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A cloud-based workflow to quantify 
transcript-expression levels in 
public cancer compendia
PJ Tatlow1 & Stephen R. Piccolo1,2

Public compendia of sequencing data are now measured in petabytes. Accordingly, it is infeasible for 
researchers to transfer these data to local computers. Recently, the National Cancer Institute began 
exploring opportunities to work with molecular data in cloud-computing environments. With this 
approach, it becomes possible for scientists to take their tools to the data and thereby avoid large data 
transfers. It also becomes feasible to scale computing resources to the needs of a given analysis. We 
quantified transcript-expression levels for 12,307 RNA-Sequencing samples from the Cancer Cell Line 
Encyclopedia and The Cancer Genome Atlas. We used two cloud-based configurations and examined the 
performance and cost profiles of each configuration. Using preemptible virtual machines, we processed 
the samples for as little as $0.09 (USD) per sample. As the samples were processed, we collected 
performance metrics, which helped us track the duration of each processing step and quantified 
computational resources used at different stages of sample processing. Although the computational 
demands of reference alignment and expression quantification have decreased considerably, there 
remains a critical need for researchers to optimize preprocessing steps. We have stored the software, 
scripts, and processed data in a publicly accessible repository (https://osf.io/gqrz9).

Over the past decade, public cancer compendia have played a crucial role in enabling scientists to identify 
genomic, transcriptomic, proteomic, and epigenomic factors that influence tumor initiation, progression, and 
treatment responses1–19. Due to efforts like The Cancer Genome Atlas (TCGA), International Cancer Genomics 
Consortium, Cancer Cell Line Encyclopedia (CCLE), and Connectivity Map, thousands of studies have been 
published. Typically, consortia who oversee these efforts release raw and preprocessed data for the public to use. 
Accordingly, researchers who wish to reprocess raw data using alternative methods may do so20–22. For exam-
ple, we previously reprocessed 10,005 RNA-Sequencing samples from TCGA and demonstrated that an alter-
native pipeline provided analytical advantages over the preprocessed data provided by the TCGA consortium20. 
However, this effort required us to copy more than 50 terabytes of data, across three time zones, from the data 
repository to our local file servers—and to employ tens of thousands of hours of computational time on local 
computer clusters. Other efforts, such as the Genomic Data Commons23, are also reprocessing cancer compendia 
using updated pipelines. Such efforts require considerable institutional investment in computational infrastruc-
ture24. In the case of raw sequencing data, computational infrastructure must also implement appropriate security 
measures to ensure patient privacy25,26. Many research institutions do not have the resources to support such 
infrastructure, and duplicate efforts may unwittingly occur, resulting in wasted resources.

As an alternative, the National Cancer Institute initiated the Cancer Genomics Cloud Pilots27, which ena-
ble researchers to access cancer compendia via cloud-computing services, such as Google Cloud Platform28 or 
Amazon Web Services29. Via these public/private partnerships, cancer data are stored (and secured, as necessary) 
in shared computing environments. Researchers can rent virtual machines (VMs) in these environments and 
apply computational tools to the data, without needing to transfer the data to or from an outside location. This 
model promises to speed the process of scientific discovery, reduce barriers to entry, and democratize access to 
the data30,31. In the current era of highly collaborative science, this model also makes it easier for researchers from 
multiple institutions to collaborate in the same computing environment.

The landscape of bioinformatics tools available to process RNA-Sequencing data is rapidly evolving. Seemingly 
small differences in software versions or annotations can lead to considerable analytical differences or make it 
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difficult to integrate datasets32,33. However, because the Cancer Genomics Cloud Pilots provide access to raw data, 
researchers can reprocess the data using whatever tools and annotations support their specific needs.

In coordination with the Institute for Systems Biology (ISB)34, we used the Google Cloud Platform to pro-
cess 12,307 RNA-Sequencing samples from the CCLE and TCGA projects. After preprocessing, we aligned 
the sequencing reads to the most current GENCODE reference transcriptome (see Methods) and calculated 
transcript-expression levels using kallisto, a pseudoalignment and read-quantification program that executes con-
siderably faster than previous-generation tools, while attaining similar levels of accuracy35. We encapsulated all 
the software necessary to perform these steps into software containers33,36. Where possible, the containers execute 
tasks in parallel and dynamically determine the number of tasks that can be executed simultaneously. In addition, 
the containers collect detailed computer-performance metrics while the containers execute. We have made these 
containers freely available to the research community—along with scripts for executing and monitoring them 
(see Methods).

We processed the CCLE samples (n =  934) using either 1) a cluster-based configuration, orchestrated by the 
Kubernetes system37, or 2) preemptible VMs. In this paper, we describe our experiences with these deployment 
approaches. The cluster-based configuration more closely resembles computing environments typically available 
at research institutions and thus may be more intuitive for researchers to use. However, using preemptible VMs, 
we were able to process the data at a considerably lower cost and with less monitoring overhead. Therefore, we 
used preemptible VMs to process all available TCGA RNA-Sequencing samples (n= 11,373) for a total cost of 
$1,065.49.

Below we describe lessons learned as we processed these data, and we discuss logistical and financial issues 
that should be considered when using cloud-computing environments. We hope these observations will enable 
researchers to better evaluate options for processing large biological datasets in the cloud. We also explore oppor-
tunities for bioinformaticians to optimize data processing.

Results
Cluster-based configuration (CCLE data). We created a software container to quantify transcript-expres-
sion levels for 934 RNA-Sequencing samples from CCLE on the Google Cloud Platform. Initially, we processed 
these samples on a cluster of 295 computing nodes. Each computing node had access to 4 virtual central pro-
cessing units (vCPUs), 26 gigabytes of random access memory (RAM), and 400 gigabytes of disk-storage space. 
We used the Kubernetes system to distribute execution across these nodes in a queue-like manner: as one sample 
completed processing, a new sample began processing, and so on.

All RNA-Sequencing data were generated using Illumina sequencing instruments. After initial, low-level pro-
cessing, data from these instruments are stored in the FASTQ format38. Each entry in a FASTQ file indicates the 
nucleotide sequence and quality scores for each molecule that was sequenced. Scientists use these files as input to 
sequence-alignment tools, such as kallisto, which aim to identify the transcriptomic region associated with each 
molecule. The output of sequence-alignment tools is typically in the BAM format39. These binary files indicate the 
nucleotide sequence, quality scores, and alignment location of each molecule.

The CCLE samples were available in BAM format only. Because kallisto only accepts input data in FASTQ 
format, the first step in our pipeline was to sort the BAM data by name and convert the data back to FASTQ 
format. This step consists of extracting the nucleotide sequences and quality scores and reformatting the data 
(see Methods). To enable faster execution, we performed these steps in parallel (see Methods). On average, these 
preprocessing steps took 84.7 minutes per sample (71.7% of the processing time), whereas kallisto took only 
29.8 minutes (25.2% of the processing time; see Fig. 1). The remaining 3.6 minutes (3.0%) were used to copy files 
to and from the computing nodes. These observations indicate that RNA-Sequencing preprocessing steps require 
a considerable amount of computational time and must be taken into account when planning resource allocation 
and estimating costs.

Figure 1. Relative time spent on computational tasks for CCLE samples using a cluster-based 
configuration. We logged the durations of individual processing tasks for all CCLE samples, averaged these 
values, and calculated the percentage of overall processing time for each task. Because the raw data were stored 
on Google Cloud Storage, copying the BAM and index files to the computing nodes took less than 3% of the 
total processing time. For preprocessing, the BAM files were sorted and converted to FASTQ format, which 
took 71.8% of the overall processing time. The kallisto alignment and quantification steps took only 25.2% of the 
overall processing time.
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One limitation of a cluster-based configuration is that all computing nodes must remain active while even 
one sample is still processing. In general, larger RNA-Sequencing samples take longer to process than smaller 

Figure 2. Processing time per CCLE sample using the cluster-based configuration. The 934 CCLE samples 
were processed on a cluster of 295 virtual machines. The horizontal lines represent the relative start and stop 
times at which each sample was processed. Darker lines identify samples that took longer to process. The 
longest-running sample took over 4.5 hours to process; the shortest-running sample completed in less than 
1 hour. All but two samples finished processing within 7.5 hours. These two samples failed due to a disk-
mounting error, so we reprocessed the samples on a smaller cluster (see Methods).

Figure 3. Computational resource utilization while CCLE samples were processed using a cluster-based 
configuration. These graphs show the (a) percentage of user and system vCPU utilization, (b) percentage of 
memory usage, (c) disk activity, and (d) network activity. The “main” disk for each virtual machine had 100 
gigabytes of storage space. The “secondary” disks, which stored temporary files during the sorting and FASTQ-
to-BAM conversion steps, had 300 gigabytes of space. The background colors represent the five computational 
tasks shown in Fig. 2. Each graph summarizes data from all 934 CCLE samples.
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samples. Therefore, in an attempt to reduce costs, we submitted samples to the queue in order of size (largest to 
smallest). Figure 2 illustrates the start and end times at which each sample was processed. The longest-running 
sample finished processing in 274 minutes, while one sample took only 46 minutes. Few computing nodes were 
idle during the first 350 minutes of overall processing time, and all but two samples had completed processing 
after 450 minutes. Disk-storage drives failed to mount properly while the remaining two samples were processing, 
so these samples had to be resubmitted to the queue.

We collected computer-performance metrics at one-second intervals while the software container was execut-
ing. Resource utilization varied dramatically across the processing tasks (Fig. 3). The sorting and kallisto phases 
were relatively vCPU intensive, whereas the BAM-to-FASTQ conversion used the disk-storage devices relatively 
heavily. RAM usage was consistently high, although it decreased temporarily during the sorting and conver-
sion stages. As expected, network usage was high while data files were being transferred to and from computing 
nodes—but zero at other times. vCPU usage was highly variable across the individual vCPUs on a given comput-
ing node, and vCPUs were never used at full capacity for a considerable length of time.

The cost for each node in the cluster was $0.252 (USD) per hour. There was no cost for the master node that 
orchestrated the cluster. These computing costs and data-storage costs constituted the great majority of expenses 
that we incurred (see Tables 1 and 2). In total, the cost was $716.52 ($0.77 per sample). Because cloud-computing 
offerings, service prices, and bioinformatics tools change regularly, it is difficult to compare costs across projects. 
However, a 2011 study used the MAQ software40 to align a single biological sample in the cloud for $320.1029.

Preemptible-node configuration (CCLE data). Next we reprocessed the CCLE RNA-Sequencing sam-
ples using an alternative approach. First, to assess whether quality trimming would have a significant effect on the 
kallisto quantification values, we excluded low-quality bases and any adapter sequences that were present in the 
data. Second, we used preemptible VMs and compared the performance and cost profiles of this configuration 
against what we observed for the cluster-based option.

Typically, cloud-service providers have more computing nodes available than customers will use at any given 
time. While these extra nodes are idle, users can request to use the nodes with “preemptible” status—at a consid-
erably reduced price. When demand rises, the service provider halts (preempts) execution of the nodes and makes 
them available to full-paying customers. In situations where nodes are preempted infrequently—and preempt-
ible nodes are available—this approach can reduce costs, although additional care must be taken to ensure that 
preempted samples are re-executed when new nodes become available.

To reduce the time that the CCLE samples would take to process—and thus to reduce the likelihood of 
preemption—we used more powerful computing nodes: 16 vCPUs and 104 gigabytes of RAM per node. As 
the samples were processing, we executed a script, every 60 seconds, to check whether any samples had been 
preempted and then resubmitted those samples for processing (see Methods). Unlike the cluster-based configu-
ration, which employed a static number of computing nodes, the number of preemptible nodes changed dynami-
cally, according to availability. During the first 20 minutes, 932 nodes were allocated, and most samples completed 

Category CCLE (cluster) CCLE (preemptible) TCGA (breast, lung) TCGA (other cancer types)

# samples 934 934 1,811 9,562

Data input format BAM BAM FASTQ FASTQ

Total data sizea 12.59 12.59 10.67 57.8

# vCPUs per nodeb 4 16 2 2

RAM per nodec 26 104 7.5 7.5

Primary disk storage per noded 100 100 10 10

Secondary disk storage per nodee 300 300 350 350

Table 1.  Summary of data sets and computational resources. aTotal amount of raw sequencing data 
(measured in terabytes). bvCPU =  virtual central processing unit. cRAM =  random access memory (measured 
in gigabytes). dThe primary disks were used to store operating system components and temporary files. eThe 
secondary disks were used to store input and output data. Storage capacity was measured in gigabytes.

Expense categorya CCLE (cluster) CCLE (preemptible)
TCGA (breast, 

lung)
TCGA (other 
cancer types)

Data transfer $0.02 $0.08 $0.10 $0.70

Data storage $111.27 $25.48 $66.10 373.08

Computing nodes $605.16 $338.09 $95.75 $520.80

Miscellaneous $0.07 $0.57 $1.47 $8.12

Total cost $716.52 $364.22 $163.42 $902.07

Cost per sample $0.767 $0.390 $0.090 $0.094

Table 2.  Summary of cost information. aWe obtained cost information for the Google Cloud Platform and 
assigned expenses to high-level categories. All values are in US Dollars (rounded to the nearest cent). All TCGA 
samples were processed using preemptible VMs. There was no charge for the time required to spinup VMs, pull 
images, localize files, or delocalize files.
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processing before 150 total minutes had elapsed (Figure S1). Of the 934 CCLE samples, 78 were preempted at least 
once (Figure S1). Eight samples were preempted twice, and one sample was preempted three times. On average, 
preempted nodes executed for 76.64 minutes (min =  1.87; max =  126.57) before preemption. The BAM files for 
the preempted samples averaged 14.07 gigabytes in size, whereas the remaining samples averaged 13.79 gigabytes. 
Accordingly, preemption was a relatively random process, not necessarily influenced by the size of the data files.

Trimming next-generation sequencing reads is a common, though somewhat controversial, practice41–43. 
Trimming can remove low-quality bases and reads and can remove artefactual adapter sequences. We compared 
transcript-expression levels from our initial (untrimmed) CCLE data against the data that had been subjected to 
trimming. The average, sample-wise Spearman correlation coefficient was 0.988; however, the correlation coeffi-
cients for some samples were as low as 0.92 (Figure S2), suggesting that these samples had a considerable number 
of low-quality reads.

The performance profiles for the preemptible configuration were similar to those from the cluster-based con-
figuration (Figures S3 and S4). The read-trimming step required an average of 7.97 minutes (9.0%) of processing 
time per sample (see Figure S3). In addition, there was considerable overhead to “spin up” and configure the 
VMs and to localize the necessary files (19.4% of processing time). We suspect this overhead was relatively high 
because the cloud environment needed to allocate a relatively large amount of resources (vCPUs and RAM) per 
computing node. Overall, the kallisto alignment and quantification process took only 9.8% of the processing time, 
reaffirming that preprocessing steps may contribute more to the expense of processing RNA-Sequencing data 
than alignment and quantification, which have been optimized substantially in recent years.

The cost of the preemptible nodes (16 vCPU) was $0.280 per hour. In addition, we rented a master node for 
$0.01 per hour. The total cost to process the samples was $364.22 ($0.39 per sample). Even though preemption 
occurred 88 times—contributing an estimated $31.48 to the total cost—the overall cost was 49.2% lower than 
the cluster-based configuration. This was true, even though we added the read-trimming step. Accordingly, we 
conclude that preemptible nodes show promise as a way to reduce expenses markedly, so long as preemption rates 
remain low.

Preemptible-node configuration (TCGA data). Based on our experiences with the CCLE samples, we 
used preemptible VMs to process 11,373 RNA-Sequencing samples from TCGA that spanned 33 cancer types. 
The TCGA samples were available in FASTQ format; therefore, we did not need to sort or convert the data. 
However, the FASTQ file were packed inside “tar” files, so we included a step to unpack these files. Based on pre-
liminary testing, we estimated that using less-powerful computing nodes—2 vCPUs and 7.5 gigabytes of RAM—
would provide an optimal balance between cost and performance.

We started with 1,811 breast carcinoma and lung squamous cell carcinoma samples. These samples completed 
processing in 101 minutes on average, compared to 88.5 minutes for the CCLE samples. Although individual 
TCGA samples took 14% longer to process than the CCLE samples, the computing nodes used 87.5% fewer 
computational resources per sample. The VM “spinup” and configuration tasks were considerably shorter (Fig. 4), 
ostensibly because the computing nodes required fewer resources. The kallisto step took 41.3% of the processing 
time, due to the shorter preprocessing times. Only 210 preemptions occured (Fig. 5).

Because most of the TCGA samples were assigned to a single read group, we were not able to parallelize the 
quality-trimming step in most cases. Therefore, one of the vCPUs was consistently underutilized during the 
trimming phase (Fig. 6). However, kallisto maximized use of both vCPUs during most of its processing; it also 
consistently used all available RAM. Disk usage was heaviest while the FASTQ files were being unpacked, at the 
end of quality trimming, and at the beginning of kallisto execution. Because the data files were transferred to the 
VMs before our software container began executing, we detected no network activity (as expected).

Figure 4. Relative time spent on computational tasks for TCGA breast and lung samples using a 
preemptible-node configuration. We logged the durations of individual processing tasks for the TCGA breast 
and lung samples, averaged these values, and calculated the percentage of overall processing time for each task. 
The “spinup,” image pulling, and file localization steps enabled the virtual machines to begin executing. For 
sample preprocessing, the FASTQ files were unpacked, decompressed, and quality trimmed; together these steps 
took 52.0% of the processing time (on average). The kallisto alignment and quantification steps took 41.3% of 
the overall processing time.
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Lastly, we applied our software container to the remaining 9,562 TCGA samples, which ranged from 0.27 to 
27.69 gigabytes in size. In total, raw sequencing data for the TCGA samples were 64.47 terabytes in size and con-
sumed a total of 30,795.2 vCPU hours. Overall, the cost to process these samples was $1,065.49 ($0.09 per sample; 
see Tables 1 and 2). These costs are far lower than any prior cloud-based project of which we are aware.

Figure 5. Processing time per TCGA breast and lung sample using a preemptible-node configuration. The 
1,811 TCGA breast and lung samples were processed using a variable number of preemptible virtual machines. 
The horizontal lines represent the relative start and stop times at which each sample was processed. Darker lines 
identify samples that took longer to process. Vertical lines indicate times at which samples were preempted and 
then resubmitted for processing. In total, 210 preemptions occurred.

Figure 6. Computational resource utilization while TCGA breast and lung samples were processed using a 
preemptible-node configuration. These graphs show the (a) percentage of user and system vCPU utilization, 
(b) percentage of memory usage, and (c) disk activity. The “main” disks had 10 gigabytes of storage space and 
stored operating-system files. The “secondary” disks, which stored all data files, had 350 gigabytes of space. The 
background colors represent the computational tasks shown in Fig. 4. We were unable to collect performance 
metrics for preliminary tasks, such as file localization, because these tasks were not performed within the 
software container. Each graph summarizes data observed across all 1,811 TCGA lung and breast samples. 
Because there was typically only one pair of FASTQ files per sample, quality trimming could not be parallelized; 
therefore, we used only 2 vCPUs per sample.
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We have deposited the processed data—as read counts and transcripts per million—in tabular format and in 
Google’s BigQuery database (see https://osf.io/gqrz9).

Discussion
The size of biomolecular data will continue to increase at a dramatic pace over the coming years31. To devise 
solutions for managing and processing these data, the research community will likely benefit from working with 
industry partners44, including cloud-computing providers45–48. Here we describe lessons learned as we quantified 
transcription levels for 12,307 samples from CCLE and TCGA. We hope these insights will be useful both to the 
academic community and to industry partners.

Our analyses were inexhaustive. Indeed, further optimization may yield better performance and lower cost 
than we observed. However, we have demonstrated that raw RNA-Sequencing data can be preprocessed, aligned, 
and quantified for pennies per sample. Furthermore, to enable others to reproduce our findings, we have provided 
all source code that we used to process the samples, collect performance metrics, and create the figures in this 
paper (see Methods). Our workflow can be used to process additional RNA-Sequencing samples available via 
the NCI Cloud Pilots or to process samples that have been sequenced by individual research groups. With minor 
modifications to our pipeline, different reference genomes or algorithms could be applied to these data. We hope 
these resources will serve as examples to other researchers who wish to start using cloud environments.

Due to the way our workflow is structured, it was necessary to completely reprocess samples that had been 
preempted. An alternative solution would be to use persistent disk storage to store intermediate data files that 
result from individual processing steps within the workflow. When a sample is preempted, the workflow could 
check for these intermediate files and resume processing at the latest checkpoint. This approach might reduce 
overall processing times, but it would require users to rent additional storage space and thus might offset savings 
gained from reduced processing times. Yet another solution would be to split the workflow into smaller segments 
and execute the workflow in stages. Again, this would require additional persistent storage, and the VMs would 
need to be deployed repeatedly, a step that can take several minutes at a time. Although such approaches may pro-
vide advantages in some cases, we favor simplicity, especially in situations where preemption occurs infrequently.

Our performance-profiling data demonstrate that computational resources are often underutilized by bioin-
formatics tools. For example, in our pipeline, vCPUs were used unevenly and often not at full capacity. Although 
it is unreasonable to expect that all computational resources can be used at full capacity at all stages of data pro-
cessing, opportunities exist for tool developers to examine ways to optimize the use of these resources.

Cloud environments enable scientists to flexibly determine which resources are employed for a given research 
task. In contrast, academic computing environments are relatively fixed resources that may be oversubscribed, 
forcing individual researchers to wait long periods of time to process their data. At other times, these environ-
ments may be underutilized, thus reducing cost efficiency. In addition, because individual researchers typically 
do not have administrative privileges in academic computing environments, they may be limited in how they can 
customize their workflows. A central feature of our approach is the use of software containers, which enabled 
us to package, deploy, and monitor our software more readily. We anticipate that as containerization technol-
ogies continue to mature, they will be an integral part of cloud-computing workflows (and perhaps academic 
environments).

Because it is impossible to control every possible variable that might influence computational performance, it 
is impossible to guarantee that the performance metrics we collected would be exactly reproducible if the analyses 
were repeated multiple times, even if the same hardware were used. Such is the nature of computations, espe-
cially in third-party environments. However, we are confident that the performance metrics we report are rep-
resentative of the levels of performance attainable with the tools and configurations we used. We collected these 
observations across thousands of RNA-Sequencing samples. Thus even though some variability would occur for 
individual samples or steps, we expect that the overall performance differences would be consistent. In addition, 
Docker containers use the cgroups feature in Linux to ensure that containers can access only a finite amount of 
computational resources while they are executing49. Furthermore, each container used a distinct disk-storage 
device, which helped to ensure that the disk usage of one RNA-Sequencing sample was isolated from other sam-
ples that were processing concurrently.

Commercial cloud-computing environments have been available for more than a decade. Sequencing and 
bioinformatics service providers commonly use cloud environments to apply bioinformatics tools to genomic 
data50. Recently, publicly funded, data-generating consortia, including projects funded by the National Cancer 
Institute, have begun to explore the benefits and challenges of providing centralized access to large compendia of 
genomic data. Our experiences confirm that the cloud has potential to make it easier to apply custom workflows 
to sequencing data at a modest price. Accordingly, we believe cloud computing will play an increasingly impor-
tant role in cancer research.

We opine that the cloud will be most useful in research settings when the size of raw data exceeds the storage 
capacity of in-house computer clusters, when there is a demand to reprocess raw data using alternative tools or 
parameter configurations, when raw data must be accessible to researchers from multiple institutions, or when it 
is essential to process data in a short time period. Such requirements are common in the current era of genome 
research—especially for public data compendia. In contrast, when individual research groups need to process 
moderately sized datasets using a standard computational pipeline, in-house resources may be more suitable. 
Alternatively, in some cases, it may be better to avoid the cloud as an added security precaution.

Initially, we processed the CCLE samples using a cluster-based container engine, which is loosely comparable 
to cluster-computing environments commonly used at academic institutions. A disadvantage of this configura-
tion is that the entire container engine needs to remain available while any sample remains to be processed. It 
may be possible to mitigate this limitation by processing the larger samples first (as we did); however, if any error 
occurs and sample(s) must be re-added to the queue, cost efficiency will decrease. When we used preemptible 
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VMs to process the same samples, we did not need to pay for excess computing power and paid 50–70% less per 
computing node. Thus even though some samples were preempted and had to be reprocessed, the overall cost was 
much lower. We recommend this option as a way to reduce expenses.

Due to the rapidly changing landscape of next-generation sequencing analysis, it is extremely beneficial for 
cloud providers to provide access to raw data. Until recently, raw sequencing data from CCLE and TCGA were 
available via the CGHub service51. Users who desired to compute on these data were required to bring “data to the 
tools,” whereas in cloud-computing environments, users can take their “tools to the data”52. In the case of CCLE, 
raw data were available in BAM format, which required us to convert the files to FASTQ format. In addition, we 
trimmed the reads for quality control. Together these steps took 70–75% of the processing time per sample (Figs 1 
& S3). The TCGA raw data were available in FASTQ format; however, we needed to decompress and unpack 
tar files before trimming the reads (52% of the processing time). Accordingly, we recommend that alignment 
and quantification tools support both FASTQ and BAM input files—ideally, they would also support quality 
trimming. We also recommend that cloud providers store two versions of raw sequencing data: (1) compressed 
(but not packed) files that have been manipulated by no bioinformatics tool, and (2) files that have been sorted, 
trimmed, and compressed using standard tools. The former could be used by those who prefer to preprocess the 
data using alternative tools, whereas the latter could be used by all other users. Although storing these two ver-
sions of the raw data would increase disk-storage costs, it would likely decrease overall costs. The computational 
costs of file-format conversions may also be significant in other research domains.

We encourage funding agencies and research institutions to consider implications of cloud computing on 
research budgets. Whereas academic-computing infrastructure has traditionally been funded by indirect costs, 
individual researchers may be required to categorize cloud computing as direct costs. Efforts such as The NIH 
Commons have begun to address this issue53. Finally, we encourage university training programs to place an 
emphasis on teaching students how to use cloud-computing resources.

Methods
Cluster-based configuration. The Google Cluster Engine allowed us to control hundreds of dedicated 
computing nodes with one central node. This central node used Kubernetes37 to manage resources and a queue. 
Using a YAML54 configuration file, we submitted each RNA-Sequencing sample to Kubernetes, which then sched-
uled the samples to execute on the worker nodes. For each sample, Kubernetes deployed the relevant software 
container to the node, copied data files to the node, executed the software container, and copied output files 
to persistent storage. In cases where execution failed, Kubernetes automatically restarted sample processing. By 
default, the Google Cluster Engine allocated a 100 GB disk to each computing node; however, due to the size of 
the raw data and disk-space requirements for sorting and converting to FASTQ, we mounted a secondary disk 
drive (300 GB) to each node. While processing the samples, two nodes experienced errors while mounting disk 
drives. We used a two-node cluster to finish processing the remaining samples.

Preemptible-node configuration. We used the Google Genomics Pipeline service55 to control execution 
of tasks on preemptible computing nodes. As a preemptible node became available, the service (1) created a VM 
on the node, (2) deployed the relevant software container to the VM, (3) copied data files to the secondary disk 
drive, (4) executed the software container, (5) copied output files to persistent storage, and (6) destroyed the VM 
after the sample finished processing (or was preempted). To help facilitate this process, we used a software frame-
work provided by the Institute for Systems Biology56. Via a command-line interface, this framework facilitated 
the process of submitting samples to the Google Genomics Pipeline for processing. In addition, the framework 
monitored each sample’s status and resubmitted samples that had been preempted (at 60-second intervals).

Software containers. We created three different Docker containers to house the software required to pro-
cess each combination of data source and cloud configuration. The first container was used by the Google Cluster 
Engine to process BAM files from CCLE. The cluster-based configuration required us to use the container to 
copy input files to and from the computing nodes. After copying the files, the container used Sambamba (version 
0.6.0)57 to sort the BAM files by name and then Picard Tools (version 2.1.1, SamToFastq module)58 to convert the 
BAM files to FASTQ format. In accordance with kallisto’s documentation, we used the “OUTPUT_PER_RG” flag 
in Picard Tools to ensure that paired-end reads were placed in separate output files. The FASTQ files were then 
used as input to kallisto (version 0.43.0)35, which pseudoaligned the reads to the GENCODE reference transcrip-
tome (version 24)59 and quantified transcript-expression levels. Based on the kallisto authors’ recommendation, 
we used 30 bootstrap samples; we also used the “–bias” flag to account for variance and bias. We used the paral-
lelization features in Sambamba and kallisto to enable faster processing.

The second software container is similar to the first but was modified for use with the Google Genomics 
Pipeline service. Because this service handles copying the data files between Google Cloud Storage and the com-
puting nodes, these tasks were not performed by the container. We also added a read-trimming step using Trim 
Galore! (version 0.4.1)60, a wrapper around Cutadapt (version 1.10)61. This tool trims adapter sequences and low 
quality bases/reads. To process multiple FASTQ files (or pairs of FASTQ files for paired-end reads) in parallel, we 
used GNU Parallel (version 20141022)62.

The third software container was designed specifically for the TCGA data. It extracts FASTQ files from a tar 
archive (whether compressed or not), performs quality trimming, and executes kallisto. Where applicable, it uses 
the pigz tool (version 2.3.1)63 to decompress the input files in parallel.

All three containers use the sar module of the sysstat program (version 11.2.0)64 to log each machine’s vCPU, 
memory, disk, and network activity throughout the course of data processing. The containers copied these data to 
persistent storage, prior to the job’s completion. We changed the time of each entry in the logs to a corresponding 
percentage of total job time, to allow the activity metrics to be summarized consistently across all jobs.
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Availability of data and materials. An open-access repository (https://osf.io/gqrz9) contains all the 
scripts we used to construct the Docker containers and to process samples on the Google Cloud Platform. The 
repository also includes summarized performance data and scripts that we used to generate the figures in this 
manuscript.
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