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ABSTRACT: In the study of neural circuits, it

becomes essential to discern the different neuronal cell

types that build the circuit. Traditionally, neuronal

cell types have been classified using qualitative

descriptors. More recently, several attempts have been

made to classify neurons quantitatively, using unsuper-

vised clustering methods. While useful, these algo-

rithms do not take advantage of previous information

known to the investigator, which could improve the

classification task. For neocortical GABAergic inter-

neurons, the problem to discern among different cell

types is particularly difficult and better methods are

needed to perform objective classifications. Here we

explore the use of supervised classification algorithms

to classify neurons based on their morphological fea-

tures, using a database of 128 pyramidal cells and 199

interneurons from mouse neocortex. To evaluate the

performance of different algorithms we used, as a

\benchmark," the test to automatically distinguish

between pyramidal cells and interneurons, defining

\ground truth" by the presence or absence of an api-

cal dendrite. We compared hierarchical clustering

with a battery of different supervised classification

algorithms, finding that supervised classifications out-

performed hierarchical clustering. In addition, the

selection of subsets of distinguishing features enhanced

the classification accuracy for both sets of algorithms.

The analysis of selected variables indicates that den-

dritic features were most useful to distinguish pyrami-

dal cells from interneurons when compared with so-

matic and axonal morphological variables. We con-

clude that supervised classification algorithms are

better matched to the general problem of distinguish-

ing neuronal cell types when some information on

these cell groups, in our case being pyramidal or

interneuron, is known a priori. As a spin-off of this

methodological study, we provide several methods to

automatically distinguish neocortical pyramidal cells

from interneurons, based on their morphologies. ' 2010
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INTRODUCTION

To understand neural circuits it is necessary, as a first

step, to correctly identify the existing subtypes of

neurons, before one tries to discern how they are con-

nected and how the circuit functions. For neocortical

circuits in particular, the two principal neuronal types

of the cerebral cortex (see Fig. 1) are pyramidal cells

and GABAergic interneurons (Ramón y Cajal, 1899;

Peters, 1987). This basic classification has been

expanded over the last century with the discovery of

new subtypes of cells. At the same time, classification

of cortical neurons has traditionally been qualitative

(de Nó, 1922) with nomenclature that varies across

investigators. For this reason, it is apparent that a

classification based on quantitative criteria is needed,

in order to obtain an objective set of descriptors for

each cell type that most investigators can agree upon.

As suggested by community efforts (Ascoli et al.,

2008) proper neuronal type definition should prob-

ably be a multimodal information task, including

physiological, molecular and morphological features,

and should use classification algorithms that are both

quantitative and robust (Cauli et al., 2000).

Previous efforts to quantitatively classify cortical

neurons have based their neuronal classification on

unsupervised clustering techniques (Cauli et al.,

2000; Kozloski et al., 2001; Wong et al., 2002; Tsiola

et al., 2003; Benavides-Piccione et al., 2005; Dumi-

triu et al., 2007; Helmstaedter et al., 2008a,b,c; Kara-

giannis et al., 2009; McGarry et al., 2010). These are

essentially exploratory techniques which aim at dis-

covering new subtypes of cells or confirming some

known hypothesis about them. But in these studies,

prior information on the potential outcomes was not

utilized, or was only used to validate the clustering.

Instead, this information could be used to guide a

supervised classification. An example of this

approach can be seen in Marin et al. (2002), where

linear discriminant analysis was used to investigate

whether different classes of projection neurons have

distinct axon projection patterns, a problem also

tackled by Wong et al. (2002), using hiearchical clus-

tering.

In our study, we compare the performance of

supervised and unsupervised classification ap-

proaches in an apparently simple task: to automati-

cally distinguish interneurons from pyramidal cells. It

is important to note that, in this benchmark exercise,

the presence or absence of an apical dendrite was not

included in the morphological features, since it was

used as the \ground truth" to evaluate the perform-

ance of the algorithms. More specifically, we com-

pared hierarchical clustering using Ward’s method,

the most common unsupervised algorithm used with

neuronal data, with different supervised algorithms

such as naı̈ve Bayes, C4.5, k-nn, multilayer percep-

tron and logistic regression. Supervised methods out-

performed hierarchical clustering, confirming the

power of adding additional statistical descriptors to

Figure 1 \Benchmark" task: distinguishing between GABAergic interneurons and pyramidal

cells. Representative basket (A) and pyramidal (B) cell from mouse neocortex. Axonal arbor in

blue and dendritic tree in red. Data examples obtained from http://www.columbia.edu/cu/biology/

faculty/yuste/databases.html.
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the task. In addition, since the inclusion of all the

available variables could potentially lead to a less

accurate model, we explored whether selecting sub-

sets of variables improved classification, for both

supervised and unsupervised methods. We tested

wrapper, embedding and filter selection methods,

finding that they indeed significantly improve the

classification using both types of algorithms.

METHODS

Preparing Brain Slices

All animal experiment was done in compliance with the

IACUUC from Columbia University. Live brain slices were

prepared from the cortex of PND 14 C57/B6 mice. Mice

were decapitated using scissors. The skin and skull were

removed. The brain was then immediately placed in cold

sucrose artificial cerebral spinal fluid (222 mM sucrose,

2.6 mM KCl, 27 mM NaHCO3, 1.5 mM NaH2PO4, 2 mM
CaCl2, 2 mM MgSO4, bubbled with 95% 02, 5%CO2)

for 3 min. The brain was then transferred to a cutting

block with the cortex facing up. Slices 300–400 lm thick

were cut using a Vibratome. The slices remained viable for

several hours for use in various electrophysiology

experiments.

Histological Procedure

Neurons were filled with biocytin by a patch pipette. Slices

were kept overnight in 4% paraformaldehyde in 0.1 M
phosphate buffer (PB) at 48C. The slices were then rinsed

three times for five minutes per rinse on a shaker in 0.1 M
PB. They were placed in 30% sucrose mixture (30 g sucrose

dissolved in 50 mL ddH20 and 50 mL 0.24 M PB per

100 mL) for 2 h and then frozen on dry ice in tissue freez-

ing medium. The slices were kept overnight in a �808C
freezer. The slices were defrosted and the tissue freezing

medium was removed by three 20-min rinses in 0.1 M PB

while on a shaker. The slices were kept in 1% hydrogen

peroxide in 0.1 M PB for 30 min on the shaker to pretreat

the tissue. The slices were rinsed twice in 0.02 M potas-

sium phosphate saline (KPBS) for 20 min on the shaker.

The slices were then kept overnight on the shaker in

Avidin-Biotin-Peroxidase Complex. The slices were then

rinsed three times in 0.02 M KPBS for 20 min each on the

shaker. Each slice was then placed in DAB (0.7 mg/mL

3,3@-diaminobenzidine, 0.2 mg/mL urea hydrogen per-

oxide, 0.06 M Tris buffer in 0.02 M KPBS) until the

slice turned light brown and was then immediately trans-

ferred to 0.02 M KPBS and transferred again to fresh

0.02 M KPBS after a few minutes. Stained slices were

then rinsed a final time in 0.02 M KPBS for 20 min on a

shaker. Each slice was then mounted onto a slide using

crystal mount.

Reconstruction of Neuron Morphologies

Successfully filled and stained neurons were reconstructed

using Neurolucida (MicroBrightField). Neurons were

viewed with 603 oil objective on an Olympus IX71

inverted light microscope or an Olympus BX51 upright

light microscope. For intricate sections of the neuron a

1003 oil objective was used. The Neurolucida program

projects the microscope image onto a computer drawing

tablet. The user then traced the neuron’s processes while

the program recorded the coordinates of the tracing to cre-

ate a three dimensional image. The user defined an initial

reference point for each tracing. The z coordinate was then

determined by adjustment of the focus. In addition to the

neuron, the pia and white matter were drawn.

The Neurolucida Explorer program was used to measure

sixty four morphological variables of the reconstruction as

well as the relative distance of the soma to the pia. Some

variables were directly measured, such as somatic area and

perimeter, number of axons and dendrites, axonal and den-

dritic length, axonal and dendritic branch angles and num-

ber of axonal and dendritic nodes (branch points). Other

variables were calculated values such as axon and dendritic

Sholl lengths, convex hull analysis, and fractal analysis.

Sholl length is a measure of how the length of the processes

is distributed. Concentric spheres centered at the soma were

drawn around the neuron; for axons the spheres were drawn

at radius intervals of 100 lm and for dendrites at intervals

of 50 lm. The Sholl length is the total length of the part of

the axon or dendrite contained within in each shell. Convex

hull analysis draws a convex shape around the axons or

dendrites in both two (x,y) and three (x,y,z) dimensions. The

area and perimeter of the two dimensional shape and the

volume and surface area of the three dimensional shape are

then calculated. Fractal analysis calculates the fractal

dimension of the axons or dendrites using linear regression,

and thus is a measure of how the neuron fills space.

Unsupervised Classification

In unsupervised learning or clustering (Jardine and Sibson,

1968), the aim is to discover groups of similar instances

within the data. In this approach, we have no information

about the class label of data or how many classes there are.

Unsupervised Classification Algorithms

One of the most common unsupervised methods is hierarch-

ical clustering, previously used to classify neurons (see Sec-

tion 1). This is an approach based on organizing data into a

hierarchical structure according to the proximity matrix.

The graphical representation of the clustering is a tree struc-

ture, called dendrogram (see Fig. 2). In these methods,

agglomerative clustering is usually used and works from

the bottom up, by merging nearest clusters at each step. The

merger depends on a measure of dissimilarity. Euclidean

distance is normally used as a measure of distance between

pairs of observations and Ward’s method is the linkage
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criteria to specify the dissimilarity between clusters in our

case.

The ultimate clustering results are obtained by slicing

the dendrogram at a particular level. In our case, this level

is when only two clusters remain, attempting to separate py-

ramidal cells in a cluster and interneurons in the other.

Supervised Classification

We used different supervised classification algorithms. In

addition, we assessed and compared the performance of

these algorithms to determine if supervised classification

outperformed unsupervised clustering and if so which algo-

rithms were most effective.

Supervised Classification Algorithms

In supervised classification, each instance is represented by

a vector (x(j), c(j)), with j [ {1, . . . ,N}, where x(j) is com-

posed by the values of n predictor variables or features and

c(j) denotes one of the r0 labels [ {1, . . . , r0} of the class

variable c. The task is to automatically induce a model

based on a set of N instances, called training data. This

model then will be used to assign labels to new instances

with unknown labels using only the value of their predictor

variables. If we have a new instance x, supervised classifi-

cation builds a function c such that:

c : x ! f1; . . . ; r0g ð1Þ

The chosen algorithms in this article are representative

from several paradigms, because it is not known a priori
which one is more suitable for this type of data. Next, a

short description of each algorithm used is presented:

Naı̈ve Bayes (NB) (Minsky, 1961), derived from Bayes-

ian classifiers. The maximum a posteriori assignment to the

class label is based on obtaining the conditional probability

density function for each feature given the value of the class

variable.

C4.5 (Quinlan, 1993), derived from classification trees.

It builds a decision tree from the training data using recur-

sive partitioning of the space representing the predictive

variables and based on the information gain ratio.

K-nn (Cover and Hart, 1967), derived from \lazy algo-

rithms," called K-nearest neighbors. It is based on classify-

ing instances assigning labels guided by the K nearest

instances labels. This algorithm does not provide an explicit

model.

Multilayer perceptron (MLP) (Rumerlhart et al., 1986),

derived from neural networks. This is an artificial neuronal

network and is based on simulating the structure and behav-

ior of the biological neuronal networks.

Logistic regression (LR) (Hosmer and Lemeshow,

2000), derived from statistical theory. This algorithm builds

a model estimating parameters using the maximum likeli-

hood estimation method.

An example of the models built using these classifica-

tion algorithms is shown in Figure 3.F
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Assessing Classification Algorithms

The chosen measure of classification performance is the

rate of correctly classified instances, using the presence or

absence of an apical dendrite as the ground truth. To evalu-

ate the performance of a model, the evaluation should be

carried out on data not seen in training the model. One

problem of using a completely different dataset to test and

to train the model is that information in the test set could

have significant information that is lost as it is never used to

train the model.

One common technique that can evaluate performance

without losing information is k-fold cross-validation (Stone,

1974). The data set of size m is randomly partitioned into k
sets (\folds") all of size m/k. Then k-1 folds are used to

train a model, which is then evaluated on the one unused

fold. This process is repeated k times, each time leaving out

a different fold for evaluating the model. The final perform-

ance measure of the model is the average of the k runs.

Statistical Test to Compare Models

A 10-fold cross-validation was used to estimate the per-

formance of each supervised classification algorithm, so

there are 10 values of this performance for each algorithm.

To correctly compare the performance of the different clas-

sification algorithms, these distributions of values must be

compared using a statistical hypothesis test.

In our case, we used the Wilcoxon signed-rank test

(Wilcoxon, 1945). It is a nonparametric statistical hypothe-

sis test which can reveal the existence of significant differ-

ences between two distributions. Our null hypothesis is that

there are not statistical differences between the two distri-

butions. The procedure for using the Wilcoxon signed-rank

test was to compare the distribution obtained using the

model with the highest averaged rate of correctly classified

instances against each of the other distributions obtained

with the rest of models.

Dimensionality Reduction

To reduce the number of variables, we explored two strat-

egies: feature extraction (PCA) and feature subset selection

(FSS).

Principal Component Analysis. Principal component anal-

ysis (PCA) (Jolliffe, 1986) is a very popular method for fea-

ture extraction. PCA obtains new uncorrelated variables

named principal components (PCs), which preserve as

much of the original information as possible. These princi-

pal components are sought from the original features and

maximize the data variance captured. It is a mathematical

procedure and can be calculated from the eigenvalue

decomposition of the data covariance matrix.

Feature Subset Selection. We also used feature subset

selection (FSS), a different method for dimensionality

reduction based on selection instead of extraction. The ra-

tionale is that not all variables that are measured for data

analysis are likely to be necessary for building an accurate

model and including all of them may lead to a less accurate

model than if some of them were removed. The problem is

that it is not obvious a priori which variables are relevant

and/or nonredundant. Besides, this dimensionality reduction

can lead to more parsimonious, or easily understood, mod-

els. Other advantages could be the decrease in the cost of

data acquisition or the faster induction of the model. For all

these reasons, FSS was carried out in our study.

There are three approaches to perform FSS (Kohavi and

John, 1997; Liu and Motoda, 1998): filter, which ranks the

subsets of features based on intrinsic characteristics of the

data independently of induction learning algorithms; wrap-

per, which evaluates the FSS with the accuracy of the learn-

ing algorithm; and embedded, where FSS is part of the pro-

cess itself in some learning algorithms such as C4.5. In

addition, three searching techniques were used to seek in

the space of predictor variables when it is necessary in filter

and wrapper approaches: forward selection, backward elim-

ination (Kittler, 1978), and genetic algorithms (Goldberg,

1989). Genetic algorithm search procedure evolves good

feature subsets by using random perturbations of a current

list of candidate subsets. Each individual of the genetic

algorithms is a binary string of size n (total number of fea-

tures) and represents the selected features.

To perform the classification and the FSS, Weka soft-

ware (Witten and Frank, 2005) was used with all the param-

eters by default. Specifically, for the genetic algorithm,

default parameters as number of generations and probabil-

ities of crossover and mutation were those implemented in

Weka. The population individuals were chosen at random.

The statistical tests, the PCA analysis and hierarchical clus-

tering were run using the statistical package R (Ihaka and

Gentleman, 1996).

RESULTS

Our goal was to compare the performance of hier-

archical clustering and supervised classification algo-

rithms in the benchmark task of distinguishing

between pyramidal cells and interneurons, based

solely on their morphological differences. We used a

database of 327 cells (199 interneurons and 128 py-

ramidal cells), and for each cell, 65 morphological

features were measured, creating a data matrix (Sup-

porting Information Table 1). All pyramidal neurons

had clear apical dendrites. Interneurons belonged to

many different subtypes and were collected over sev-

eral different studies from the laboratory. For each

algorithm the exercise consisted in optimally classify-

ing all neurons into two groups: pyramidal cells or

interneurons. We assessed the percentage of correctly

classified cells by taking into account which neurons

had or lack an apical dendrite, information which was

not used by the unsupervised algorithms, and was
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only used by the supervised algorithms during the

training phase.

Clustering Algorithms

We first performed clustering using hierarchical

Ward’s method, the most common classification algo-

rithm used with neuronal data. This approach was

used with three different dimensionality reduction

techniques. The first one was based on the first six

principal components (PCs) obtained with PCA,

which carry almost 55% of the total variance. This

number of PCs was chosen because of the trade-off

between the accuracy and the number of features. For

example, using the first seven PCs (60% of the total

variance), the accuracy decreased by 2%. Using the

first eleven PCs (70% of the total variance), the accu-

racy was only increased in 1%. And finally, using the

first 16 PCs (80% of the total variance), the accuracy

decreased in 4%. The second variable selection

method for clustering was to use only those original

features with a correlation coefficient greater than 0.7

with the first six PCs. With this requirement, 10 origi-

nal features remained. Finally, filter FSS was used as

the third method to select variables in unsupervised

approach.

As we knew beforehand which neurons were py-

ramidal and which were interneurons, the accuracy of

the hierarchical clustering was calculated as the per-

centage of each group of cells which fall in the cor-

rect majority cluster, after separating the data into

two final clusters. Thus, we assumed that each cluster

was equivalent to a class.

All the hierarchical clustering results can be seen

in Table 1. Without dimensionality reduction techni-

ques, 59.33% of accuracy was obtained. Using the

above techniques of dimensionality reduction related

to PCA the outcomes were relatively poor. Only

59.02% accuracy was reached using PCA, which is

the lowest value from all algorithms in this compara-

tive study. Using hierarchical clustering of the more

than 0.7 correlated features with the PCs, the accu-

racy obtained was 66.77%. This is increased when

the features obtained with filter FSS were used. The

accuracy obtained is 71.25% using backward elimina-

tion, and this value increased to 77.68% using for-

ward selection and 79.82% using genetic algorithms.

As mentioned, all these accuracy values were

obtained without using any previous information

about the class variable. Supervised classification

algorithms, whose results are presented next, use this

known information to build the different models.

Supervised Classification Algorithms

A battery of different supervised classification algo-

rithms, listed in the Methods section, were compared

in the task of distinguishing between pyramidal cells

and interneurons. Again, we first used all the avail-

able data, without FSS. Filter FSS was then used with

three different search strategies, the same as with

hierarchical clustering. Finally, we explored wrapper

FSS, another approach used to select subsets of fea-

tures (see Methods section) which is only appropriate

for supervised classification algorithms. Thus, a com-

parison using it with clustering techniques cannot be

made.

Naı̈ve Bayes

This algorithm obtained very similar results using

all variables and using variables selected by the

filter FSS process (see Table 2). Without FSS, an

Table 2 Results Obtained Using Naı̈ve Bayes (NB)

NB

Accuracy #

No FSS 80.736 10.44 65

Filter Forward 79.826 9.86 10

Backward 79.516 9.74 17

Genetic 80.436 7.07 16

Wrapper Forward 87.166 6.34 8

Backward 83.186 9.12 50

Genetic 83.496 8.55 23

Values correspond to the accuracy of each model, i.e. the mean 6
standard deviation (percentage) averaged over the 10 values esti-

mated using 10-fold cross-validation. The number of features used

(#) is also indicated as before. Bold face indicates the model with

no significant statistical differences with the highest accuracy

supervised model.

Table 1 Results Obtained with Hierarchical Clustering

Using Ward’s Method

Hierarchical

Clustering

Accuracy #

No FSS 59.33 65

PCA PC 59.02 6

Original features 66.77 10

Filter Forward 77.68 10

Backward 71.25 17

Genetic 79.82 16

PC uses the six first principal components, whereas \Original Fea-

tures" uses the original features with correlation greater than 0.7

with the six first principal components. The number of features

used (#) is also indicated.
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80.73% 6 10.44% accuracy was achieved, whereas

with filter FSS, the accuracy was around 80%. Wrap-

per FSS was able to improve these means: with for-

ward search, its accuracy was 87.16% 6 6.34%.

Backward (83.18% 6 9.12%) and genetic search

(83.49% 6 8.55%) did not significantly improve the

accuracy.

C4.5

In the case of C4.5 algorithm, all the results (see

Table 3) were comparable or better than those ob-

tained using naı̈ve Bayes. Without FSS, an 84.40% 6
3.84% of accuracy was obtained. Forward selection

and genetic algorithms for filter FSS showed lower

outcomes than without FSS, but by using backward

selection a performance of 88.07% 6 6.09% using

only 11 features was achieved. This mean was the

highest one obtained using filter FSS. In the case of

wrapper FSS, the outcomes were 86.85% 6 5.29%

using forward selection, 87.16% 6 5.83% using

backward selection and 86.85% 6 4.72% using

genetic search.

K-nn

K-nn was configured with k ¼ 5 after trying some

preliminary tests, this configuration obtained better

accuracy than k ¼ 1, k ¼ 3, and k ¼ 7. In spite of 5-

nn being the simplest algorithm used to classify, the

results (see Table 4) were quite competitive with

other approaches. Specifically, with 5-nn using all the

available variables a 83.18% 6 7.15% accuracy is

obtained. This value improved when filter FSS is

used, obtaining 85.01% 6 5.60% with genetic algo-

rithms as the best case. Again, wrapper FSS was the

best approach to select appropriate variables, with

accuracies using backward selection of 86.85% 6
6.26%, and in turn, this is overcome by 87.46% 6
5.68% for genetic algorithms and 89.30% 6 7.58%

for forward selection.

Multilayer Perceptron

Multilayer perceptron (see Table 5) was the algorithm

with the highest overall accuracy among all the algo-

rithms without using FSS (87.46% 6 9.06%). More-

over, this result was improved using backward selec-

tion for filter FSS (87.77% 6 6.36%). However,

using forward selection (82.57 6 9.54) or genetic

algorithms (82.26% 6 9.17%), the accuracy was

reduced. The improvement obtained using wrapper

FSS was not as significant as when using other super-

vised algorithms. In this case, 88.07% was the highest

accuracy mean obtained using forward selection

(64.99) and backward elimination (68.27).

Logistic Regression

The last supervised classification algorithm, logistic

regression (see Table 6), maintained the mean

obtained without FSS (82.26% 6 7.36%) when for-

ward selection for filter FSS was used (82.26 6
9.82). This outcome is 83.49 6 9.45 using genetic

algorithms while using backward elimination reaches

85.63% 6 8.56%. The highest accuracy of all the

approaches was obtained using logistic regression

with wrapper FSS and a genetic algorithms search:

Table 4 Results Obtained Using K-nn (with K ¼ 5)

5-nn

Accuracy #

No FSS 83.186 7.15 65

Filter Forward 83.796 9.55 10

Backward 84.716 6.03 17

Genetic 85.016 5.60 16

Wrapper Forward 89.306 7.58 6

Backward 86.856 6.26 51

Genetic 87.466 5.68 34

Table 5 Results Obtained Using Multilayer Perceptron

(MLP)

MLP

Accuracy #

No FSS 87.46 6 9.06 65

Filter Forward 82.57 6 9.54 10

Backward 87.77 6 6.36 17

Genetic 82.26 6 9.17 16

Wrapper Forward 88.07 6 4.99 10

Backward 88.07 6 8.27 61

Genetic 87.46 6 6.26 37

Table 3 Results Obtained Using the Decision Tree

C4.5

C4.5

Accuracy #

No FSS 84.406 3.84 65

Filter Forward 82.266 7.17 9

Backward 88.076 6.09 11

Genetic 81.656 7.24 6

Wrapper Forward 86.856 5.29 7

Backward 87.166 5.83 12

Genetic 86.856 4.72 13
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91.13% 6 5.95%. This model was therefore used in

the statistical test (see Methods section) to be com-

pared against the other models.

Feature Selection and Comparison
Between Clustering Approach and
Supervised Classification

For hierarchical clustering, filter FSS always gener-

ated more accurate classifications than using all avail-

able variables, or after applying some traditional

dimensionality reduction technique such as PCA. It is

important to highlight this result because all previous

clustering work uses PCA to reduce the number of

variables. Specifically, for our benchmark test, using

filter FSS enhanced accuracy of unsupervised cluster-

ing by almost 15%. Thus, this approach appears de-

sirable to select an appropriate subset of variables for

future cluster analysis studies.

When comparing hierarchical and supervised

methods, we find that hierarchical clustering and filter

FSS, using forward selection or genetic algorithms,

were competitive combinations against supervised

classification algorithms with no FSS and filter FSS.

On the other hand, when wrapper FSS is used with

the supervised classification algorithms it is generally

superior.

Comparison Among Supervised
Classification Algorithms

After concluding that supervised methods with wrap-

per selection of variables enhance the classification,

the next step was to determine which supervised algo-

rithm was best able to discriminate between pyrami-

dal cells and interneurons in our benchmark test.

The highest accuracy was obtained using the

model built with logistic regression and wrapper FSS

(with a genetic algorithm). To compare this model

with all the rest, the Wilcoxon signed-rank test was

used.

The results obtained with this statistical test are

shown in Table 7. In this table, only the models

which have a p-value greater than 0.05 (differences

are not statistically significant) in the test are shown.

As these models did not reject the null hypothesis, we

cannot assert than they are significantly different

from the model built using logistic regression and

genetic algorithms in a wrapper approach. Thus these

models are the top models from our results. Statistical

hypothesis test outcomes confirm that models

obtained with the wrapper approach are the most

accurate to classify interneurons and pyramidal cells,

since nine of the selected models in Table 7 are built

using wrapper FSS.

These results indicate that there is not one particu-

lar supervised method which is superior, since all the

used algorithms could be chosen as winners based on

the statistical test. Therefore, an appropriate selection

of variables (using wrapper FSS in our case) appears

to be more important than using a specific supervised

algorithm.

Features That Distinguish Between
Interneurons and Pyramidal Cells

We finally explored which of the morphological fea-

tures, or combinations of them, were most indicative

of differences between pyramidal cells and interneur-

ons. In the original data set, 65 variables were avail-

able before applying subset selection. When filter

FSS was applied, the number of attributes obtained

for each searching method was the same, except for

C4.5 algorithm. This is because filter FSS algorithms

do not depend on the classification method to obtain

Table 7 Results of Wilcoxon Signed-Rank Test

FSS Algorithm p-Value

No FSS MLP 0.091
Filter Backward C4.5 0.095

Wrapper Forward NB 0.095

5-nn 0.220

MLP 0.063

LR 0.053

Backward C4.5 0.077

MLP 0.115

C4.5 0.052

Genetic 5-nn 0.052

LR –

Models which do not reject the null hypothesis, and therefore, with

no significant statistical differences (p-value greater than 0.05) with

the highest accuracy model are listed.

Table 6 Results Obtained Using Logistic Regression

(LR)

LR

Accuracy #

No FSS 82.266 7.36 65

Filter Forward 82.266 9.82 10

Backward 85.636 8.56 17

Genetic 83.496 9.45 16

Wrapper Forward 85.636 9.79 7

Backward 84.716 7.54 59

Genetic 91.136 5.95 33

Details as before.
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the subset of features. The number of features

selected, using filter FSS, was 10 for forward selec-

tion, 17 for backward selection, and 16 for genetic

algorithms. C4.5 is the only algorithm with different

number of features, since it has an embedded FSS

that chooses a subset from the features selected by

the filter FSS to build the decision tree.

The number of features selected using wrapper

FSS were similar but the main difference was in

the searching technique. Using forward selection,

the number of features selected was in a range

from 6 to 10. The low number of features is a bias

of the forward selection. In the case of backward

elimination, the number of features was higher

(from 50 to 61) with an exception in the C4.5 algo-

rithm. In C4.5, the number of features selected by

the wrapper FSS was 23, and after that, when C4.5

induces the decision tree model, only 12 features

were used. Genetic algorithms technique selects

from 13 to 37 features, taking into account again

that C4.5 has the embedded FSS. This technique

was not as biased as the two others, since it is not

a \greedy" search.

Regarding the specific features chosen, somatic

compactness seemed to be the most important

somatic feature because it was the most commonly

selected variable by the winner models. As for axonal

features, the number of axonal Sholl sections and

standard deviation of the average axonal segment

length were the two most important features. This can

be seen in the logistic regression and C4.5 models

for example, because these two features had a high

coefficient or are located at the top of the tree [see

Fig. 3(B)]. In addition, the axonal local angle average

was another important feature because it was selected

by many models. For the same reasons, the number

of dendritic Sholl sections and the ratio of dendritic

length to surface area were the most important

dendritic features. The highest order dendritic

segment is selected by the majority of the models as

well.

We also performed tests using separately the so-

matic, axonal and dendritic subsets of features on

some of the selected models (unpublished results).

While models built using only somatic features

obtained *60% accuracy, *75% accuracy was

obtained with axonal features while dendritic features

reached *85% accuracy (not shown). These values

confirmed the importance of dendritic features.

Therefore, our results indicate that dendritic fea-

tures are very informative to differentiate morpholog-

ically pyramidal neurons from interneurons, although

some axonal and somatic features also contribute to

this distinction.

DISCUSSION

To enable the quantitative classification of neuronal

cell types, in this methodological study we have

compared different methods to distinguish between

neuronal classes, based on their morphologies. By

using a standard database with a clearly classified set

of cells, we devised a benchmark test in which the

algorithms had to distinguish pyramidal cells from

interneurons. A human observer originally classified

these cells into both classes according to the presence

or absence of an apical dendrite, thus setting the

ground truth for this task. We then tested side by side

the performance of the unsupervised clustering

method, which is becoming standard in neuroscience,

versus the performance of representative algorithms

from some of the most popular supervised classifica-

tion methods used in machine learning. Our reason

for doing so is that, if previous information is avail-

able to classify data, taking advantage of it to obtain

more accurate outcomes should be desirable. Never-

theless, given the peculiarities of the classification

problem, it was not obvious that that supervised

methods world be in principle better than previously

used neuronal classifiers, or which approach could

outperform the others, so we undertook the task of

carefully comparing a battery of algorithms and

different preprocessing strategies.

Our main finding is that supervised classification

methods outperformed unsupervised algorithms. In

this comparative study, we show that hierarchical clus-

tering approach is unable to obtain accuracy as precise

as supervised classification when distinguishing

between pyramidal cells and interneurons. Therefore,

supervised classification is an effective approach to

perform this task and is another approach in neuronal

data analysis, which that could be useful in future

studies. In fact, previous classification studies, in

which some information is known beforehand, could

be reanalyzed using that information as a class label

with supervised algorithms. An ideal supervised clas-

sification algorithm does not emerge from our results.

It seems that the accuracy of results obtained does not

depend on the classification algorithm, since the best

models chosen using the statistical test are built using

all the different supervised classification algorithms

tested. Thus, the choice of the algorithm would depend

on each specific classification or domain. There could

be some bias in this choice, since if an interpretable

model is desirable C4.5 or naı̈ve Bayes could be the

most preferred. 5-nn does not build a model, so this

could be an undesirable restriction.

Our second conclusion is that the preselection of

the variables with FSS greatly enhances the perform-
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ance of both supervised and unsupervised methods.

Specifically, in terms of which FSS approach to fol-

low, we find that the wrapper FSS is the most suitable

technique for our data set of neurons using supervised

algorithms. Models obtained using FSS are desirable,

not only because a higher accuracy is achieved, but

also because more parsimonious and easily under-

stood models are obtained. The disadvantage of this

approach is its computational cost, since performing

wrapper FSS is slow. Wrapper FSS cannot be used

with unsupervised algorithms, but the results obtained

using a different variable preselection method, the fil-

ter FSS, with hierarchical clustering point out the

advantage of using this dimensionality reduction

technique, compared to clustering with no FSS.

Our final conclusion is that an acceptable distinc-

tion between interneuron and pyramidal cells was

achieved using dendritic morphological features,

even without explicitly providing knowledge of the

presence or absence of an apical dendrite.

Future Directions

Our work establishes, for the first time to our knowl-

edge, the use of several supervised methods for clas-

sifying and distinguishing between neuronal cell

types. While differentiating between pyramidal neu-

rons and interneurons may not seem a particularly

difficult task for a trained neuroanatomist, distin-

guishing subtypes of neurons using objective and

quantitative criteria is more challenging. Therefore,

we expect that the supervised classification methods

that we introduce here, which are standard in machine

learning, could help future neuroscience research,

particularly with respect to classifying subtypes of

neurons. For example, one future direction could be

the quantitative exploration of new subtypes of inter-

neurons. For this goal, unsupervised clustering tech-

niques could still be used as exploratory techniques.

However, supervised classification could greatly help

to obtain more accurate classifications when informa-

tion on class labels is known beforehand and an

accurate FSS or a reliable validation could be

obtained as well.

An ultimate, more ambitious, goal could be to

arrive at an objective classification of all neuronal

cell types, based on their morphologies or on a com-

bination of morphological, physiological, and molec-

ular criteria (Ascoli et al., 2008). To accomplish this

goal, a priori information will probably be most use-

ful, or even key. For this task, one could explore the

use of semisupervised clustering, using previous in-

formation about known cell groups that are very ho-

mogeneous or represent a single cell type, for exam-

ple chandelier cells in neocortex, as a way to partially

supervise the clustering. Although it is difficult to

reach a consensus about the known cell types that

exist in the cortex, the introduction of supervised, or

partially supervised algorithms could help advance

the state of this key question, which is essential to

decipher neocortical circuits.
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