a glass cuvette with a PTEF cap, photocatalyst $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right] \mathrm{Cl}_{2}$, quencher PFBI-OH (compound 17) or compound 7, and HFIP were added to obtain a total volume of $200 \mu \mathrm{~L}$. Before determination, the solution was degassed by three freeze-pump-thaw cycles and backfilled with argon. The concentration of $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right] \mathrm{Cl}_{2}$ was $1.0 \times 10^{-4} \mathrm{M}$. All samples were irradiated at 452 nm , and emission was determined at 567 nm . It should be noted that all samples were measured within 1 minute after preparation.

The result showed that the excited state of Ru (II) * can be quenched by PFBI-OH, while no obvious change of Ru (II) * luminescence in the presence of variable concentrations of compound 7 was observed.

Figure S4. Stern-Volmer quenching studies for PFBI-OH.

Figure S5. Stern-Volmer quenching studies for 7.

13. DFT calculations

13.1 Computational details

All DFT calculations were performed with the Gaussian 09 software package. ${ }^{29}$ Geometries were optimized using the M06-2X functional and the $6-31+\mathrm{G}(\mathrm{d})$ basis set in the gas phase. Single point energies were calculated using M06-2X and 6$311++G(d, p)$ and the SMD solvation model in HFIP. ${ }^{30}$ Since the solvent parameters for HFIP are not available in Gaussian 09. The parameters of isopropanol were used and the dielectric constant of the solvent was modified to the dielectric constant of HFIP ${ }^{31}$ ($\varepsilon=16.7$) by using the "scrf=(smd,solvent=2-propanol,read)" keywords in the Gaussian 09 calculations. The reported Gibbs free energies and enthalpies include zero-point vibrational energies and thermal corrections computed at 298 K .

The experimental redox potentials of $E_{\mathrm{Ru}(\mathrm{bpy})}^{3_{3}^{3+2+^{*}}}{ }^{\ominus}(-0.81 \mathrm{~V}$ vs SCE in MeCN$)$ and $E_{\mathrm{Ru}(\text { bpy }) 3_{3}^{3+2+}}^{\ominus}(+1.29 \mathrm{~V} \text { vs SCE in MeCN })^{32}$ were used in the computation of the SET
reaction energies with $\mathrm{Ru}(\mathrm{II})^{*}$ and $\mathrm{Ru}(\mathrm{III}) \mathrm{m}$ including the initial SET reduction with $\mathrm{Ru}(\mathrm{II})$ and in the subsequent SET oxidation with $\mathrm{Ru}(\mathrm{III}) .{ }^{6}$

13.2 Potential energy profile of $\mathbf{C}\left(\mathbf{s p}^{3}\right)-\mathbf{H}$ hydroxylation with BI-OH

$\uparrow \Delta G$
(kcal/mol)

BI ${ }^{-}, 2$

Scheme S23
13.3 H-atom abstraction of tert-butane with PFBI• and BI• through the I-centered pathway

Although the computed spin densities of PFBI• and BI• are delocalized over the O and I atoms, the H -abstraction occurs exclusively via the O-centered pathway to form orthoiodo benzoic acid and its perfluorinated derivative. This O-centered pathway is exergonic by $13.7 \mathrm{kcal} / \mathrm{mol}$ and $9.0 \mathrm{kcal} / \mathrm{mol}$ for the reactions with PFBI• and BI•, respectively. In contrast, the H -abstraction via the I-centered pathway to form $\mathbf{6 0}$ and 61 is highly endergonic.

Scheme S24

The transition states for these processes could not be located by calculations. Scan of the H -abstraction reaction coordinates to form the $\mathrm{H}-\mathrm{I}$ bond indicated a highly endothermic and barrierless transformation with both PFBI• and BI• These results indicate the H -atom abstraction takes place via the O-centered pathway exclusively.

Chart 1

Chart 2

13.4 Cartesian coordinates and energies of optimized structures

PFBI-OH

M06-2X/6-31+G(d) SCF energy: -903.31356630 a.u.
M06-2X/6-31+G(d) enthalpy: -903.223347 a.u.
M06-2X/6-31+G(d) free energy: -903.278767 a.u.
M06-2X/6-311++G(d,p) SCF energy in solution: -903.59971492 a.u.
M06-2X/6-311++G(d,p) enthalpy: -903.509496 a.u.
M06-2X/6-311++G(d,p) free energy: -903.564916 a.u.

Cartesian coordinates

ATOM	X	Y	Z
C	-0.704924	0.991232	0.012661
C	-0.049290	-0.234725	-0.015761
C	-0.739258	-1.432811	-0.050404
C	-2.132182	-1.404469	-0.019237
C	-2.808355	-0.195764	0.036731
C	-2.096440	1.000864	0.044450
C	0.121651	2.267728	-0.045013
O	1.400567	2.014839	-0.169365
O	-0.385090	3.361103	-0.000702
I	2.078588	-0.024863	0.004282
O	2.376022	-1.999664	0.309679
H	2.256397	-2.535499	-0.490713
F	-0.159598	-2.625831	-0.151212
F	-2.810831	-2.542565	-0.055974
F	-4.133559	-0.187965	0.062844
F	-2.796097	2.121991	0.073934

55
M06-2X/6-31+G(d) SCF energy: -827.54891344 a.u.
M06-2X/6-31+G(d) enthalpy: -827.475533 a.u.
M06-2X/6-31+G(d) free energy: -827.529063 a.u.
M06-2X/6-311++G(d,p) SCF energy in solution: -827.79532614 a.u.
M06-2X/6-311++G(d,p) enthalpy: -827.721946 a.u.
M06-2X/6-311++G(d,p) free energy: -827.775476 a.u.

Cartesian coordinates

ATOM	X	Y	Z
C	-0.490788	0.981398	-0.000037
C	0.093871	-0.285450	-0.000006
C	-0.670247	-1.437062	0.000030

C	-2.058074	-1.345042	0.000027
C	-2.662398	-0.096924	-0.000024
C	-1.884536	1.058416	-0.000028
C	0.357247	2.227600	0.000014
O	1.658595	2.045384	-0.000021
O	-0.103467	3.347442	0.000091
F	-0.109030	-2.645384	0.000088
F	-2.800132	-2.442593	0.000020
F	-3.985564	-0.009900	-0.000091
F	-2.526483	2.214391	0.000035
I	2.193196	-0.449223	-0.000017

Isobutane
M06-2X/6-31+G(d) SCF energy: -158.36179771 a.u.
M06-2X/6-31+G(d) enthalpy: -158.222321 a.u.
M06-2X/6-31+G(d) free energy: -158.256686 a.u.
M06-2X/6-311++G(d,p) SCF energy in solution: -158.40978520 a.u.
M06-2X/6-311++G(d,p) enthalpy: $\quad-158.270308$ a.u.
M06-2X/6-311++G(d,p) free energy: -158.304673 a.u.

Cartesian coordinates

ATOM	X	Y	Z
C	-0.000082	0.000024	-0.381074
H	-0.000129	-0.000025	-1.480296
C	-0.029637	-1.452044	0.096502
H	-0.030007	-1.493040	1.193314
H	-0.927262	-1.970727	-0.257930
H	0.845669	-2.006965	-0.258778
C	-1.242864	0.751720	0.096506
H	-1.278782	0.771472	1.193335
H	-1.242751	1.788769	-0.256955
H	-2.161172	0.271921	-0.259739
C	1.272470	0.700305	0.096451
H	2.170479	0.182723	-0.258742
H	1.315882	1.736188	-0.257818
H	1.308755	0.719654	1.193296

TS 1
M06-2X/6-31+G(d) SCF energy: -985.91034576 a.u.
M06-2X/6-31+G(d) enthalpy: -985.698697 a.u.

M06-2X/6-31+G(d) free energy: -985.770350 a.u.
M06-2X/6-311++G(d,p) SCF energy in solution: -986.19376847 a.u.
M06-2X/6-311++G(d,p) enthalpy: -985.982120 a.u.
M06-2X/6-311++G(d,p) free energy: -986.053773 a.u.
Imaginary frequency: $\quad-188.3224 \mathrm{~cm}-1$

Cartesian coordinates

ATOM	X	Y	Z
C	-2.728307	1.896208	0.052610
C	-1.352459	1.976484	-0.117270
C	-0.571888	0.828657	-0.181985
C	-1.169341	-0.428110	-0.040978
C	-2.542277	-0.505633	0.132668
C	-3.321873	0.648263	0.178042
C	0.920434	0.981516	-0.423054
O	1.459172	0.870166	-1.492742
I	-0.035993	-2.203505	-0.077023
O	1.455178	1.238183	0.746772
C	4.157921	0.796504	0.272176
C	3.908166	-0.696320	0.106263
H	3.314636	-0.897935	-0.791633
H	4.865411	-1.226180	0.010940
H	3.378405	-1.107715	0.972909
C	4.925763	1.112892	1.549572
H	5.923461	0.655487	1.504765
H	5.056470	2.191769	1.682153
H	4.412952	0.715075	2.431531
C	4.794811	1.413829	-0.965952
H	4.925851	2.494922	-0.852082
H	5.786444	0.969554	-1.128852
H	4.183406	1.227771	-1.853561
H	3.142642	1.281107	0.389145
F	-3.161604	-1.675575	0.266983
F	-4.633750	0.555867	0.344503
F	-3.472011	2.994012	0.098679
F	-0.790695	3.177847	-0.231041

56
M06-2X/6-31+G(d) SCF energy: -828.22716198 a.u.
M06-2X/6-31+G(d) enthalpy: -828.140268 a.u.
M06-2X/6-31+G(d) free energy: -828.194685 a.u.
M06-2X/6-311++G(d,p) SCF energy in solution: -828.47380042 a.u.

M06-2X/6-311++G(d,p) enthalpy: -828.386906 a.u.
M06-2X/6-311++G(d,p) free energy: -828.441323 a.u.
Cartesian coordinates

ATOM	X	Y	Z
C	-0.506351	0.956738	0.000206
C	0.126608	-0.289936	0.015356
C	-0.645280	-1.443545	0.023499
C	-2.034864	-1.373688	0.023416
C	-2.665271	-0.139272	0.008812
C	-1.894032	1.016085	-0.008405
C	0.243595	2.258954	-0.044151
O	0.221907	3.012680	-0.979357
F	-0.087356	-2.652249	0.025896
F	-2.758017	-2.486417	0.036147
F	-3.990558	-0.067935	0.015646
F	-2.517901	2.192748	-0.007122
I	2.224942	-0.491682	-0.049778
O	0.917789	2.480914	1.091822
H	1.398553	3.323061	0.991018

57
M06-2X/6-31+G(d) SCF energy: -157.70081077 a.u.
M06-2X/6-31+G(d) enthalpy: -157.575321 a.u.
M06-2X/6-31+G(d) free energy: -157.611634 a.u.
M06-2X/6-311++G(d,p) SCF energy in solution: -157.74850228 a.u.
M06-2X/6-311++G(d,p) enthalpy: -157.623013 a.u.
M06-2X/6-311++G(d,p) free energy: -157.659326 a.u.

Cartesian coordinates

ATOM	X	Y	Z
C	0.000150	-0.000077	-0.188259
C	1.439547	-0.346451	0.019683
H	1.691368	-0.400229	1.094475
H	1.686765	-1.322688	-0.412386
H	2.104195	0.403825	-0.423442
C	-1.019864	-1.073152	0.019669
H	-1.199138	-1.258129	1.094416
H	-1.986572	-0.802478	-0.419990
H	-0.698683	-2.025937	-0.416117
C	-0.419655	1.419634	0.019619
H	0.298472	2.122089	-0.418170

H	-1.404871	1.617628	-0.417563
H	-0.492608	1.666192	1.094508

58
M06-2X/6-31+G(d) SCF energy: -157.45073926 a.u.
M06-2X/6-31+G(d) enthalpy: -157.325618 a.u.
M06-2X/6-31+G(d) free energy: -157.362308 a.u.
M06-2X/6-311++G(d,p) SCF energy in solution: -157.59472172 a.u.
M06-2X/6-311++G(d,p) enthalpy: $\quad-157.469600$ a.u.
M06-2X/6-311++G(d,p) free energy: -157.506290 a.u.

Cartesian coordinates

ATOM	X	Y	Z
C	-0.002960	0.001259	0.008702
C	-1.408991	0.401326	0.011228
H	-1.592008	0.823086	-0.997031
H	-2.106416	-0.421148	0.172397
H	-1.587475	1.237156	0.697475
C	0.353320	-1.415836	-0.014658
H	-0.348271	-2.005719	-0.614734
H	1.393749	-1.611490	-0.277080
H	0.191229	-1.757103	1.027942
C	1.052629	1.014789	0.008884
H	0.702491	2.029458	0.195539
H	1.857552	0.729930	0.700171
H	1.525164	0.966594	-0.989618

59
M06-2X/6-31+G(d) SCF energy: -233.55853272 a.u.
M06-2X/6-31+G(d) enthalpy: -233.413903 a.u.
M06-2X/6-31+G(d) free energy: -233.450696 a.u.
M06-2X/6-311++G(d,p) SCF energy in solution: -233.64296474 a.u.
M06-2X/6-311++G(d,p) enthalpy: -233.498335 a.u.
M06-2X/6-311++G(d,p) free energy: -233.535128 a.u.

Cartesian coordinates

ATOM	X	Y	Z
C	0.682400	1.258692	-0.512776
H	0.631241	1.306413	-1.605900
H	0.202908	2.151308	-0.099271

H	1.741638	1.271920	-0.226292
C	-1.484749	-0.001192	-0.347041
H	-1.616025	-0.000966	-1.433730
H	-1.972196	-0.889052	0.067310
H	-1.973736	0.885563	0.067865
C	0.684502	-1.257434	-0.513029
H	1.743797	-1.268902	-0.226663
H	0.206584	-2.150949	-0.099640
H	0.633329	-1.305065	-1.606155
C	-0.005242	-0.000003	0.016259
O	0.024122	-0.000111	1.445552
H	0.948022	0.000238	1.737575

BI-OH

M06-2X/6-31+G(d) SCF energy: -506.51406153 a.u.
M06-2X/6-31+G(d) enthalpy: -506.394811 a.u.
M06-2X/6-31+G(d) free energy: $\quad-506.441483$ a.u.
M06-2X/6-311++G(d,p) SCF energy in solution: -506.68248934 a.u.
M06-2X/6-311++G(d,p) enthalpy: -506.563239 a.u.
M06-2X/6-311++G(d,p) free energy: -506.609911 a.u.

Cartesian coordinates

ATOM	X	Y	Z
C	-1.483420	0.446000	-0.015623
C	-0.565543	-0.584021	-0.002860
C	-0.892175	-1.926239	0.029705
C	-2.254746	-2.234497	0.025923
C	-3.218230	-1.222878	-0.002684
C	-2.838761	0.116482	-0.020518
C	-0.991579	1.873773	-0.012062
H	-0.119375	-2.686367	0.070603
H	-2.561717	-3.275661	0.051217
H	-4.271600	-1.484830	-0.004308
H	-3.564518	0.924327	-0.033884
O	0.319473	1.962361	0.020619
O	-1.756625	2.812034	-0.033267
I	1.443989	0.118637	0.013608
O	2.082121	-1.829842	0.020237
H	2.292735	-2.133363	-0.876845

2
M06-2X/6-31+G(d) SCF energy: -430.74156239 a.u.
M06-2X/6-31+G(d) enthalpy: -430.639154 a.u.
M06-2X/6-31+G(d) free energy: -430.684411 a.u.
M06-2X/6-311++G(d,p) SCF energy in solution: -430.87128459 a.u.
M06-2X/6-311++G(d,p) enthalpy: -430.768876 a.u.
M06-2X/6-311++G(d,p) free energy: -430.814133 a.u.
Cartesian coordinates

ATOM	X	Y	Z
C	1.261548	0.516621	-0.000005
C	0.459383	-0.617658	-0.000047
C	0.995309	-1.899332	0.000029
C	2.382684	-2.039015	0.000175
C	3.208614	-0.914240	0.000272
C	2.648845	0.358264	0.000190
C	0.700006	1.909792	-0.000153
H	0.352160	-2.773122	0.000015
H	2.814777	-3.035214	0.000251
H	4.287237	-1.033062	0.000405
H	3.260865	1.255478	0.000238
O	-0.606247	2.036954	-0.000780
O	1.410723	2.897249	0.000386
I	-1.643192	-0.335364	-0.000010

TS2
M06-2X/6-31+G(d) SCF energy: -589.09544762 a.u.
M06-2X/6-31+G(d) enthalpy: -588.855364 a.u.
M06-2X/6-31+G(d) free energy: -588.920283 a.u.
M06-2X/6-311++G(d,p) SCF energy in solution: -589.26501924 a.u.
M06-2X/6-311++G(d,p) enthalpy: -589.024936 a.u.
M06-2X/6-311++G(d,p) free energy: -589.089855 a.u.
Imaginary frequency: $\quad-238.1348 \mathrm{~cm}-1$
Cartesian coordinates

ATOM	X	Y	Z
C	2.583013	3.006222	-0.118467
C	1.246090	2.669031	0.059677
C	0.861815	1.326209	0.129259
C	1.818606	0.321584	-0.027326
C	3.157165	0.656056	-0.211966
C	3.535596	1.997777	-0.252007

H	2.879196	4.049474	-0.157678
H	0.488279	3.440567	0.159227
H	3.901939	-0.124332	-0.327943
H	4.581877	2.249749	-0.396419
C	-0.591284	1.007387	0.409975
O	-1.018556	0.586011	1.457417
I	1.264906	-1.727498	-0.013748
O	-1.267900	1.291623	-0.680286
C	-3.738806	0.220432	-0.170000
C	-3.247871	-1.219840	-0.160348
H	-2.577663	-1.398517	0.686158
H	-4.103527	-1.903722	-0.075227
H	-2.711652	-1.462295	-1.084475
C	-4.614566	0.530924	-1.376058
H	-5.529738	-0.075679	-1.336352
H	-4.911010	1.584754	-1.395852
H	-4.097833	0.298641	-2.313006
C	-4.378830	0.625468	1.149773
H	-4.679224	1.678609	1.142726
H	-5.279800	0.020432	1.323671
H	-3.687475	0.464511	1.981593
H	-2.807303	0.866620	-0.289909

$o-\mathrm{I}-\mathrm{PhCO} 2 \mathrm{H}$

M06-2X/6-31+G(d) SCF energy: -431.41442373 a.u.
M06-2X/6-31+G(d) enthalpy: $\quad-431.298633$ a.u.
M06-2X/6-31+G(d) free energy: -431.344367 a.u.
M06-2X/6-311++G(d,p) SCF energy in solution: -431.54393562 a.u.
M06-2X/6-311++G(d,p) enthalpy: $\quad-431.428145$ a.u.
M06-2X/6-311++G(d,p) free energy: -431.473879 a.u.
Cartesian coordinates

ATOM	X	Y	Z
C	-1.342260	0.359581	0.008533
C	-0.330068	-0.607949	0.049395
C	-0.666237	-1.962230	0.086626
C	-2.000632	-2.358901	0.088657
C	-3.014528	-1.405997	0.028350
C	-2.679520	-0.060309	-0.020434
C	-1.163600	1.845143	-0.005538
O	-1.964621	2.606006	-0.496199
I	1.756308	-0.188413	-0.060807

O	-0.063849	2.271254	0.630687
H	-0.050339	3.242665	0.560833
H	0.118948	-2.710359	0.108417
H	-2.240676	-3.417296	0.126575
H	-4.056626	-1.708404	0.016836
H	-3.446827	0.705175	-0.079333

60

M06-2X/6-31+G(d) SCF energy: -828.11136219 a.u.
M06-2X/6-31+G(d) enthalpy: $\quad-828.029603$ a.u.
M06-2X/6-31+G(d) free energy: -828.082158 a.u.
M06-2X/6-311++G(d,p) SCF energy in solution: -828.38325054 a.u.
M06-2X/6-311++G(d,p) enthalpy: -828.301491 a.u.
M06-2X/6-311++G(d,p) free energy: -828.354046 a.u.

Cartesian coordinates

ATOM	X	Y	Z
C	2.684865	-0.017591	0.000042
C	1.861428	1.107003	0.000077
C	0.473217	0.977722	0.000107
C	-0.037268	-0.309962	0.000053
C	0.753784	-1.443030	0.000044
C	2.135143	-1.291351	0.000053
C	-0.486734	2.192076	0.000218
O	-1.718409	1.828966	0.000641
I	-2.171326	-0.426089	-0.000056
O	-0.022778	3.312163	-0.000833
H	-2.015586	-2.116610	-0.000467
F	0.244835	-2.678667	0.000013
F	2.922377	-2.359060	0.000036
F	4.003761	0.119706	0.000026
F	2.464443	2.282584	0.000081

61
M06-2X/6-31+G(d) SCF energy: -431.30576710 a.u.
M06-2X/6-31+G(d) enthalpy: -431.195268 a.u.
M06-2X/6-31+G(d) free energy: -431.239359 a.u.
M06-2X/6-311++G(d,p) SCF energy in solution: -431.45960752 a.u.
M06-2X/6-311++G(d,p) enthalpy: $\quad-431.349108$ a.u.
M06-2X/6-311++G(d,p) free energy: -431.393199 a.u.

Cartesian coordinates			
ATOM	X	Y	Z
C	3.269818	-0.745402	0.000059
C	2.640053	0.495263	0.000062
C	1.245570	0.575829	0.000011
C	0.546708	-0.610531	-0.000015
C	1.122823	-1.868873	-0.000022
C	2.517094	-1.922154	0.000008
H	4.353827	-0.802172	0.000088
H	3.197349	1.427265	0.000086
H	0.527172	-2.776790	-0.000049
H	3.010959	-2.889075	0.000002
C	0.523878	1.924526	-0.000027
O	-0.759502	1.811996	-0.000271
I	-1.585054	-0.340841	-0.000001
O	1.188690	2.945749	0.000176
H	-1.710600	-2.048594	0.000249

14. References

[1] M. V. Vita and J. Waser, Org. Lett., 2013, 15, 3246.
[2] M. Chen, Z.-T. Huang and Q.-Y. Zheng, Org. Biomol. Chem., 2015, 13, 8812.
[3] D. M. Schultz, J. W. Sawicki and T. P. Yoon, Beilstein J. Org. Chem., 2015, 11, 61.
[4] R. D. Richardson, J. M. Zayed, S. Altermann, D. Smith and T. Wirth, Angew. Chem., Int. Ed., 2007, 46, 6529.
[5] E. McNeill and J. Du Bois, Chem. Sci. 2012, 3, 1810.
[6] Y. Wang, G.-X. Li, G. Yang, G. He and G. Chen, Chem. Sci., 2016, 7, 2679.
[7] S. D. Dreher, S.-E Lim, D. L. Sandrock and G. A. Molander, J. Org. Chem., 2009, 74, 3626
[8] V. A. Schmidt, R. K. Quinn, A. T. Brusoe and E. J. Alexanian, J. Am. Chem. Soc. 2014, 136, 14389.
[9] M. S. Wolfe, Synth. Commun., 1997, 27, 2975.
[10] D. M. Shendage, R. Fröhlich and G. Haufe, Org. Lett., 2004, 6, 3675.
[11] D. Uraguchi, N. Kinoshita and T. Ooi, J. Am. Chem. Soc., 2010, 132, 12240.
[12] M. Y. Jiang and D. Dolphin, J. Am. Chem. Soc., 2008, 130, 4236.
[13] X. Li, X. Che, G.-H. Chen, J. Zhang, J.-L. Yan, Y.-F.Zhang, L.-S. Zhang, C.-P. Hsu, Y. Q. Gao and Z.-J. Shi, Org. Lett., 2016, 18, 1234.
[14] N. D. Litvinas, B. H. Brodsky and J. Du Bois, Angew. Chem., Int. Ed. 2009, 48, 4513.
[15] I. Okada, K. Chiba and Y. Kitano, Synthesis, 2013, 45, 1069.
[16] C. J. Easton, C. A. Hutton, E. W.Tan and E. R. T. Tiekink, Tetrahedron Lett., 1990, 31, 7059.
[17] T. Saito, Y. Nishimoto, M. Yasuda and A. Baba, J. Org. Chem., 2006, 71, 8516.
[18] L. Malet-Sanz, J. Madrzak, R. S. Holvey and T. Underwood, Tetrahedron Lett., 2009, 50, 7263.
[19] L.Cao, J. Ding, M. Gao, Z. Wang, J. Li and A. Wu, Org. Lett., 2009, 11, 3810
[20] A. Cunningham, V. Mokal-Parekh, C. Wilson and S. Woodward, Org. Biomol. Chem., 2004, 2, 741.
[21] J. Wettergren, A. Bogevig, M. Portier and H. Adolfssona, Adv. Synth. Catal., 2006, 348, 1277.
[22] L. Adak, S. Bhadra and B. C. Ranu, Tetrahedron Lett., 2010, 51, 3811.
[23] L. H. Andrade and T. Barcellos, Org. Lett., 2009, 11, 3052.
[24] A. Rentmeister, F. H. Arnold and R. Fasan, Nat. Chem. Biol., 2009, 5, 26.
[25] S. Kamijo, Y. Amaoka and M. Inoue, Synthesis, 2010, 14, 2475.
[26] K. Kiyokawa, K. Takemoto and S. Minakata, Chem. Commun., 2016, 52, 13082.
[27] T. Maegawa, A. Akashi, K. Yaguchi, Y. Iwasaki, M. Shigetsura, Y. Monguchi and H. Sajiki, Chem. Eur. J., 2009, 15, 6953.
[28] M. A. Cismesia and T. P. Yoon, Chem. Sci., 2015, 6, 5426.
[29] Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
[30] For recent computational studies on photoredox mediated $\mathrm{C}-\mathrm{C}$ bond formation reactions, see: (a) O. Gutierrez, J. C. Tellis, D. N. Primer, G. A. Molander and M. C. Kozlowski, J. Am. Chem. Soc., 2015, 137, 4896; (b) T. B. Demissie, K. Ruud and J. H. Hansen, Organometallics, 2015, 34, 4218; (c) T. B. Demissie, K. Ruud and J. H. Hansen, J. Org. Chem., 2016, 81, 7110.
[31] Handbook of Chemistry and Physics. $90^{\text {th }}$ edition, D. R. Lide, CRC Press, 2009-
2010.
[32] For experimental redox potentials, see: C. R. Bock, T. J. Meyer and D. G. Whitten, J. Am. Chem. Soc., 1975, 97, 2909. For DFT calculations of redox potentials, see: ref. 6 and (a) P. Winget, C. J. Cramer and D. G. Truhlar, Theor. Chem. Acc., 2004, 112, 217; (b) A. A. Isse, C. Y. Lin, M. L. Coote and A. Gennaro J. Phys. Chem. B, 2011, 115, 678; (c) H. G. Roth, N. A. Romero and D. A. Nicewicz, Synlett, 2016, 27, 714.
15. ${ }^{1} \mathrm{H}$-NMR, ${ }^{13} \mathrm{C}$-NMR and ${ }^{19} \mathrm{~F}$-NMRspectra

룰

14

oon

Cores

$\stackrel{4}{4}$
\vdots
1

$\operatorname{lgx}-05-40 \mathrm{c}$ ${ }_{\text {C13CPD }}$

\qquad

16.191
$88.89!$
61.016

$\operatorname{lgx}-07-187-\mathrm{C}$
C13CPD
C13CPD

$\operatorname{lgx}-04-155$
PROTON

${ }_{{ }^{\lg \mathrm{gx}} \mathrm{COP}-69}$
n
$\stackrel{n}{n}$
$\stackrel{0}{0}$
i

$\stackrel{\circ}{\sim} \stackrel{n}{\sim} \stackrel{a}{\infty}$
$\underbrace{N_{3}}$

$l_{\text {lgx-05-12 }}^{\text {PROTON }}$
$\underset{\sim}{\dot{\infty}} \underset{\sim}{\sim} \underset{\sim}{\sim} \stackrel{n}{\sim}$

Cosces)

$\operatorname{lgx}-04-1$
PROTON
lgx－04－142 c
C13CPD
+

～

lgx-05-176
PROTON

14

I

$\underset{{ }_{\text {C13 }}}{\lg -05-176 \mathrm{c}}$
co

$\underset{i}{i}$
$\underbrace{\square}_{i}$

$\operatorname{lgx}-05-175 \mathrm{C}$
C 13 CPD
$\stackrel{\grave{j}}{\stackrel{1}{2}}$

$\operatorname{lgx}-05-180$
C13CPD

(

$\operatorname{lgx}-05-166$
PROTON
PROTON
$\stackrel{\underset{1}{i}}{\substack{~}}$

$$
\stackrel{\mathrm{HO}}{\square}
$$

$\operatorname{lgx}-05-86$ down H
PROTON

31-trans

$\stackrel{\circ}{i}$

$$
{\underset{\text { PhthN }}{32}}_{\mathrm{HO}}^{\underset{\text { COOMe }}{ }}
$$

Coile

Abstract

$\operatorname{lgx}-05-196$ test あき | \circ |
| :--- |
| i |
| i |

 $\stackrel{\infty}{\sim}$

procar

$\operatorname{lgx}-06-17$ p
PROTON

$\underset{\sim}{\text { in }} \underset{\sim}{\sim}$
$\stackrel{\circ}{\circ}$
Cill

40
$\operatorname{lgx}-05-200 \mathrm{c}$
C13CPD

Cosers)

$\operatorname{lgx}-08-36-\mathrm{H}$
PROTON
$\stackrel{a}{\dot{i}}$

Moooc $\underbrace{\text { NHAC }}_{47}$

$\lg -08-36-\mathrm{C}$
13 CPD
N

180
$170 \quad 1$

- 140

130
120
100
f1 ${ }^{90}$
lgx-08-66-H
PROTON
C

$\operatorname{lgx}-08-14-\mathrm{C}$
C 13 CPD

lgx-08-16-HC
PROTON

$\stackrel{1}{i} \stackrel{0}{\dot{\sim}} \underset{\sim}{\text { a }}$
$\stackrel{\circ}{\circ}$

NHAC

$\operatorname{lgx}-08-16-\mathrm{HC}-\mathrm{C}$
C13CPD
87.691-
 $\stackrel{\square}{\infty}$ -92.68
$\left[\begin{array}{r}77.32 \\ 77.00 \\ 76.68\end{array}\right.$

54

lgx-08-55-C
13 CPD

$\begin{array}{ll}n \\ \stackrel{n}{n} & n \\ \underset{\sim}{n} & n \\ 1 & n \\ n\end{array}$

