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Abstract: Deep learning with convolutional neural networks (deep ConvNets) has revolutionized com-
puter vision through end-to-end learning, that is, learning from the raw data. There is increasing inter-
est in using deep ConvNets for end-to-end EEG analysis, but a better understanding of how to design
and train ConvNets for end-to-end EEG decoding and how to visualize the informative EEG features
the ConvNets learn is still needed. Here, we studied deep ConvNets with a range of different architec-
tures, designed for decoding imagined or executed tasks from raw EEG. Our results show that recent
advances from the machine learning field, including batch normalization and exponential linear units,
together with a cropped training strategy, boosted the deep ConvNets decoding performance, reaching
at least as good performance as the widely used filter bank common spatial patterns (FBCSP) algo-
rithm (mean decoding accuracies 82.1% FBCSP, 84.0% deep ConvNets). While FBCSP is designed to
use spectral power modulations, the features used by ConvNets are not fixed a priori. Our novel meth-
ods for visualizing the learned features demonstrated that ConvNets indeed learned to use spectral
power modulations in the alpha, beta, and high gamma frequencies, and proved useful for spatially
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mapping the learned features by revealing the topography of the causal contributions of features in
different frequency bands to the decoding decision. Our study thus shows how to design and train
ConvNets to decode task-related information from the raw EEG without handcrafted features and
highlights the potential of deep ConvNets combined with advanced visualization techniques for EEG-
based brain mapping. Hum Brain Mapp 38:5391–5420, 2017. VC 2017 The Authors Human Brain Mapping Pub-

lished by Wiley Periodicals, Inc.
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INTRODUCTION

Machine-learning techniques allow extracting informa-
tion from electroencephalographic (EEG) recordings of
brain activity, and therefore play a crucial role in several
important EEG-based research and application areas. For
example, machine-learning techniques are a central com-
ponent of many EEG-based brain-computer interface (BCI)
systems for clinical applications. Such systems already
allowed, for example, persons with severe paralysis to
communicate [Nijboer et al., 2008], to draw pictures
[M€unßinger et al., 2010], and to control telepresence robots
[Tonin et al., 2011]. Such systems may also facilitate stroke
rehabilitation [Ramos-Murguialday et al., 2013] and may
be used in the treatment of epilepsy [Gadhoumi et al.,
2016] (for more examples of potential clinical applications,
see Moghimi et al. [2013]). Furthermore, machine-learning
techniques for the analysis of brain signals, including the
EEG, are increasingly recognized as novel tools for neuro-
scientific inquiry [Das et al., 2010; Knops et al., 2009;
Kurth-Nelson et al., 2016; Stansbury et al., 2013].

However, despite many examples of impressive pro-
gress, there is still room for considerable improvement
with respect to several important aspects of information
extraction from the EEG, including its accuracy, interpret-
ability, and usability for online applications. Therefore,
there is a continued interest in transferring innovations
from the area of machine learning to the fields of EEG
decoding and BCI. A recent, prominent example of such
an advance in machine learning is the application of con-
volutional neural networks (ConvNets), particularly in
computer vision tasks. Thus, first studies have started to
investigate the potential of ConvNets for brain-signal
decoding [Antoniades et al., 2016; Bashivan et al., 2016;
Cecotti and Graser, 2011; Hajinoroozi et al., 2016; Lawhern
et al., 2016; Liang et al., 2016; Manor et al., 2016; Manor
and Geva, 2015; Page et al., 2016; Ren and Wu, 2014;
Sakhavi et al., 2015; Shamwell et al., 2016; Stober, 2016;
Stober et al., 2014; Sun et al., 2016; Tabar and Halici, 2017;
Tang et al., 2017; Thodoroff et al., 2016; Wang et al., 2013]
(see Supporting Information, Section A.1 for more details
on these studies). Still, several important methodological
questions on EEG analysis with ConvNets remain, as
detailed below and addressed in this study.

ConvNets are artificial neural networks that can learn
local patterns in data by using convolutions as their key
component (also see the section “Convolutional Neural
Networks”). ConvNets vary in the number of convolu-
tional layers, ranging from shallow architectures with just
one convolutional layer such as in a successful speech rec-
ognition ConvNet [Abdel-Hamid et al., 2014] over deep
ConvNets with multiple consecutive convolutional layers
[Krizhevsky et al., 2012] to very deep architectures with
more than 1000 layers as in the case of the recently devel-
oped residual networks [He et al., 2015]. Deep ConvNets
can first extract local, low-level features from the raw
input and then increasingly more global and high level
features in deeper layers. For example, deep ConvNets can
learn to detect increasingly complex visual features (e.g.,
edges, simple shapes, complete objects) from raw images.
Over the past years, deep ConvNets have become highly
successful in many application areas, such as in computer
vision and speech recognition, often outperforming previ-
ous state-of-the-art methods (we refer to LeCun et al.
[2015] and Schmidhuber [2015] for recent reviews). For
example, deep ConvNets reduced the error rates on the
ImageNet image-recognition challenge, where 1.2 million
images must be classified into 1000 different classes, from
above 26% to below 4% within 4 years [He et al., 2015;
Krizhevsky et al., 2012]. ConvNets also reduced error rates
in recognizing speech, for example, from English news
broadcasts [Sainath et al., 2015a,2015c; Sercu et al., 2016];
however, in this field, hybrid models combining ConvNets
with other machine-learning components, notably recur-
rent networks, and deep neural networks without convolu-
tions are also competitive [Li and Wu, 2015; Sainath et al.,
2015b; Sak et al., 2015]. Deep ConvNets also contributed to
the spectacular success of AlphaGo, an artificial intelli-
gence that beat the world champion in the game of Go
[Silver et al., 2016].

ConvNets have both advantages and disadvantages
compared to other machine learning models. Advantages
of ConvNets include that they are well suited for end-to-
end learning, that is, learning from the raw data without
any a priori feature selection, that they scale well to large
datasets, and that they can exploit hierarchical structure in
natural signals. Disadvantages of ConvNets include that
they may output false predictions with high confidence
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[Nguyen et al., 2015; Szegedy et al., 2014] may require a
large amount of training data, may take longer to train
than simpler models, and involve a large number of
hyperparameters such as the number of layers or the type
of activation functions. Deep ConvNets are also notori-
ously difficult to interpret. In the light of these advantages
and disadvantages, in this study, we focused on how Con-
vNets of different architectures can be designed and
trained for end-to-end learning of EEG recorded in human
subjects, and how they can be made more interpretable
via suitable visualization techniques.

The EEG signal has characteristics that make it different
from inputs that ConvNets have been most successful on,
namely images. In contrast to two-dimensional static
images, the EEG signal is a dynamic time series from elec-
trode measurements obtained on the three-dimensional
scalp surface. Also, the EEG signal has a comparatively
low signal-to-noise ratio, that is, sources that have no task-
relevant information often affect the EEG signal more
strongly than the task-relevant sources. These properties
could make learning features in an end-to-end fashion fun-
damentally more difficult for EEG signals than for images.
Thus, the existing ConvNets architectures from the field of
computer vision need to be adapted for EEG input and
the resulting decoding accuracies rigorously evaluated
against more traditional feature extraction methods. For
that purpose, a well-defined baseline is crucial, that is, a
comparison against an implementation of a standard EEG
decoding method validated on published results for that
method. In light of this, in this study, we addressed two
key questions:

� What is the impact of ConvNet design choices (e.g., the
overall network architecture or other design choices
such as the type of nonlinearity used) on the decoding
accuracies?
� What is the impact of ConvNet training strategies (e.g.,

training on entire trials or crops within trials) on the
decoding accuracies?

To address these questions, we created three ConvNets
with different architectures, with the number of convolu-
tional layers ranging from 2 layers in a “shallow” Con-
vNet over a 5-layer deep ConvNet up to a 31-layer
residual network (ResNet). Additionally, we also created a
hybrid ConvNet from the deep and shallow ConvNets. As
described in detail in the methods section, these architec-
tures were inspired both from existing “non-ConvNet”
EEG decoding methods, which we embedded in a Con-
vNet, and from previously published successful ConvNet
solutions in the image processing domain (e.g., the ResNet
architecture recently won several image recognition com-
petitions [He et al., 2015]). All architectures were adapted
to the specific requirements imposed by the analysis of
multi-channel EEG data. To address whether these Con-
vNets can reach competitive decoding accuracies, we

performed a statistical comparison of their decoding accu-
racies to those achieved with decoding based on filter
bank common spatial patterns (FBCSP) [Ang et al., 2008;
Chin et al., 2009], a method that is widely used in EEG
decoding and has won several EEG decoding competitions
such as BCI competition IV datasets 2a and 2b. We ana-
lyzed the offline decoding performance on four suitable
EEG decoding datasets (see the section “Datasets and Pre-
processing” for details). In all cases, we used only minimal
preprocessing to conduct a fair end-to-end comparison of
ConvNets and FBCSP.

In addition to the role of the overall network architec-
ture, we systematically evaluated a range of important
design choices. We focused on alternatives resulting from
recent advances in machine-learning research on deep
ConvNets. Thus, we evaluated potential performance
improvements by using dropout as a novel regularization
strategy [Srivastava et al., 2014], intermediate normaliza-
tion by batch normalization [Ioffe and Szegedy, 2015] or
exponential linear units as a recently proposed activation
function [Clevert et al., 2016]. A comparable analysis of
the role of deep ConvNet design choices in EEG decoding
is currently lacking.

In addition to the global architecture and specific design
choices which together define the “structure” of ConvNets,
another important topic that we address is how a given
ConvNet should be trained on the data. As with architec-
ture and design, there are several different methodological
options and choices with respect to the training process,
such as the optimization algorithm (e.g., Adam [Kingma
and Ba, 2014], Adagrad [Duchi et al., 2011], etc.), or the
sampling of the training data. Here, we focused on the lat-
ter question of sampling the training data as there is usu-
ally, compared to current computer vision tasks with
millions of samples, relatively little data available for EEG
decoding. Therefore, we evaluated two sampling strate-
gies, both for the deep and shallow ConvNets: training on
whole trials or on multiple crops of the trial, that is, on
windows shifted through the trials. Using multiple crops
holds promise as it increases the amount of training exam-
ples, which has been crucial to the success of deep Con-
vNets. Using multiple crops has become standard
procedure for ConvNets for image recognition [He et al.,
2015; Howard, 2013; Szegedy et al., 2015], but the useful-
ness of cropped training has not yet been examined in
EEG decoding.

In addition to the problem of achieving good decoding
accuracies, a growing corpus of research tackles the prob-
lem of understanding what ConvNets learn (see Yeager
[2016] for a recent overview). This direction of research
may be especially relevant for neuroscientists interested in
using ConvNets—insofar as they want to understand what
features in the brain signal discriminate the investigated
classes. Here we present two novel methods for feature
visualization that we used to gain insights into our Con-
vNet learned from the neuronal data.
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We concentrated on EEG band power features as a tar-
get for visualizations. Based on a large body of literature
on movement-related spectral power modulations [Cha-
trian et al., 1959; Pfurtscheller and Aranibar, 1977, 1978;
Pfurtscheller and Berghold, 1989; Pfurtscheller et al., 1994;
Toro et al., 1994], we had clear expectations which band
power features should be discriminative for the different
classes. The motivation for developing our visualization
methods was threefold:

1. Verify that the ConvNets are using actual brain
signals

2. Gain insights into the ConvNet behavior, e.g., what
EEG features the ConvNet uses to decode the signal

3. Potentially make steps toward using ConvNets for
brain mapping.

Our first method can be used to show how much infor-
mation about a specific feature is retained in the ConvNet
in different layers; however, it does not evaluate whether
the feature causally affects the ConvNet outputs. There-
fore, we designed our second method to directly investi-
gate causal effects of the feature values on the ConvNet
outputs. With both visualization methods, it is possible to
derive topographic scalp maps that either show how much
information about the band power in different frequency
bands is retained in the outputs of the trained ConvNet or
how much they causally affect the outputs of the trained
ConvNet.

Addressing the questions raised above, in summary the
main contributions of this study are as follows:

� We show for the first time that within-subject end-to-
end-trained deep ConvNets can reach accuracies at
least in the same range as FBCSP for decoding task-
related information from EEG.
� We evaluate a large number of ConvNet design

choices on an EEG decoding task, and we show that
recently developed methods from the field of deep
learning such as batch normalization and exponential
linear units are crucial for reaching high decoding
accuracies.
� We show that cropped training can increase the decod-

ing accuracy of deep ConvNets and describe a compu-
tationally efficient training strategy to train ConvNets
on a larger number of input crops per EEG trial.
� We develop and apply novel visualizations that

highly suggest that the deep ConvNets learn to use
the band power in frequency bands relevant for motor
decoding (alpha, beta, and gamma) with meaningful
spatial distributions.

Thus, in summary, the methods and findings described
in this study are a first step and preliminary approxima-
tion to a comprehensive investigation of the role of deep
ConvNet design choices, training strategies and

visualization techniques for EEG decoding and pave the
way for a more widespread application both in clinical
applications and neuroscientific research.

METHODS

We first provide basic definitions with respect to brain-
signal decoding as a supervised classification problem
used in the remaining Methods section. This is followed
by the principles of both filter bank common spatial pat-
terns (FBCSP), the established baseline decoding method
referred to throughout this study, and of convolutional
neural networks (ConvNets). Next, we describe the Con-
vNets developed for this study in detail, including the
design choices we evaluated. Afterward, the training of the
ConvNets, including two training strategies, is described.
Then we present two novel visualizations of trained Con-

vNets in the section “Visualization”. Datasets, preprocess-
ing descriptions and statistical evaluation methods follow
in the sections “Datasets and Preprocessing” and
“Statistics.” Details about software and hardware can be
found in Supporting Information, Sections 2.8 and A.8.
The code used in this study is available under https://
github.com/robintibor/braindecode/.

Definitions and Notation

This section more formally defines how brain-signal
decoding can be viewed as a supervised classification
problem and includes the notation used to describe the
methods.

Input and labels

We assume that we are given one EEG dataset per sub-
ject i. Each dataset is separated into labeled trials (time-
segments of the original recording that each belong to one
of several classes). Concretely, we are given datasets
Di5fðX1; y1Þ; . . . ; ðXNi ; yNiÞg, where Ni denotes the total
number of recorded trials for subject i. The input matrix
Xj 2 RE�T of trial j; 1 � j � Ni contains the preprocessed
signals of E-recorded electrodes and T-discretized time
steps recorded per trial.

The corresponding class label of trial j is denoted by yj.
It takes values from a set of K class labels L that, in our
case, correspond to the imagined or executed movements
performed in each trial, for example, 8yj : yj 2 L5fl15

‘‘Hand ðLeftÞ’’; l25‘‘Hand ðRightÞ’’; l35‘‘Feet’’; l45‘‘Rest’’g.

Decoder

The decoder f is trained on these existing trials such that
it is able to assign the correct label to new unseen trials.
Concretely, we aim to train the decoder to assign the label
yj to trial Xj using the output of a parametric classifier
f ðXj; uÞ : RE�T ! L with parameters h.
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For the rest of this article, we assume that the classifier
f ðXj; uÞ is represented by a standard machine-learning
pipeline decomposed into two parts: a first part that
extracts a (vector-valued) feature representation /ðXj; u/Þ
with parameters u/—which could either be set manually
(for hand designed features), or learned from the data;
and a second part consisting of a classifier g with parame-
ters hg that is trained using these features, that is,
f ðXj; uÞ5gð/ðXj; u/Þ; ugÞ.

As described in detail in the following sections, it is
important to note that FBCSP and ConvNets differ in how
they implement this framework: in short, FBCSP has sepa-
rated feature extraction and classifier stages, while Con-
vNets learn both stages jointly.

Filter Bank Common Spatial Patterns (FBCSP)

FBCSP [Ang et al., 2008; Chin et al., 2009] is a widely
used method to decode oscillatory EEG data, for example,
with respect to movement-related information, that is, the
decoding problem we focus on in this study. FBCSP was
the best-performing method for the BCI competition IV
dataset 2a, which we use in this study (see the section
“Datasets and Preprocessing” for a short dataset descrip-
tion). FBCSP also won other similar EEG decoding com-
petitions [Tangermann et al., 2012]. Therefore, we consider
FBCSP an adequate benchmark algorithm for the evalua-
tion of the performance of ConvNets in this study.

In the following, we explain the computational steps of
FBCSP. We will refer to these steps when explaining our
shallow ConvNet architecture (see the section “Shallow
ConvNet for raw EEG signals”), as it is inspired by these
steps.

In a supervised manner, FBCSP computes spatial filters
(linear combinations of EEG channels) that enhance class-
discriminative band power features contained in the EEG.
FBCSP extracts and uses these features /ðXj; u/Þ (which
correspond to the feature representation part in the section
“Decoder”) to decode the label of a trial in several steps
(we will refer back to these steps when we explain the
shallow ConvNet):

1. Bandpass filtering: Different bandpass filters are
applied to separate the raw EEG signal into different
frequency bands.

2. Epoching: The continuous EEG signal is cut into tri-
als as explained in the section “Input and labels.”

3. CSP computation: Per frequency band, the common
spatial patterns (CSP) algorithm is applied to extract
spatial filters. CSP aims to extract spatial filters that
make the trials discriminable by the power of the
spatially filtered trial signal (see Koles et al. [1990],
Ramoser et al. [2000], and Blankertz et al. [2008] for
more details on the computation). The spatial filters
correspond to the learned parameters u/ in FBCSP.

4. Spatial filtering: The spatial filters computed in Step
2 are applied to the EEG signal.

5. Feature construction: Feature vectors /ðXj; u/Þ are
constructed from the filtered signals: Specifically, fea-
ture vectors are the log-variance of the spatially fil-
tered trial signal for each frequency band and for
each spatial filter.

6. Classification: A classifier is trained to predict per-
trial labels based on the feature vectors.

For details on our FBCSP implementation, see Supporting
Information, Section A.2.

Convolutional Neural Networks

In the following sections, we first explain the basic ideas
of ConvNets. We then describe architectural choices for
ConvNets on EEG, including how to represent the EEG
input for a ConvNet, the three different ConvNet architec-
tures used in this study and several specific design choices
that we evaluated for these architectures. Finally, we
describe how to train the ConvNets, including the descrip-
tion of a trial-wise and a cropped training strategy for our
EEG data.

Basics

Generally, ConvNets combine two ideas useful for many
learning tasks on natural signals, such as images and
audio signals. These signals often have an inherent hierar-
chical structure (e.g., images typically consist of edges that
together form simple shapes which again form larger,
more complex shapes and so on). ConvNets can learn local
non-linear features (through convolutions and nonlinear-
ities) and represent higher-level features as compositions
of lower level features (through multiple layers of process-
ing). In addition, many ConvNets use pooling layers which
create a coarser intermediate feature representation and can
make the ConvNet more translation invariant. For further
details, see LeCun et al. [2015], Goodfellow et al. [2016],
and Schmidhuber [2015].

ConvNet Architectures and Design Choices

Input representation

The first important decision for applying ConvNets to
EEG decoding is how to represent the input Xj 2 RE�T .
One possibility would be to represent the EEG as a time
series of topographically organized images, that is, of the
voltage distributions across the (flattened) scalp surface
(this has been done for ConvNets that get power spectra
as input [Bashivan et al., 2016]). However, EEG signals are
assumed to approximate a linear superposition of spatially
global voltage patterns caused by multiple dipolar current
sources in the brain [Nunez and Srinivasan, 2006]. Unmix-
ing of these global patterns using a number of spatial
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filters is therefore typically applied to the whole set of rel-
evant electrodes as a basic step in many successful exam-
ples of EEG decoding [Ang et al., 2008; Blankertz et al.,
2008; Rivet et al., 2009].

In this view, all relevant EEG modulations are global in
nature, due to the physical origin of the noninvasive EEG
and hence there would be no obvious hierarchical compo-
sitionality of local and global EEG modulations in space. In
contrast, there is an abundance of evidence that the EEG is
organized across multiple time scales, such as in nested
oscillations [Canolty et al., 2006; Monto et al., 2008; Schack
et al., 2002; Vanhatalo et al., 2004] involving both local and
global modulations in time. In light of this, we designed
ConvNets in a way that they can learn spatially global
unmixing filters in the entrance layers, and temporal hier-
archies of local and global modulations in the deeper
architectures. To this end, we represent the input as a 2D-
array with the number of time steps as the width and the
number of electrodes as the height. This approach also sig-
nificantly reduced the input dimensionality compared
with the “EEG-as-an-image” approach.

Deep ConvNet for raw EEG signals

To tackle the task of EEG decoding, we designed a deep
ConvNet architecture inspired by successful architectures
in computer vision, as for example described in Krizhev-
sky et al. [2012]. The requirements for this architecture are
as follows: We want a model that is able to extract a wide
range of features and is not restricted to specific feature
types [Hertel et al., 2015]. We were interested in such a
generic architecture for two reasons: (1) we aimed to
uncover whether such a generic ConvNet designed only
with minor expert knowledge can reach competitive accu-
racies, and, (2) to lend support to the idea that standard
ConvNets can be used as a general-purpose tool for brain-
signal decoding tasks. As an aside, keeping the architec-
ture generic also increases the chances that ConvNets for
brain decoding can directly profit from future methodolog-
ical advances in deep learning.

Our deep ConvNet had four convolution-max-pooling
blocks, with a special first block designed to handle EEG
input (see below), followed by three standard convolution-
max-pooling blocks and a dense softmax classification
layer (Fig. 1).

The first convolutional block was split into two layers in
order to better handle the large number of input channels—
one input channel per electrode compared to three input
channels (one per color) in rgb-images. In the first layer,
each filter performs a convolution over time, and in the sec-
ond layer, each filter performs a spatial filtering with
weights for all possible pairs of electrodes with filters of the
preceding temporal convolution. Note that as there is no
activation function in between the two layers, they could in
principle be combined into one layer. Using two layers
however implicitly regularizes the overall convolution by
forcing a separation of the linear transformation into a

combination of a temporal convolution and a spatial filter.
This splitted convolution was evaluated against a single-
step convolution in our experiments (see the section
“Design choices for deep and shallow ConvNet”).

We used exponential linear units (ELUs, f(x) 5 x for
x> 0 and f ðxÞ5ex21 for x < 50 [Clevert et al., 2016]) as
activation functions (we also evaluated Rectified Linear
Units (ReLUs, f ðxÞ5maxðx; 0Þ), as a less recently proposed
alternative, see the section “Design choices for deep and
shallow ConvNet”).

Shallow ConvNet for raw EEG signals

We also designed a more shallow architecture referred
to as shallow ConvNet, inspired by the FBCSP pipeline
(Fig. 2), specifically tailored to decode band power fea-
tures. The transformations performed by the shallow
ConvNet are similar to the transformations of FBCSP (see
the section “Filter Bank Common Spatial Patterns
(FBCSP)”). Concretely, the first two layers of the shallow
ConvNet perform a temporal convolution and a spatial
filter, as in the deep ConvNet. These steps are analogous
to the bandpass and CSP spatial filter steps in FBCSP. In
contrast to the deep ConvNet, the temporal convolution
of the shallow ConvNet had a larger kernel size (25 vs
10), allowing a larger range of transformations in this
layer (smaller kernel sizes for the shallow ConvNet led to
lower accuracies in preliminary experiments on the train-
ing set). After the temporal convolution and the spatial
filter of the shallow ConvNet, a squaring nonlinearity, a
mean pooling layer and a logarithmic activation function
followed; together these steps are analogous to the trial
log-variance computation in FBCSP (we note that these
steps were not used in the deep ConvNet). In contrast to
FBCSP, the shallow ConvNet embeds all the computa-
tional steps in a single network, and thus all steps can be
optimized jointly (see the section “ConvNet Training”).
Also, due to having several pooling regions within one
trial, the shallow ConvNet can learn a temporal structure
of the band power changes within the trial, which was
shown to help classification in prior work [Sakhavi et al.,
2015].

Design choices for deep and shallow ConvNet

For both architectures described above, we evaluated
several design choices. We evaluated architectural choices
which we expect to have a potentially large impact on the
decoding accuracies and/or from which we hoped to gain
insights into the behavior of the ConvNets. Thus, for the
deep ConvNet, we compared the design aspects listed in
Table I.

In the following, we give additional details for some of
these aspects. Batch normalization standardizes intermedi-
ate outputs of the network to zero mean and unit variance
for a batch of training examples [Ioffe and Szegedy, 2015].
This is meant to facilitate the optimization by keeping the
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inputs of layers closer to a normal distribution during
training. We applied batch normalization, as recom-
mended in the original paper [Ioffe and Szegedy, 2015], to
the output of convolutional layers before the nonlinearity.
Dropout randomly sets some inputs for a layer to zero in
each training update. It is meant to prevent co-adaption of
different units and can be seen as analogous to training an

ensemble of networks. We drop out the inputs to all con-
volutional layers after the first with a probability of 0.5.
Finally, our new tied loss function is designed to further
regularize our cropped training (see the section “Cropped
training” for an explanation).

We evaluated the same design aspects for the shallow
ConvNet, except for the following differences:

Figure 1.

Deep ConvNet architecture. EEG input (at the top) is progres-

sively transformed toward the bottom, until the final classifier

output. Black cuboids: inputs/feature maps; brown cuboids: con-

volution/pooling kernels. The corresponding sizes are indicated

in black and brown, respectively. Sizes are for the cropped

training version, see the section “Architecture differences.” Each

spatial filter has weights for all possible pairs of electrodes with

filters of the preceding temporal convolution. Note that in these

schematics, proportions of maps and kernels are only approxi-

mate. [Color figure can be viewed at wileyonlinelibrary.com]
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� The baseline methods for the activation function and
pooling mode were chosen as “squaring nonlinearity”
and “mean pooling,” motivation is given in the sec-
tion “Shallow ConvNet for raw EEG signals.”

� We did not include factorized temporal convolutions
into the comparison, as the longer kernel lengths of
the shallow ConvNet make these convolutions less
similar to other successful ConvNets anyways.
� We additionally compared the logarithmic nonlinear-

ity after the pooling layer with a square root nonline-
arity to check if the logarithmic activation inspired by
FBCSP is better than traditional L2-pooling.

Hybrid ConvNet

Besides the individual design choices for the deep and
shallow ConvNet, a natural question to ask is whether
both ConvNets can be combined into a single ConvNet.
Such a hybrid ConvNet could profit from the more specific
feature extraction of the shallow ConvNet and from the
more generic feature extraction of the deep ConvNet.
Therefore, we also created a hybrid ConvNet by fusing
both networks after the final layer. Concretely, we
replaced the four-filter softmax classification layers of both
ConvNets by 60- and 40-filter ELU layers for the deep and
shallow ConvNet respectively. The resulting 100 feature
maps were concatenated and used as the input to a new
softmax classification layer. We retrained the whole hybrid
ConvNet from scratch and did not use any pretrained
deep or shallow ConvNet parameters.

Figure 2.

Shallow ConvNet architecture. Conventions as in Figure 1.

[Color figure can be viewed at wileyonlinelibrary.com]

TABLE I. Evaluated design choices

Design aspect Our choice Variants Motivation

Activation functions

Pooling mode

ELU

Max

Square, ReLU

Mean

We expected these choices to be sensi-
tive to the type of feature (e.g., signal
phase or power), as squaring and
mean pooling results in mean power
(given a zero-mean signal). Different
features may play different roles in
the low-frequency components vs the
higher frequencies (see the section
“Datasets and Preprocessing”).

Regularization and
intermediate
normalization

Dropout 1 batch normalization 1

a new tied loss function
(explanations see text)

Only batch normalization,
only dropout, neither
of both, nor tied loss

We wanted to investigate whether
recent deep learning advances
improve accuracies and check how
much regularization is required.

Factorized temporal
convolutions

One 10 3 1 convolution per
convolutional layer

Two 6 3 1 convolutions
per convolutional layer

Factorized convolutions are used by
other successful ConvNets [Szegedy
et al., 2015]

Splitted vs one-step
convolution

Splitted convolution in first layer
(see the section “Deep ConvNet
for raw EEG signals”)

One-step convolution in
first layer

Factorizing convolution into spatial and
temporal parts may improve accura-
cies for the large number of EEG
input channels (compared with three
rgb color channels of regular image
datasets).

Design choices we evaluated for our convolutional networks. “Our choice” is the choice we used when evaluating ConvNets in the
remainder of this article, for example, versus FBCSP. Note that these design choices have not been evaluated in prior work, see Sup-
porting Information, Section A.1.
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Residual ConvNet for raw EEG signals

In addition to the shallow and deep ConvNets, we eval-
uated another network architecture: Residual networks
(ResNets), a ConvNet architecture that recently won several
benchmarks in the computer vision field [He et al., 2015].
ResNets typically have a very large number of layers and
we wanted to investigate whether similar networks with
more layers also result in good performance in EEG decod-
ing. ResNets add the input of a convolutional layer to the
output of the same layer, to the effect that the convolutional
layer only has to learn to output a residual that changes the
previous layers output (hence the name residual network).
This allows ResNets to be successfully trained with a much
larger number of layers than traditional convolutional net-
works [He et al., 2015]. Our residual blocks are the same as
described in the original paper (Fig. 3).

Our ResNet used exponential linear unit activation func-
tions [Clevert et al., 2016] throughout the network (same
as the deep ConvNet) and also starts with a splitted tem-
poral and spatial convolution (same as the deep and shal-
low ConvNets), followed by 14 residual blocks, mean
pooling and a final softmax dense classification layer (for
further details, see Supporting Information, Section A.3).

ConvNet Training

In this section, we first give a definition of how Con-
vNets are trained in general. Second, we describe two
ways of extracting training inputs and training labels from
the EEG data, which result in a trialwise and a cropped
training strategy.

Definition

To train a ConvNet, all parameters (all weights and
biases) of the ConvNet are trained jointly. Formally, in our
supervised classification setting, the ConvNet computes a
function from input data to one real number per class,

f ðXj; uÞ : RE�T ! RK, where h are the parameters of the
function, E the number of electrodes, T the number of
timesteps, and K the number of possible output labels. To
use ConvNets for classification, the output is typically
transformed to conditional probabilities of a label lk
given the input Xj using the softmax function:

pðlkjf ðXj; uÞÞ5 expðfkðXj;uÞÞPK

m51
expðfmðXj;uÞÞ

. In our case, as we train per

subject, the softmax output gives us a subject-specific condi-
tional distribution over the K classes. Now we can train the
entire ConvNet to assign high probabilities to the correct
labels by minimizing the sum of the per-example losses:

u�5arg min
u

XN

j51

loss yj; p lkjfkðXj; uÞ
� �� �

; (1)

where

loss yj; p lkjfkðXj; uÞ
� �� �

5
XK

k51

2log p lkjfkðXj; uÞ
� �� �

� dðyj5lkÞ

(2)

is the negative log likelihood of the labels. As is common
for training ConvNets, the parameters are optimized via
mini-batch stochastic gradient descent using analytical gra-
dients computed via backpropagation (see LeCun et al.
[2015] for an explanation in the context of ConvNets and
the section “Optimization and early stopping” in this arti-
cle for details on the optimizer used in this study).

This ConvNet training description is connected to our
general EEG decoding definitions from the section
“Definitions and Notation” as follows. The function that
the ConvNet computes can be viewed as consisting of a
feature extraction function and a classifier function: The
feature extraction function /ðXj; u/Þ with parameters u/ is
computed by all layers up to the penultimate layer. The
classification function g /ðXj; u/Þ; ug

� �
with parameters hg,

which uses the output of the feature extraction function as
input, is computed by the final classification layer. In this
view, one key advantage of ConvNets becomes clear: With
the joint optimization of both functions, a ConvNet learns
both, a descriptive feature representation for the task and a
discriminative classifier. This is especially useful with large
datasets, where it is more likely that the ConvNet learns to
extract useful features and does not just overfit to noise pat-
terns. For EEG data, learning features can be especially valu-
able as there may be unknown discriminative features or at
least discriminative features that are not used by more tradi-
tional feature extraction methods such as FBCSP.

Input and labels

In this study, we evaluated two ways of defining the
input examples and target labels that the ConvNet is
trained on. First, a trial-wise strategy that uses whole trials
as input and per-trial labels as targets. Second, a cropped
training strategy that uses crops, that is, sliding time win-
dows within the trial as input and per-crop labels as tar-
gets (where the label of a crop is identical to the label of
the trial the crop was extracted from).

Trial-wise training

The standard trial-wise training strategy uses the whole
duration of the trial and is therefore similar to how FBCSP

Figure 3.

Residual block. Residual block used in the ResNet architecture

and as described in original paper (He et al. [2015]; see Fig. 2)

with identity shortcut option A, except using ELU instead of

ReLU nonlinearities. See the section “Residual ConvNet for raw

EEG signals” for explanation.
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is trained. For each trial, the trial signal is used as input
and the corresponding trial label as target to train the Con-
vNet. We evaluated using trial epochs starting either at
500 ms before, directly at, or 500 ms after trial start cue,
both for FBCSP and the ConvNets; 500 ms before trial start
led to the best accuracies for the ConvNets, 500 ms after
trial start to the best accuracies for FBCSP. Therefore, these
settings (500 ms before for ConvNets, 500 ms after for
FBCSP) were used in this study. This led to 288 training
examples per subject for BCI competition IV dataset 2a
and about 880 training examples per subject on the High-
Gamma Dataset after their respective train-test split.

Cropped training

The cropped training strategy uses crops, that is, sliding
input windows within the trial, which leads to many more
training examples for the network than the trial-wise train-
ing strategy. We adapted this strategy from convolutional
neural networks for object recognition in images, where
using multiple crops of the input image is a standard pro-
cedure to increase decoding accuracy (see, e.g., He et al.
[2015] and Szegedy et al. [2015]).

In our study, we used crops of about 2 s as the input.
We adopt a cropping approach, which leads to the largest
possible number of crops by creating one crop per sample
(by sample, we mean a timestep in our EEG trial time
series). More formally, given an original trial Xj 2 RE�T

with E electrodes and T timesteps, we create a set of crops
with crop size T0 as timeslices of the trial:
Cj5fXj

1::E;t::t1T0 jt 2 1::T2T0g. All of these T2T0 crops are
new training data examples for our decoder and will get
the same label yj as the original trial.

This aggressive cropping has the aim to force the Con-
vNet into using features that are present in all crops of the
trial, as the ConvNet can no longer use the differences
between crops and the global temporal structure of the fea-
tures in the complete trial. We collected crops starting from
0.5 s before trial start (first crop from 0.5 s before to 1.5 s
after trial start), with the last crop ending 4 s after the trial
start (which coincides with the trial end, so the last crop
starts 2 s before the trial and continues to the trial end).
Overall, this resulted in 625 crops and therefore 625 label
predictions per trial. The mean of these 625 predictions is
used as the final prediction for the trial during the test
phase. During training, we compute a loss for each predic-
tion. Therefore, cropped training increases our training set
size by a factor of 625, albeit with highly correlated training
examples. As our crops are smaller than the trials, the Con-
vNet input size is also smaller (from about 1000 input sam-
ples to about 500 input samples for the 250 Hz sampling
rate), while all other hyperparameters stay the same.

To reduce the computational load from the increased
training set size, we decoded a group of neighboring crops
together and reused intermediate convolution outputs. This
idea has been used in the same way to speed up ConvNets
that make predictions for each pixel in an image [Giusti

et al., 2013; Nasse et al., 2009; Sermanet et al., 2014; Shel-
hamer et al., 2016]. In a nutshell, this method works by pro-
viding the ConvNet with an input that contains several
crops and computing the predictions for all crops in a single
forward pass (see Fig. 4 for an explanation). This cropped
training method leads to a new hyperparameter: the number
of crops that are processed at the same time. The larger this
number of crops, the larger the speedup one can get (upper
bounded by the size of one crop, see Giusti et al. [2013] for a
more detailed speedup analysis on images), at the cost of
increased memory consumption. A larger number of crops
that are processed at the same time during training also
implies parameter updates from gradients computed on a
larger number of crops from the same trial during mini-
batch stochastic gradient descent, with the risk of less stable
training. However, we did not observe substantial accuracy
decreases when enlarging the number of simultaneously
processed crops (this stability was also observed for images
[Shelhamer et al., 2016]) and in the final implementation, we
processed about 500 crops in one pass, which corresponds
to passing the ConvNet an input of about 1000 samples,
twice the 500 samples of one crop. Note that this method
only results in exactly the same predictions as the na€ıve
method when using valid convolutions (i.e., no padding).
For padded convolutions (which we use in the residual net-
work described in the section “Residual ConvNet for raw
EEG signals”), the method no longer results in the same pre-
dictions, so it cannot be used to speed up predictions for
individual samples anymore. However, it can still be used if
one is only interested in the average prediction for a trial as
we are in this study.

To further regularize ConvNets trained with cropped
training, we designed a new objective function, which
penalizes discrepancies between predictions of neighbor-
ing crops. In this tied sample loss function, we added the
cross-entropy of two neighboring predictions to the usual
loss of of negative log likelihood of the labels. So, denoting
the prediction pðlkjfkðXj

t::t1T0; uÞÞ for crop X
j
t::t1T0 from time

step t to t1T0 by pf ;kðXj
t::t1T0Þ, the loss now also depends

on the prediction for the next crop pf ;kðXj
t11::t1T011Þ and

changes from Eq. (2) to

loss yj; pf ;kðXj
t::t1T0Þ

� �
5
XK

k51

2log pf ;kðXj
t::t1T0Þ

� �
� dðyj5lkÞ

1
XK

k51

2log pf ;kðXj
t::t1T0Þ

� �
� pf ;kðXj

t11::t1T011Þ

(3)

This is meant to make the ConvNet focus on features
which are stable for several neighboring input crops.

Architecture differences

The ConvNet architectures are identical for trial-wise
training and cropped training, except for the final classifi-
cation layer. It has a larger weight size in the temporal
dimension for the trial-wise training than for the cropped
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training to process the larger temporal input length (final
temporal weight length 9 vs 2 for the deep ConvNet and
69 vs 30 for the shallow ConvNet).

Optimization and early stopping

As optimization method, we used Adam [Kingma and
Ba, 2014] together with a specific early stopping method,
as this consistently yielded good accuracy in preliminary
experiments on the training set. For details on Adam and
our early stopping strategy, see Supporting Information,
Section A.4.

Visualization

Correlating input features and unit outputs: Network

correlation maps

As described in the Introduction, currently there is a
great interest in understanding how ConvNets learn to
solve different tasks. To this end, methods to visualize
functional aspects of ConvNets can be helpful and the
development of such methods is an active area of research.
Here, we wanted to delineate what brain-signal features
the ConvNets used and in which layers they extracted
these features. The most obvious restriction on possible

Figure 4.

Multiple-crop prediction used for cropped training. In this toy

example, a trial with the sample values 1,2,3,4,5,6,7 is cut into

three crops of length 5 and these crops are passed through a

convolutional network with two convolutional layers and one

dense layer. The convolutional layers both have kernel size 2,

and the second one additionally uses a stride of 2. Filters for

both layers and the final dense layer have values 1,1. Red indi-

cates intermediate outputs that were computed multiple times

in the na€ıve implementation. Note that both implementations

result in the same final outputs. (a) Na€ıve implementation by

first splitting the trial into crops and passing the crops through

the ConvNet independently. (b) Optimized implementation,

computing the outputs for each crop in a single forward pass.

Strides in the original ConvNet are handled by separating inter-

mediate results that correspond to different stride offsets, see

the split stride offsets step. NaNs are only needed to pad all

intermediate outputs to the same size and are removed in the

end. The split stride step can simply be repeated in case of fur-

ther layers with stride. We interleave the outputs only after the

final predictions, also in the case of ConvNets with more layers.

[Color figure can be viewed at wileyonlinelibrary.com]
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features is that units in individual layers of the ConvNet can
only extract features from samples that they have “seen,”
that is, from their so-called receptive field (Fig. 5). A way to
further narrow down the possibly used features is to use
domain-specific prior knowledge and to investigate whether
known class-discriminative features are learned by the Con-
vNet. Then it is possible to compute a feature value for all
receptive fields of all individual units for each of these class-
discriminative features and to measure how much this fea-
ture affects the unit output, for example, by computing the
correlation between feature values and unit outputs.

In this spirit, we propose input-feature unit-output cor-
relation maps as a method to visualize how networks
learn spectral amplitude features. It is known that the
amplitudes, for example of the alpha, beta and gamma
bands, provide class-discriminative information for motor
tasks [Ball et al., 2008; Pfurtscheller, 1981; Pfurtscheller
and Aranibar, 1979]. Therefore, we used the mean enve-
lope values for several frequency bands as feature values.
We correlated these values inside a receptive field of a
unit, as a measure of its total spectral amplitude, with the
corresponding unit outputs to gain insight into how much
these amplitude features are used by the ConvNet. Posi-
tive or negative correlations that systematically deviate
from those found in an untrained net imply that the Con-
vNet learned to create representations that contain more
information about these features than before training.

A limitation of this approach is that it does not distin-
guish between correlation and causation (i.e., whether the

change in envelope caused the change in the unit output,
or whether another feature, itself correlated to the unit
output, caused the change). Therefore, we propose a sec-
ond visualization method, where we perturbed the ampli-
tude of existing inputs and observed the change in
predictions of the ConvNets. This complements the first
visualization and we refer to this method as input-
perturbation network-prediction correlation map. By using
artificial perturbations of the data, they provide insights in
whether changes in specific feature amplitudes cause the
network to change its outputs. Details on the computation
of both NCM methods are described in the following.

Input-feature unit-output correlation maps

The input-feature unit-output correlation maps visualize
the frequency-resolved correlation between unit outputs of
the convolutional filters of the ConvNets and the power of
all the samples in the receptive field of these units (Fig. 6).

To achieve this, we performed the following steps:

1. For each frequency band of interest, the signal was
bandpass-filtered to that frequency band and the
envelope was computed.

2. For each frequency band of interest, the squared
mean envelope for each receptive field of a given
layer was computed. We did this by computing a
moving window average of the squared envelope
with the moving window size the same as the recep-
tive field size (this was the input feature for which
we then evaluated how much it affected the unit
output).

3. Unit outputs of the given layer on the original signal
were computed.

4. Linear correlations between the squared mean enve-
lope values for all the frequency bands and the unit
outputs for each convolutional filter were computed.
These correlations should reflect whether a filter
might compute an approximation of the squared
mean envelope of all the samples in its receptive
field.

As we compute correlations after concatenating all sam-
ples of all trials, these correlations reflect both within-trial
and between-trial effects. The proposed method could, how-
ever, be straightforwardly extended to disentangle these
two sources. We computed the correlations for a filter bank
ranging from 0 to 119 Hz. An example result for a single
electrode and a single subject is shown in Figure 7.

To compute a single scalp plot for a frequency band, we
computed the mean of the absolute correlations over all
units for each convolutional filter and each electrode for
that frequency band. To disentangle effects which are
caused by the training of the network from those caused
by the architecture, we computed the scalp plot for a
trained and an untrained model. The scalp plot for a

Figure 5.

ConvNet Receptive Fields Schema. Showing the outputs, inputs,

and receptive fields of one unit per layer. Colors indicate differ-

ent units. Filled rectangles are individual units, and solid lines

indicate their direct input from the layer before. Dashed lines

indicate the corresponding receptive field in all previous layers

including the original input layer. The receptive field of a unit

contains all inputs that are used to compute the unit’s output.

The receptive fields get larger with increasing depth of the layer.

Note that this is only a schema and exact dimensions are not

meaningful in this figure. [Color figure can be viewed at wileyon-

linelibrary.com]
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subject is then the scalp plot of the trained model minus
the scalp plot of the untrained model (Fig. 6b). The group
scalp plot is the mean of these differential scalp plots over
all subjects.

To compare the resulting maps against scalp maps that
simply result from class-feature correlations, we also com-
puted the linear correlation between mean squared enve-
lope values and the one-hot-encoded classes, in the same
way as before. First, for each trial, each sensor, and each
frequency band, we constructed a vector of the moving
window squared envelope values as before (with the mov-
ing window now the size of the receptive field of the last
layer of the ConvNet). Second, for each trial and each
class, we constructed a vector of either value 1 if the trial
was of the given class or value 0 if it was of another class.
The concatenated vectors then resulted in a time series
with value 1 if the time point belonged to a given class
and value 0 if it did not. Then we correlated the moving
window squared envelope time series vectors with the

class time series vectors, resulting in one correlation value
per class, sensor, and frequency band combination. As in
the other computations, we subtracted the correlations
resulting from predictions of an untrained deep ConvNet.

A further question is whether the correlations could be
a result of the unit outputs encoding the final class label.
Such correlations could also result from using other dis-
criminative features than the features we analyzed. To
investigate this question, we correlated the unit outputs
for each layer with the class labels. Here, we proceeded
the same way as described in the previous paragraph, but
correlated unit outputs directly with class labels. We then
computed a single absolute correlation coefficient per layer
in two ways: First, we computed the mean absolute corre-
lation coefficient for all classes and all filters. These corre-
lations should show how strongly the unit outputs encode
the class labels on average across filters. Second, we com-
puted the maximum absolute correlation coefficients for
each class over all filters and then computed the mean of

Figure 6.

Computation overview for input-feature unit-output network

correlation map. (a) Feature inputs and unit outputs for input-

feature unit-output correlation map. Moving average of squared

envelopes and unit outputs for 10 trials. Upper rows show

mean squared envelopes over the receptive field for three fre-

quency ranges in the alpha, beta, and gamma frequency band,

standardized per frequency range. Lower rows show corre-

sponding unit outputs for three filters, standardized per filter.

All time series standardized for the visualization. (b) Input-

feature unit-output correlations and corresponding scalp map

for the alpha band. Left: Correlation coefficients between unit

outputs of three filters and mean squared envelope values over

the corresponding receptive field of the units for three fre-

quency ranges in the alpha (7–13 Hz), beta (13–31 Hz), and

gamma (71–91 Hz) frequency band. Results are shown for the

trained and the untrained ConvNet and for one electrode. Mid-

dle: Mean of the absolute correlation coefficients over the three

filters for the trained and the untrained ConvNet, and the differ-

ence between trained and untrained ConvNet. Right: An exem-

plary scalp map for correlations in the alpha band (7–13 Hz),

where the color of each dot encodes the correlation difference

between a trained and an untrained ConvNet for one electrode.

Note localized positive effects above areas corresponding to the

right and left sensorimotor hand/arm areas, indicating that activ-

ity in these areas has large absolute correlations with the pre-

dictions of the trained ConvNet. [Color figure can be viewed at

wileyonlinelibrary.com]
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these maxima of the four classes. These correlations should
show how strongly the unit outputs encode the class labels
for the most “class-informative” filters. Finally, for both
versions and as in the other visualizations, we also com-
puted the difference of these correlations between a
trained and an untrained model. In summary, this
approach allowed to show how unit-output class correla-
tions arise from layer to layer through the ConvNet.

Input-perturbation network-prediction correlation

map

To investigate the causal effect of changes in power on
the deep ConvNet, we correlated changes in ConvNet pre-
dictions with changes in amplitudes by perturbing the
original trial amplitudes (see Fig. 8 for an overview). Con-
cretely, we transformed all training trials into the fre-
quency domain by a Fourier transformation. Then we
randomly perturbed the amplitudes by adding Gaussian
noise (with mean 0 and variance 1) to them. The phases
were kept unperturbed. After the perturbation, we retrans-
formed to the time domain by the inverse Fourier transfor-
mation. We computed predictions of the deep ConvNet
for these trials before and after the perturbation (predic-
tions here refers to outputs of the ConvNet directly before
the softmax activation). We repeated this procedure with
400 perturbations sampled from aforementioned Gaussian
distribution and then correlated the change in input ampli-
tudes (i.e., the perturbation/noise we added) with the
change in the ConvNet predictions. To ensure that the
effects of our perturbations reflect the behavior of the

ConvNet on realistic data, we also checked that the per-
turbed input does not cause the ConvNet to misclassify
the trials (as can easily happen even from small perturba-
tions, see Szegedy et al. [2014]). For that, we computed
accuracies on the perturbed trials. For all perturbations of
the training sets of all subjects, accuracies stayed above
99.5% of the accuracies achieved with the unperturbed
data.

Datasets and Preprocessing

We first evaluated decoding accuracies on two EEG
datasets, a smaller public dataset (BCI competition IV
dataset 2a [Brunner et al., 2008]) for comparing to previ-
ously published accuracies and a larger new dataset
acquired in our lab for evaluating the decoding methods
with a larger number of training trials (�880 trials per
subject, compared to 288 trials in the public set). We call
this dataset High Gamma Dataset (HGD), as it is espe-
cially well-suited for extracting information from the
higher frequencies; see Supporting Information, Section
A.6. To investigate whether our main results also hold on
other datasets, we compared the ConvNet decoding accu-
racies with FBCSP on two additional datasets: The BCI
Competition IV 2b dataset, a 3-electrode two-class EEG
motor-imagery dataset, and the Mixed Imagery Dataset
(MID), a 64-electrode four-class dataset with both two
motor and two non-motor imagery classes (right hand
movement, feet movement, mental rotation and word gen-
eration). For details on the datasets, see Supporting Infor-
mation, Section A.6.

Figure 7.

Correlation between the mean squared envelope feature and

unit output for a single subject at one electrode position

(FCC4h). Left: All correlations. Colors indicate the correlation

between unit outputs per convolutional filter (x-axis) and mean

squared envelope in different frequency bands (y-axis). Filters

are sorted by their correlation to the 7–13 Hz envelope (out-

lined by the black rectangle). Note the large correlations/anti-

correlations in the alpha/beta bands (7–31 Hz) and somewhat

weaker correlations/anticorrelations in the gamma band (around

75 Hz). Right: mean absolute values across units of all convolu-

tional filters for all correlation coefficients of the trained model,

the untrained model and the difference between the trained and

untrained model. Peaks in the alpha, beta, and gamma bands are

clearly visible. [Color figure can be viewed at wileyonlinelibrary.

com]
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EEG preprocessing and evaluating different frequency

bands

We only minimally preprocessed the datasets to allow
the ConvNets to learn any further transformations them-
selves. In addition to the full-bandwidth (0–fend-Hz) data-
set, we analyzed data high-pass filtered above 4 Hz
(which we call 4–fend-Hz dataset) to minimize artifacts,
which need to be considered in brain-signal decoding for
brain-computer interfaces. Filtering was done with a
causal third-order Butterworth filter. We included the
4–fend-Hz dataset as the highpass filter should make it less
probable that either the networks or FBCSP would use
class-discriminative eye movement artifacts to decode the
behavior classes, as eye movements generate most power
in such low frequencies [Gratton, 1998]. We included this
analysis as for the BCI competition datasets special care to
avoid decoding eye-related signals was requested from the
publishers of the datasets [Brunner et al., 2008] and a high-
pass filter was one of the suggested methods to remove
eye artefacts; indeed this was the method the winners of

the competition used [Ang et al., 2008]. For details on
other preprocessing steps, see Supporting Information,
Section A.7.

Statistics

We used Wilcoxon signed-rank tests to check for statisti-
cal significance of the mean difference of accuracies
between decoding methods [Wilcoxon, 1945]. We handled
ties by using the average rank of all tied data points and
zero differences by assigning half of the rank-sum of these
zero differences to the positive rank-sums and the other
half to the negative rank-sums. In case of a noninteger
test-statistic value caused by ties or zeros, we rounded our
test-statistic to the next larger integer, resulting in a more
conservative estimate.

To correct for multiple tests, we additionally performed
a false-discovery-rate correction at a50:05 for all compari-
sons involving ConvNet accuracies using the Benjami-
ni–Hochberg procedure [Benjamini and Hochberg, 1995].

Figure 8.

Computation overview for input-perturbation network-predic-

tion correlation map. (a) Example spectral amplitude perturba-

tion and resulting classification difference. Top: Spectral

amplitude perturbation as used to perturb the trials. Bottom:

unit-output difference between unperturbed and perturbed trials

for the classification layer units before the softmax. (b) Input-

perturbation network-prediction correlations and corresponding

network correlation scalp map for alpha band. Left: Correlation

coefficients between spectral amplitude perturbations for all fre-

quency bins and differences of the unit outputs for the four clas-

ses (differences between unperturbed and perturbed trials) for

one electrode. Middle: Mean of the correlation coefficients over

the the alpha (7–13 Hz), beta (13–31 Hz) and gamma (71–91

Hz) frequency ranges. Right: An exemplary scalp map for the

alpha band, where the color of each dot encodes the correlation

of amplitude changes at that electrode and the corresponding

prediction changes of the ConvNet. Negative correlations on

the left sensorimotor hand/arm areas show an amplitude

decrease in these areas leads to a prediction increase for the

Hand (R) class, whereas positive correlations on the right senso-

rimotor hand/arm areas show an amplitude decrease leads to a

prediction decrease for the Hand (R) class. This complements

the information from the input-feature unit-output network cor-

relation map (Fig. 6b), which showed band power in these areas

is strongly correlated with unit outputs in the penultimate layer.

[Color figure can be viewed at wileyonlinelibrary.com]
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RESULTS

Validation of FBCSP Baseline

Result 1: FBCSP baseline reached same results as pre-

viously reported in the literature

As a first step before moving to the evaluation of Con-
vNet decoding, we validated our FBCSP implementation,
as this was the baseline we compared the ConvNets
results against. To validate our FBCSP implementation, we
compared its accuracies to those published in the literature
for the BCI competition IV dataset 2a [Sakhavi et al., 2015].
Using the same 0.5–2.5 s (relative to trial onset) time win-
dow, we reached an accuracy of 67.6%, statistically not sig-
nificantly different from theirs (67.0%, P 5 0.73, Wilcoxon
signed-rank test). Note, however, that we used the full
trial window for later experiments with convolutional

networks, that is, from 0.5 to 4 s. This yielded a slightly
better accuracy of 67.8%, which was still not statistically
significantly different from the original results on the
0.5–2.5 s window (P 5 0.73). For all later comparisons, we
use the 0.5–4 s time window on all datasets.

Architectures and Design Choices

Result 2: ConvNets reached FBCSP accuracies

Both the deep the shallow ConvNets, with appropriate
design choices (see Result 5), reached similar accuracies as
FBCSP-based decoding, with small but statistically signifi-
cant advantages for the ConvNets in some settings. For
the mean of all subjects of both datasets, accuracies of the
shallow ConvNet on 0–fend Hz and for the deep ConvNet
on 4–fend Hz were not statistically significantly different

Figure 9.

FBCSP versus ConvNet decoding accuracies. Each small marker

represents the accuracy of one subject, the large square markers

represent average accuracies across all subjects of both datasets.

Markers above the dashed line indicate experiments where Con-

vNets performed better than FBCSP and opposite for markers

below the dashed line. Stars indicate statistically significant differ-

ences between FBCSP and ConvNets (Wilcoxon signed-rank

test, P< 0.05: *, P< 0.01: **, P< 0.0015***). Bottom left of

every plot: linear correlation coefficient between FBCSP and

ConvNet decoding accuracies. Mean accuracies were very simi-

lar for ConvNets and FBCSP, the (small) statistically significant

differences were in direction of the ConvNets. [Color figure

can be viewed at wileyonlinelibrary.com]
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from FBCSP (Fig. 9 and Table II). The deep ConvNet on
0–fend Hz and the shallow ConvNet on 4—fend Hz reached
slightly higher (1.9% and 3.3% higher, respectively) accura-
cies that were also statistically significantly different (P<
0.05, Wilcoxon signed-rank test). Note that all results in
this section were obtained with cropped training, for a
comparison of cropped and trial-wise training, see the sec-
tion “Training Strategy.” Note that all P values below 0.01
in this study remain significant when controlled with
false-discovery-rate correction at a50:05 across all tests
involving ConvNet accuracies.

Result 3: Confusion matrices for all decoding

approaches were similar

Confusion matrices for the High-Gamma Dataset on
0–fend Hz were very similar for FBCSP and both ConvNets
(Fig. 10). The majority of all mistakes were due to discrim-
inating between Hand (L)/Hand (R) and Feet/Rest, see
Table III. Seven entries of the confusion matrix had a sta-
tistically significant difference (P< 0.05, Wilcoxon signed-
rank test) between the deep and the shallow ConvNet, in
all of them the deep ConvNet performed better. Only two
differences between the deep ConvNet and FBCSP were
statistically significant (P< 0.05), none for the shallow
ConvNet and FBCSP. Confusion matrices for the BCI com-
petition IV dataset 2a showed a larger variability and
hence a less consistent pattern, possibly because of the
much smaller number of trials.

Result 4: Hybrid ConvNets performed slightly, but

statistically insignificantly, worse than deep ConvNets

The hybrid ConvNet performed similar, but slightly
worse than the deep ConvNet, that is, 83.8% vs 84.0%
(P> 0.5, Wilcoxon signed-rank test) on the 0–fend-Hz data-
set, 82.1% vs 83.1% (P> 0.9) on the 4–fend-Hz dataset. In
both cases, the hybrid ConvNet’s accuracy was also not
statistically significantly different from FBCSP (83.8% vs

82.1%, P> 0.4 on 0–fend Hz, 82.1% vs 81.9%, P> 0.7 on
4–fend Hz).

Result 5: ConvNet design choices substantially

affected decoding accuracies

In the following, results for all design choices are
reported for all subjects from both datasets. For an over-
view of the different design choices investigated, and the
motivation behind these choices, we refer to section
“Design choices for deep and shallow ConvNet.”

Batch normalization and dropout significantly increased
accuracies. This became especially clear when omitting both
simultaneously (Fig. 11a). Batch normalization provided a
larger accuracy increase for the shallow ConvNet, whereas
dropout provided a larger increase for the deep ConvNet.
For both networks and for both frequency bands, the only
statistically significant accuracy differences were accuracy
decreases after removing dropout for the deep ConvNet on
0–fend-Hz data or removing batch normalization and drop-
out for both networks and frequency ranges (P< 0.05, Wil-
coxon signed-rank test). Usage of tied loss did not affect the
accuracies very much, never yielding statistically significant
differences (P> 0.05). Splitting the first layer into two convo-
lutions had the strongest accuracy increase on the 0–fend-Hz
data for the shallow ConvNet, where it is also the only sta-
tistically significant difference (P< 0.01).

For the deep ConvNet, using ReLU instead of ELU as
nonlinearity in all layers worsened performance (P< 0.01,
see Fig. 11b on the right side). Replacing the 10 3 1 convo-
lutions by 6 3 1 1 6 3 1 convolutions did not statistically
significantly affect the performance (P> 0.4).

Result 6: Recent deep learning advances substantially

increased accuracies

Figure 12 clearly shows that only recent advances in
deep learning methods (by which we mean the combina-
tion of batch normalization, dropout and ELUs) allowed

TABLE II. Decoding accuracy of the FBCSP baseline and of the deep and shallow ConvNets

Dataset
Frequency
range [Hz] FBCSP

Deep
ConvNet

Shallow
ConvNet

Hybrid
ConvNet

Residual
ConvNet

BCIC IV 2a 0–38 68.0 12.9 15.7* 13.6 20.3
BCIC IV 2a 4–38 67.8 12.3 14.1 21.6 27.0*
HGD 0–125 91.2 11.3 21.9 10.6 22.3*
HGD 4–125 90.9 10.5 13.0* 11.5 21.1
Combined 0–fend 82.1 11.9* 11.1 11.8 21.1
Combined 4–fend 81.9 11.2 13.4** 10.3 23.5*

FBCSP decoding accuracies and difference of deep and shallow ConvNet accuracies to FBCSP results are given in percentage. BCIC IV
2a: BCI competition IV dataset 2a. HGD: High-Gamma Dataset. Frequency range is in Hertz. Stars indicate statistically significant differ-
ences (P values from Wilcoxon signed-rank test, *: P< 0.05, **: P< 0.01, no P values were below 0.001). Note that all P values below
0.01 in this study remain significant when controlled with false-discovery-rate correction at a50:05 across all tests involving ConvNet
accuracies.
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our deep ConvNet to be competitive with FBCSP. Without
these recent advances, the deep ConvNet had statistically
significantly worse accuracies than FBCSP for both 0–fend-
Hz and 4–fend-Hz data (P< 0.001, Wilcoxon signed-rank
test). The shallow ConvNet was less strongly affected,
with no statistically significant accuracy difference to
FBCSP (P> 0.2).

Result 7: Residual network performed worse than

deep ConvNet

Residual networks had consistently worse accuracies
than the deep ConvNet as seen in Table IV. All accuracies
were lower and the difference was statistically significant
for both frequency ranges on the combined dataset.

Figure 10.

Confusion matrices for FBCSP- and ConvNet-based decoding.

Results are shown for the High-Gamma Dataset, on 0–fend Hz.

Each entry of row r and column c for upper-left 434-square:

Number of trials of target r predicted as class c (also written in

percent of all trials). Bold diagonal corresponds to correctly pre-

dicted trials of the different classes. Percentages and colors indi-

cate fraction of trials in this cell from all trials of the

corresponding column (i.e., from all trials of the corresponding

target class). The lower-right value corresponds to overall accu-

racy. Bottom row corresponds to sensitivity defined as the

number of trials correctly predicted for class c/number of trials

for class c. Rightmost column corresponds to precision defined

as the number of trials correctly predicted for class r/number of

trials predicted as class r. Stars indicate statistically significantly

different values of ConvNet decoding from FBCSP, diamonds

indicate statistically significantly different values between the

shallow and deep ConvNets. P<0.05: �/*, P<0.01: ��/**,

P<0.001: ���/***, Wilcoxon signed-rank test. [Color figure

can be viewed at wileyonlinelibrary.com]
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Training Strategy

Result 8: Cropped training strategy improved deep

ConvNet on higher frequencies

Cropped training increased accuracies statistically signif-
icantly for the deep ConvNet on the 4–fend-Hz data
(P<1e25, Wilcoxon signed-rank test; Fig. 13). In all other
settings (0–fend-Hz data, shallow ConvNet), the accuracy
differences were not statistically significant (P > 0:1) and
showed a lot of variation between subjects.

Result 9: Training ConvNets took substantially longer

than FBCSP

FBCSP was substantially faster to train than the ConvNets
with cropped training, by a factor of 27–45 on the BCI com-
petition IV dataset 2a and a factor of 5–9 on the High-
Gamma Dataset (Table V). Training times are end-to-end,
that is, include the loading and preprocessing of the data.
These times are only meant to give a rough estimate of the
training times as there were differences in the computing
environment between ConvNets training and FBCSP train-
ing. Most importantly, FBCSP was trained on CPU, while
the networks were trained on GPUs (Supp. A.8). Longer rel-
ative training times for FBCSP on the High-Gamma Dataset
can be explained by the larger number of frequency bands
we use on the High-Gamma Dataset. Online application of
the trained ConvNets does not suffer from the same speed
disadvantage compared to FBCSP; the fast prediction speed
of trained ConvNets make them well suited for decoding in
real-time BCI applications.

Additional Datasets

Result 10: ConvNets reach accuracies in the same

range as FBCSP on additional datasets

On the two additional datasets, the BCI competition IV
dataset 2b and the Mixed-Imagery Dataset (MID), ConvNets
again reached accuracies in a very similar range as FBCSP.
For BCI competition IV dataset 2b, deep ConvNets reached
a mean kappa value of 0.598, almost identical to the FBCSP
competition results (0.599), and shallow ConvNets reached

a slightly better kappa value of 0.629. Both ConvNet results
were not statistically significantly different from FBCSP
(P> 0.3). For the Mixed-Imagery Dataset, shallow ConvNets
reached a mean accuracy of 67.7%, slightly worse than
FBCSP with 71.2%, whereas deep ConvNets reached
slightly better accuracies with 72.2%.

Visualization

Result 11: Band power topographies show event-

related “desynchronization/synchronization” typical

for motor tasks

Before moving to ConvNet visualization, we examined
the spectral amplitude changes associated with the differ-
ent movement classes in the alpha, beta, and gamma fre-
quency bands, finding the expected overall scalp
topographies (Fig. 14). For example, for the alpha (7–13
Hz) frequency band, there was a class-related power
decrease (anticorrelation in the class-envelope correlations)
in the left and right pericentral regions with respect to the
hand classes, stronger contralaterally to the side of the
hand movement, that is, the regions with pronounced
power decreases lie around the primary sensorimotor
hand representation areas. For the feet class, there was a
power decrease located around the vertex, that is, approxi-
mately above the primary motor foot area. As expected,
opposite changes (power increases) with a similar topogra-
phy were visible for the gamma band (71–91 Hz).

Result 12: Input-feature unit-output correlation maps

show learning progression through the ConvNet layers

We used our input-feature unit-output correlation map-
ping technique to examine the question how correlations
between EEG power and the behavioral classes are learnt
by the network. Figure 15 shows the input-feature unit-
output correlation maps for all four conv-pooling-blocks of
the deep ConvNet, for the group of subjects of the High-
Gamma Dataset. As a comparison, the figure also contains
the correlation between the power and the classes them-
selves as described in the section “Input-feature unit-out-
put correlation maps”. The differences of the absolute
correlations show which regions were more correlated

TABLE III. Decoding errors between class pairs

Hand (L) Hand (R) Hand (L) Feet Hand (L) Rest Hand (R) Feet Hand (R) Rest Feet Rest

FBCSP 82 28 31 3 12 42
Deep 70 13 27 13 21 26
Shallow 99 3 34 5 37 73

Results for the High-Gamma Dataset. Number of trials where one class was mistaken for the other for each decoding method, summed
per class pair. The largest number of errors was between Hand (L) and Hand (R) for all three decoding methods, the second largest
between Feet and Rest (on average across the three decoding methods). Together, these two class pairs accounted for more than 50% of
all errors for all three decoding methods. In contrast, Hand (L and R) and Feet had a small number of errors irrespective of the decod-
ing method used.
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with the unit outputs of the trained ConvNet than with
the unit outputs of the untrained ConvNet; these correla-
tions are naturally undirected. Overall, the input-feature
unit-output correlation maps became more similar to the
power–class correlation maps with increasing layer depth.
This gradual progression was also reflected in an increas-
ing correlation of the unit outputs with the class labels
with increasing depth of the layer (Fig. 16).

Result 13: Input-perturbation network-prediction cor-

relation maps show causal effect of spatially local-

ized band power features on ConvNet predictions

We show three visualizations extracted from input-
perturbation network-prediction correlations, the first two
to show the frequency profile of the causal effects, the
third to show their topography.

Figure 11.

Impact of ConvNet design choices on decoding accuracy. Accu-

racy differences of baseline and design choices on x-axis for the

0–fend-Hz and 4–fend-Hz datasets. Each small marker represents

accuracy difference for one subject, and each larger marker rep-

resents mean accuracy difference across all subjects of both

datasets. Bars: standard error of the differences across subjects.

Stars indicate statistically significant differences to baseline (Wil-

coxon signed-rank test, P< 0.05: *, P< 0.01: **, P< 0.0015***).

(a) Impact of design choices applicable to both ConvNets.

Shown are the effects from the removal of one aspect from the

architecture on decoding accuracies. All statistically significant

differences were accuracy decreases. Notably, there was a clear

negative effect of removing both dropout and batch normaliza-

tion, seen in both ConvNets’ accuracies and for both frequency

ranges. (b) Impact of different types of nonlinearities, pooling

modes and filter sizes. Results are given independently for the

deep ConvNet and the shallow ConvNet. As before, all statisti-

cally significant differences were from accuracy decreases. Nota-

bly, replacing ELU by ReLU as nonlinearity led to decreases on

both frequency ranges, which were both statistically significant.

[Color figure can be viewed at wileyonlinelibrary.com]
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Thus, first, we computed the mean across electrodes for
each class separately to show correlations between classes
and frequency bands. We see plausible results, for example,
for the rest class, positive correlations in the alpha and beta
bands and negative correlations in the gamma band (Fig. 17).

Then, second, by taking the mean of the absolute values
both over all classes and electrodes, we computed a gen-
eral frequency profile. This showed clear peaks in the
alpha, beta, and gamma bands (Fig. 18). Similar peaks
were seen in the means of the CSP binary decoding accu-
racies for the same frequency range.

Third, scalp maps of the input-perturbation effects on net-
work predictions for the different frequency bands, as shown
in Figure 19, show spatial distributions expected for motor
tasks in the alpha, beta and—for the first time for such a non-
invasive EEG decoding visualization—for the high gamma
band. These scalp maps directly reflect the behavior of the
ConvNets and one needs to be careful when making infer-
ences about the data from them. For example, the positive

Figure 12.

Impact of recent advances on overall decoding accuracies. Accuracies without batch normaliza-

tion, dropout and ELUs. All conventions as in Figure 9. In contrast to the results on Figure 9,

the deep ConvNet without implementation of these recent methodological advances performed

worse than FBCSP; the difference was statistically significant for both frequency ranges. [Color

figure can be viewed at wileyonlinelibrary.com]

TABLE IV. Decoding accuracies residual networks and

difference to deep ConvNets

Dataset
Frequency
range [Hz] Accuracy

Difference
to deep P value

BCIC IV 2a 0–38 67.7 23.2 0.13
BCIC IV 2a 4–38 60.8 29.3 0.004**
HGD 0–125 88.9 23.5 0.020*
HGD 4–125 89.8 21.6 0.54
Combined 0–fend 80.6 23.4 0.004**
Combined 4–fend 78.5 24.9 0.01*

BCIC IV 2a: BCI competition IV dataset 2a. HGD: High-Gamma
Dataset. Accuracy is mean accuracy in percentage. P value from
Wilcoxon signed-rank test for the statistical significance of the dif-
ferences to the deep ConvNet (cropped training). Accuracies were
always slightly worse than for the deep ConvNet, statistically sig-
nificantly different for both frequency ranges on the combined
dataset.
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correlation on the right side of the scalp for the Hand (R)
class in the alpha band only means the ConvNet increased its
prediction when the amplitude at these electrodes was
increased independently of other frequency bands and elec-
trodes. It does not imply that there was an increase of ampli-
tude for the right hand class in the data. Rather, this
correlation could be explained by the ConvNet reducing
common noise between both locations, for more explanations
of these effects in case of linear models, see Haufe et al.
[2014]. Nevertheless, for the first time in noninvasive EEG,
these maps clearly revealed the global somatotopic organiza-
tion of causal contributions of motor cortical gamma band
activity to decoding right and left hand and foot movements.
Interestingly, these maps revealed highly focalized patterns,
particularly during hand movement in the gamma frequency
range (Fig. 16, first plots in last row), in contrast to the more
diffuse patterns in the conventional task-related spectral
analysis as shown in Figure 14.

In summary, our visualization methods proved useful to
map the spatial distribution of the features learned by the
ConvNets to perform single-trial decoding of the different
movement classes and in different physiologically impor-
tant frequency bands.

DISCUSSION

This study systematically evaluated ConvNet of differ-
ent architectures and with different design choices against
a validated baseline method, that is, FBCSP. This study

shows that ConvNets allow accurate task decoding from
EEG, that recent deep-learning techniques are critical to
boost ConvNet performance, and that a cropped ConvNet
training strategy can further increase decoding perfor-
mance. Thus, ConvNets can achieve successful end-to-end
learning from EEG with just minimal preprocessing. This
study also demonstrates that novel ConvNets visualization
offer new possibilities in brain mapping of informative
EEG features.

Architectures and Design Choices

ConvNets versus FBCSP

Our results demonstrate that deep and shallow Con-
vNets, with appropriate design choices, are able to—at
least—reach the accuracies of FBCSP for motor decoding
from EEG (see Result 2). In our main comparison for the
combined datasets (Table II), the accuracies of both deep
and shallow ConvNets are very close and slightly higher
than the accuracies of FBCSP. As filter bank common spa-
tial patterns is the de facto standard for motor decoding
from EEG recordings, this strongly implies ConvNets are
also a suitable method for motor decoding. While we have
shown deep ConvNets to be competitive with standard
FBCSP, a lot of variants of FBCSP exist. For example,
many regularized variants of CSP exist that can be used
inside FBCSP [Lotte and Guan, 2011; Samek, 2014]; a com-
parison to these could further show the exact tradeoff

Figure 13.

Impact of training strategy (cropped vs trial-wise training) on accuracy. Accuracy difference for

both frequency ranges and both ConvNets when using cropped training instead of trial-wise

training. Other conventions as in Figure 11. Cropped training led to better accuracies for almost

all subjects for the deep ConvNet on the 4–fend-Hz frequency range. [Color figure can be viewed

at wileyonlinelibrary.com]

TABLE V. Training times

Dataset FBCSP std Deep ConvNet std Shallow ConvNet Std

BCIC IV 2a 00:00:33 <00:00:01 00:24:46 00:06:01 00:15:07 00:02:54
HGD 00:06:40 00:00:54 1:00:40 00:27:43 00:34:25 00:16:40

Mean times across subjects given in Hours:Minutes:Seconds. BCIC IV 2a: BCI competition IV dataset 2a. HGD: High-Gamma Dataset.
Std is standard deviation across subjects. ConvNets take substantially longer to train than FBCSP, especially the deep ConvNet.
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between the more generic ConvNets and the more
domain-specific FBCSP.

Role of recent deep learning advances

Success depends on using recent developments in deep
learning. The accuracy increase that we demonstrate when
using batch normalization, dropout and exponential linear
units implies that general advances in deep learning can
also improve brain-signal decoding. The improvement from
using these techniques replicates recent findings in com-
puter vision and other fields. In our study, improvements
were most pronounced for the deep ConvNet on 4–fendHz
data (Result 6), indicating that the networks can easily over-
fit in this setting, where band power features are likely
dominant. This is consistent with our observation that
cropped training, which combats overfitting by increasing
the number of training examples, also drastically increased

accuracies on 4–fendHz data (Result 8). There seemed to be
some further gains when combining both batch normaliza-
tion and dropout, albeit with some variation across architec-
tures and frequency bands. This improvement was not
clear from the start as batch normalization can in some
cases remove the need for dropout [Ioffe and Szegedy,
2015], however this improvement was also found in another
study using ConvNets to decode EEG data [Lawhern et al.,
2016]. The smaller improvement batch normalization
yielded for the deep ConvNet is consistent with the claim
that ELUs already allow fast learning [Clevert et al., 2016].
However, all these findings are limited by the fact that
there can be interactions between these methods and with
all other hyperparameters. As of yet, we also do not have a
clear explanation for the large difference in accuracies
obtained with ReLUs compared to ELUs; a recent study on
computer vision tasks did not find these differences [Mis-
hkin et al., 2016]. Mathematically and empirically analyzing
the behavior of ELUs and ReLUs for oscillatory signals and
typical EEG noise might shed some light on plausible
reasons.

ConvNet architectures and interactions with discrimi-

native features

Another finding of our study was that the shallow Con-
vNets performed as good as the deep ConvNets, in contrast
to the hybrid and residual architectures (see Results 2, 4,
and 7). These observations could possibly be better under-
stood by investigating more closely what discriminative

TABLE VI. Decoding results for additional datasets

Dataset Metric FBCSP
Deep

ConvNet
Shallow
ConvNet

BCIC IV 2b Kappa 0.599 20.001 10.300
MID Accuracy [%] 71.2 11.0 23.5

For both datasets, the respective metric, FBCSP decoding perfor-
mance, and percent differences of deep and shallow ConvNet
decoding performance are given. BCIC IV 2b: BCI competition IV
dataset 2b. MID: Mixed-Imagery Dataset.

Figure 14.

Envelope-class correlations for alpha, beta, and gamma bands for

all classes. Average over subjects from the High-Gamma Data-

set. Colormaps are scaled per frequency band/row. This is a

ConvNet-independent visualization, for an explanation of the

computation see the section “Input-feature unit-output correla-

tion maps.” Scalp plots show spatial distributions of class-related

spectral amplitude changes well in line with the literature.

[Color figure can be viewed at wileyonlinelibrary.com]
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features there are in the EEG data and what architectures
can hence best use them. For example, it would be interest-
ing to study the effect of more layers when the networks
use mostly EEG band power features, phase-related fea-
tures, or a combination thereof (c.f. Hammer et al. [2013],
for the role of power and phase in motor decoding) and

whether there are features for which a deeper hierarchical
representation could be beneficial.

We observed that squaring was important for the shal-
low but not for the deep ConvNet (Result 5). The worse
performance of the shallow ConvNet with ELU instead of
squaring may be explained as follows. Squaring naturally

Figure 15.

Power input-feature unit-output network correlation maps for

all conv-pool blocks of the deep ConvNet. Correlation differ-

ence indicates the difference of correlation coefficients obtained

with the trained and untrained model for each electrode respec-

tively and is visualized as a topographic scalp plot. For details,

see the section “Input-feature unit-output correlation maps.”

Rightmost column shows the correlation between the envelope

of the EEG signals in each of the three analyzed frequency bands

and the four classes. All colormaps are on the same scale. Nota-

bly, the absolute values of the correlation differences became

larger in the deeper layers and converged to patterns that were

very similar to those obtained from the power–class correla-

tions. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 16.

Absolute correlations between unit outputs and class labels.

Each dot represents absolute correlation coefficients for one

layer of the deep ConvNet. Solid lines indicate result of taking

mean over absolute correlation coefficients between classes and

filters. Dashed lines indicate result of first taking the maximum

absolute correlation coefficient per class (maximum over filters)

and then the mean over classes. Absolute correlations increased

almost linearly with increasing depth of the layer. [Color figure

can be viewed at wileyonlinelibrary.com]
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allows the network to more easily extract band power fea-
tures: In combination with the approximately zero-mean
input, the network would already capture the signal’s var-
iance by squaring. To see this, assume that the two
bandpass-filter-like and spatial-filter-like convolutional
layers extract an oscillatory source in a specific frequency
band; the squaring and mean pooling then directly com-
putes the variance of this source in the pool regions. With
ELUs instead of squaring, the positive parts of the oscilla-
tion would remain unchanged while the negative ones
would be suppressed; the mean of the pool region would
still be larger for larger amplitudes of the oscillation, but
less strongly so than for the square activation. The effects
of ELU and squaring for the deep ConvNet are less
straightforward to analyze, as the pooling regions in our
deep ConvNet were much smaller than for the shallow
ConvNet (3 vs 75 samples) and might thus not cover a
large enough time span to compute a very robust and
informative variance average.

Possibilities for substantial decoding accuracy

improvements

In the analyses presented here, ConvNets did not
improve accuracies over FBCSP by a large margin. Signifi-
cant improvements, if present, were never larger than
3.5% on the combined dataset with a lot of variation per
subject (Result 2). However, the deep ConvNets as used
here may have learned features different from FBCSP,

which could explain their higher accuracies in the lower
frequencies where band power features may be less
important [Hammer et al., 2013]. Nevertheless, ConvNets
failed to clearly outperform FBCSP in our experiments.
Several reasons might contribute to this: the datasets might
still not be large enough to reveal the full potential of
deeper convolutional networks in EEG decoding; or the
class-discriminative features might not have enough hier-
archical structure which deeper ConvNets could exploit.
The dataset-size issue could be solved by either creating
larger datasets or also by using transfer learning
approaches across subjects and/or other datasets. Further
analysis of the data itself and of the convolutional net-
works might help to shed light whether there are features
with a lot of hierarchical structure. Finally, recurrent net-
works could exploit signal changes that happen on longer
timescales, for example, electrodes slowly losing scalp con-
tact over the course of a session, changes of the electrode
cap position or nonstationarities in the brain signals. Thus,
there is clearly still a large potential for methodological
improvement in ConvNet-based EEG decoding.

These methodological improvements might also come
from further methodological advances in deep learning,
such as newer forms of hyperparameter optimization, in
case these advances also translate to even better EEG
decoding accuracies. As discussed above, recent advances
like dropout, batch normalization and exponential linear
units can substantially improve the performance of EEG
decoding with ConvNets, especially for our deep

Figure 17.

Input-perturbation network-prediction correlations for all frequencies for the deep ConvNet,

per class. Plausible correlations, for example, rest positively, other classes negatively correlated

with the amplitude changes in frequency range from 20 to 30 Hz. [Color figure can be viewed at

wileyonlinelibrary.com]

Figure 18.

Absolute input-perturbation network-prediction correlation frequency profile for the deep

ConvNet. Mean absolute correlation value across classes. CSP binary decoding accuracies for dif-

ferent frequency bands for comparison, averaged across subjects and class pairs. Peaks in alpha,

beta, and gamma band for input-perturbation network-prediction correlations and CSP accura-

cies. [Color figure can be viewed at wileyonlinelibrary.com]
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architecture. Therefore, using other recent techniques, such
as newer forms of hyperparameter optimization [Domhan
et al., 2015; Klein et al., 2016; Springenberg et al., 2016]
hold promise to further increase accuracies of ConvNets
for brain-signal decoding. Furthermore, as the field is still
evolving at a fast pace, new techniques can be expected to
be developed and might then also benefit brain-signal
decoders using convolutional neural networks.

However, methodological improvements may also hap-
pen in the broad field of “non-ConvNet” approaches.
Obviously, currently no final verdict is possible about an
“optimal” method for EEG decoding if there is a single
best method for the large variety of EEG decoding prob-
lems at all. The findings of this study, however, support
that ConvNet-based decoding is a contender in this
competition.

Further potential advantages of ConvNets for brain-

signal decoding

Besides the decoding performance, there are also other
potential advantages of using deep ConvNets for brain-
signal decoding. First, several use cases desirable for
brain-signal decoding are very easy to do with deep Con-
vNets iteratively trained in an end-to-end fashion: Deep
ConvNets can be applied to other types of tasks such as as
workload estimation, error- or event-related potential
decoding (as others have started [Lawhern et al., 2016]) or
even other types of recordings such as MEG or ECoG.
Also, ConvNets, due to their iterative training, have a nat-
ural way of pretraining and finetuning; for example, a

ConvNet can be pretrained on data from the past or data
from other subjects and then be finetuned with new data
from a new subject. Finetuning can be as simple as con-
tinuing the iterative training process on the new data, pos-
sibly with a smaller learning rate and this finetuning can
also be used to perform supervised online adaptation. Sec-
ond, due to their joint optimization, single ConvNets can
be building blocks for more sophisticated setups of multi-
ple ConvNets. One recent example attempts to create Con-
vNets that are robust to changes in the input distribution
[Ganin et al., 2016]. This could be used to alleviate the
long-standing EEG decoding problem of changes in the
EEG signal distribution from one session to another.

Limitations of ConvNets for brain-signal decoding

The flexibility of ConvNets might also be a limitation in
some brain-signal decoding scenarios. For example if the
user of a brain–computer interface should learn to adapt
her or his brain signals to the decoding model, a simpler
feature-based model might yield better results. One exam-
ple of this would be BCI rehabilitation where the user
should learn to reinforce a certain brain activity pattern
[Daly and Wolpaw, 2008]. A similar example would be
motor decoding brain-computer interface that are using
single cell activity, where researchers have argued a linear
model is the best decoding model [Collinger et al., 2013;
Georgopoulos et al., 1986; Hochberg et al., 2012]. Studies
comparing ConvNets with other techniques in these areas
would be an interesting and practically relevant line of
further research.

Figure 19.

Input-perturbation network-prediction correlation maps for the deep ConvNet. Correlation of

class predictions and amplitude changes. Averaged over all subjects of the High-Gamma Dataset.

Colormaps are scaled per scalp plot. Plausible scalp maps for all frequency bands, for example,

contralateral positive correlations for the hand classes in the gamma band. [Color figure can be

viewed at wileyonlinelibrary.com]

r Schirrmeister et al. r

r 5416 r

http://wileyonlinelibrary.com


Training Strategy

Cropped training effect on accuracies

We observed that cropped training was necessary for
the deep ConvNet to reach competitive accuracies on the
dataset excluding very low frequencies (Result 8). The
large increase in accuracy with cropped training for the
deep network on the 4–fend-Hz data might indicate a large
number of training examples is necessary to learn to
extract band power features. This makes sense as the
shifted neighboring windows may contain the same, but
shifted, oscillatory signals. These shifts could prevent the
network from overfitting on phase information within the
trial, which is less important in the higher than the lower
frequencies [Hammer et al., 2013]. This could also explain
why other studies on ConvNets for brain-signal decoding,
which did not use cropped training, but where band
power might be the most discriminative feature, have
used fairly shallow architectures and sometimes found
them to be superior to deeper versions [Stober et al., 2014].

Suitability for online decoding

Our cropped training strategy appears particularly well-
applicable for online brain-signal decoding. As described
above, it may offer performance advantages compared with
conventional (noncropped) training. Additionally, cropped
training allows for a useful calibration of the tradeoff
between decoding delay and decoding accuracy in online
settings. The duration from trial start until the last sample
of the first crop should roughly correspond to the minimum
time needed to decode a control signal. Hence, smaller
crops can allow less delay—the first small crop could end at
an early sample within the trial without containing too
many timesteps from before the trial that could otherwise
disturb the training process. Conversely, larger crops that
still contain mostly timesteps from within the trial imply a
larger delay until a control signal is decoded while possibly
increasing the decoding accuracy due to more information
contained in the larger crops. These intuitions should be
confirmed in online experiments.

Visualization

Insights from current visualizations

In addition to exploring how ConvNets can be success-
fully used to decode information from the EEG, we have
also developed and tested two complementary methods to
visualize what ConvNets learn from the EEG data. So far,
the literature on using ConvNets for brain-signal decoding
has, for example, visualized weights or outputs of Con-
vNet layers [Bashivan et al., 2016; Santana et al., 2014; Sto-
ber, 2016; Yang et al., 2015], determined inputs that
maximally activate specific convolutional filters [Bashivan
et al., 2016], or described attempts at synthesizing the pre-
ferred input of a convolutional filter [Bashivan et al., 2016]

(see Supporting Information, Section A.1 for a more exten-
sive overview). Here, we applied both a correlative and a
causally interpretable visualization method to visualize the
frequencies and spatial distribution of band power fea-
tures used by the networks.

The visualizations showed plausible, spatially localized
spatial distributions for motor tasks in the alpha, beta and
gamma bands (see the section “Visualization”). The input-
feature unit-output and the input-perturbation network-
prediction correlation maps together clearly showed that
the deep ConvNet learned to extract and use band power
features with specific, physiologically plausible spatial dis-
tributions. This also indicates that the ConvNets were
using brain signals to decode the EEG signal and were not
primarily relying on artifactual components. Hence, while
the computation of power was built into both the FBCSP
and shallow ConvNet, our deep ConvNets successfully
learned to perform the computation of band power fea-
tures from the raw input in an end-to-end manner. Our
network correlation maps can readily show spatial distri-
butions per subject and for the whole group of subjects.
Interestingly, the input-perturbation network-prediction
correlation maps for the deep ConvNets revealed highly
focalized patterns, particularly during hand movement in
the gamma frequency range (Fig. 19, first plots in last
row). This contrasted to the more diffuse patterns in the
conventional task-related spectral analysis as shown in
Figure 14 and suggests that ConvNet visualization may be
useful for task-related brain mapping in the spectral
domain, possibly with improved localization power as
compared to traditional techniques for mapping task-
related spectral EEG modulations.

Feature discovery through more sophisticated

visualizations

We designed the visualizations presented here to show
how ConvNets use the amplitude of spectral band power
features. One straightforward extension would be to apply
these visualizations to show how ConvNets use the ampli-
tude of the raw time-domain EEG signal. This could give
insights into discriminative time-domain features such as
event-related potentials. A slightly more involved extension
would be to apply them on circular features such as phase
features. Moreover, it could be even more interesting to
investigate whether novel or so-far unknown features are
used and to characterize them. This could be especially
informative for tasks where the discriminative features are
less well known than for motor decoding, for example, for
less-investigated tasks such as decoding of task perfor-
mance [Meinel et al., 2016]. But even for the data used in
this study, our results show hints that deep ConvNets used
different features than shallow ConvNets and the FBCSP-
based decoding, as there are statistically significant differ-
ences between their confusion matrices (Result 3). This fur-
ther strengthens the motivation to explore what features the
deep ConvNet exploits, for example, using visualizations
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that show what parts of a trial are relevant for the classifi-
cation decision or what a specific convolutional filter/unit
output encodes. Newer visualization methods such as
layer-wise relevance propagation [Bach et al., 2015; Monta-
von et al., 2017], inverting convolutional networks with con-
volutional networks [Dosovitskiy and Brox, 2016] or
synthesizing preferred inputs of units [Nguyen et al., 2016]
could be promising next steps in that direction.

Conclusion

In conclusion, ConvNets are not only a novel, promising
tool in the EEG decoding toolbox, but combined with
innovative visualization techniques, they may also open
up new windows for EEG-based brain mapping.
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