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Abstract: Developing effective risk prediction models is a cost-effective approach to predicting
complications of chronic kidney disease (CKD) and mortality rates; however, there is inadequate
evidence to support screening for CKD. In this study, four data mining algorithms, including a
classification and regression tree, a C4.5 decision tree, a linear discriminant analysis, and an extreme
learning machine, are used to predict early CKD. The study includes datasets from 19,270 patients,
provided by an adult health examination program from 32 chain clinics and three special physical
examination centers, between 2015 and 2019. There were 11 independent variables, and the glomerular
filtration rate (GFR) was used as the predictive variable. The C4.5 decision tree algorithm outperformed
the three comparison models for predicting early CKD based on accuracy, sensitivity, specificity, and
area under the curve metrics. It is, therefore, a promising method for early CKD prediction. The
experimental results showed that Urine protein and creatinine ratio (UPCR), Proteinuria (PRO), Red
blood cells (RBC), Glucose Fasting (GLU), Triglycerides (TG), Total Cholesterol (T-CHO), age, and
gender are important risk factors. CKD care is closely related to primary care level and is recognized
as a healthcare priority in national strategy. The proposed risk prediction models can support the
important influence of personality and health examination representations in predicting early CKD.

Keywords: early chronic kidney disease; machine learning; risk prediction

1. Introduction

Chronic kidney disease (CKD) is a global public health problem and is related to serious morbidity,
mortality, and health resource utilization. In 2017, the number of cases worldwide was 69.75 million,
and CKD caused 1.2 million deaths. The global prevalence of CKD was 9.1% in 2017. According
to the Taiwanese Ministry of Health and Welfare’s annual report, CKD accounts for the largest
number of health insurance claims, with 364,000 admitted patients, costing approximately NTD
(New Taiwan Dollar) $51.3 billion in 2018. With an aging population and the associated increasing
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prevalence of hypertension, hyperlipidemia, and hyperglycemia, the number of CKD patients has
increased continuously.

Early CKD has no obvious symptoms. A CKD patient’s renal function gradually declines, and
uremia develops; at this stage, the patient must receive dialysis or kidney transplantation. Two
standards define CKD: (1) the kidney has been injured for over three months, including structural and
functional abnormalities, some other way to address what appears to be pathological abnormalities,
blood, urine, or imaging abnormalities, and (2) glomerular filtration rate (GFR) < 60 mL/min/1.73 m2

for over three months. In general, CKD is divided into five stages based on estimated GFR (eGFR) [1]
(Table 1).

Table 1. The Stages of chronic kidney disease (CKD).

Stage Description Estimated GFR

1 Kidney damage with normal or increased GFR ≥90 mL/min/1.73 m2

2 Kidney damage with small decrease in GFR 60–89.9 mL/min/1.73 m2

3
Kidney damage with moderate decrease in GFR 30–59.9 mL/min/1.73 m2

3a 45–59.9 mL/min/1.73 m2

3b 30–44.9 mL/min/1.73 m2

4 Kidney damage with large decrease in GFR 15–29.9 mL/min/1.73 m2

5 Kidney failure with need for dialysis (end-stage renal disease) <15 mL/min/1.73 m2

GFR: Glomerular Filtration Rate; 3a: Stage 3a of kidney disease; 3b: Stage 3b of kidney disease.

Current screening procedures for CKD are inadequate at detecting early CKD [2,3]. In Taiwan,
there are at least 2 million CKD patients; however, only 3.5% of them have been diagnosed and
informed. Detecting chronic renal failure is difficult until 25% of renal function has already been lost.
Early diagnosis can possibly prevent or dampen CKD progression to end-stage renal disease [4].

This study was designed to identify CKD risk factors via Taiwanese adult preventive health
examination data for early prediction of decreased kidney function. Since 2012, Taiwan has implemented
the “five-year plan for chronic kidney disease prevention and enhancing the quality of care, 2012–2016”.
The program’s outcomes included reduced dialysis incidence and increased five-year survival rate
of patients after kidney transplantation. However, in 2017, Taiwan reported 275,000 CKD cases and
6743 CKD deaths [5].

In consideration of the heterogeneity of CKD deterioration, it is critical to conduct risk assessment,
monitoring, and prognosis from an evidence-based medical viewpoint. A recent survey showed a
high prevalence of CKD among the Taiwanese population, with an alarmingly low awareness rate.
Moreover, CKD risk factors, such as high blood pressure, low socioeconomic status, and herbal
medication, are common in Taiwan. Predictive factors for CKD have been examined extensively in
recent years, but remain controversial [6–9]. Based on a report from the US Preventive Services Task
Force (USPSTF) and the American College of Physicians (ACP), CKD screening in asymptomatic
individuals is insufficient, and there are no valid tools for CKD screening [9].The American Society of
Nephrology strongly recommends regular screening for CKD, regardless of risk factors [10].

It is well known that the bidirectionality plays a critical role in dyslipidemia and proteinuria, and
also affects lipoprotein metabolism [11]. The average values of HDL-L (High-Density Lipoprotein
Cholesterol) and LDL-C (Low-Density Lipoprotein Cholesterol) are lower in stage 3 to stage 5 CKD
patients than in healthy individuals [12]. Chronic renal failure is associated with many factors,
including hypertension and proteinuria. For example, it is well known that the magnitude of the
blood pressure (hypertension) reduction appeared greater with the progression of CKD. In contrast to
early CKD, it has been reported by many studies that hypertension is a comorbidity of CKD, but less
studied in early CKD [13–15]. Because of CKD’s heterogeneity, the answers to screening and clinical
practice are not clear. However, an accurate tool to predict CKD is urgently required. Early CKD
awareness is essential for potential patients to participate in and comply with adult preventive health
examination programs. Indeed, data mining has been successfully used for building a predictive model
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for healthcare prediction tasks [16–20]. Thus, in this study, four data mining algorithms, including a
classification and regression tree (CART), a C4.5 decision tree, a linear discriminant analysis (LDA),
and an extreme learning machine (ELM) are used to predict early CKD. Specially, this study aimed to
utilize four data mining methods. In addition, these methods have the potential to explore important
risk factors of early CKD and interpretation of the association between each other.

2. Materials and Methods

2.1. Data Source

All samples were taken from an adult health examination dataset, which are collected from 32 chain
clinics and three special physical examination centers. Data from 1 January 2015 to 31 December 2019
were included, giving a total of 19,270 effective records, including 5101 CKD patients and 14,169
non-CKD patients. Personal information, physical examination data, and blood test results from the
physical examination database were included, and a total of 11 independent variables were identified.
The dependent variable was GFR (Table 2).

Table 2. Important variables and coding in this study.

Variable Name Definition of Normal Test Data

X1 Gender Male/Female
X2 Age Age greater than 40 years
X3 Red blood cells (RBC) 0–5
X4 Glucose Fasting (GLU) 70–100
X5 Triglycerides (TG) 50–150
X6 Total Cholesterol (T-CHO) 50–200
X7 High-Density Lipoprotein Cholesterol (HDL-C) >40
X8 Low-Density Lipoprotein Cholesterol (LDL-C) <130
X9 Albumin (ALB) 3.5–5.0

X10 Proteinuria (PRO) +/−
X11 Urine protein and creatinine ratio (UPCR) <150

Y Glomerular filtration rate (GFR) ≥90 mL/min/1.73 m2

2.2. Method

This study aimed to utilize four data mining methods involving CART, C4.5, LDA, and ELM to
predict early CKD.

CART is a decision tree system which uses a binary recursive procedure to partition the data in
homogenous subsets based on the Gini index [21,22]. The partitioning is repeated until the nodes are
homogenous enough to be terminal. The first step of CART analysis is building the maximal tree by
binary split-procedure, which describes the data. The second step is pruning the overgrown tree and
deriving a series of less complex trees from the maximal tree. The last step is to select an optimal tree
size using a cross-validation procedure.

C4.5 is also a decision tree algorithm which selects the decision tree’s attributes on each node
based on the concept of information entropy. It adopts a greedy approach in which the decision trees
are constructed in a top-down, recursive divide and conquer manner [23,24]. At each node of the
tree, C4.5 select one attribute by maximum information gain ratio that most effectively splits samples
of current node into subsets in one class or the other. The C4.5 algorithm then proceeds recursively
until meeting some commonly used stopping criteria, such as the minimum number of samples in a
terminal node.

LDA is a well-known generic method used for dimensionality reduction and classification [25,26].
LDA tries to find a low dimensionality space for different categories. In this space, the distances
between the samples from different categories are large, but the distances between the samples in the
same category are small. In the learning process, LDA can obtain a function to project the samples
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from different categories onto the low dimensionality space. It applies an eigendecomposition on the
scatter matrices to compute the optimal projection.

Based on the projection, LDA can derive a classification model which focuses on the association
between multiple independent variables and a categorical dependent variable by forming a composite
of the independent variables.

An ELM is a computationally efficient neural network model with a non-iterative learning
strategy [27,28]. It randomly selects the input weights and analytically determines the output weights
of the neural network. The modeling time of ELM is faster than traditional network learning algorithms,
such as the well-known back-propagation neural network. It also reduces many of the difficulties
in parameter setting, including stopping criteria, learning rate, and learning epochs, etc. The CART
prediction model was built using the raprt R package of version 4.1.15 (R core team, Vienna, Austria) [29].
To search the best parameter set to generate a promising CART model, the OptimClassifier R package of
version 0.1.5 (R core team, Vienna, Austria) was implemented for the parameters of tree depth, number
of observations in any terminal node, and tree pruning [30]. To build the C4.5 model, the RWeka R
package of version 0.4–42 (R core team, Vienna, Austria) was applied [31]. To find the best parameter
set for the cost to build an effective C4.5 model, the caret R package of version 6.0–84 (R core team,
Vienna, Austria) was implemented [32]. LDA was implemented using the MASS R package of version
7.3–51.5 (R core team, Vienna, Austria) [33]. The default settings were used to build an LDA model.
The ELM model was constructed by implementing the elmNN R package of version 1.0 (R core team,
Vienna, Austria) [34]. The default activation function in this package is radial basis. To search the best
number of hidden neurons that would generate promising ELM models, the caret R package of version
6.0–84 (R core team, Vienna, Austria) was used to tune important hyperparameters [32]. Classification
accuracy was evaluated using receiver operating characteristic curve analysis to estimate the area
under the curve (AUC). Accuracy, sensitivity, and specificity were considered in this study.

3. Results

In this study, we applied machine learning approaches to an adult health examination dataset to
predict patients with high CKD risk based on the data of each variable for each patient. Our aim was
to compare different classification models and identify the most efficient.

Subject demographics are outlined in Table 3. The independent variables in the analysis were
gender, age, red blood cell count (RBC), fasting glucose level (GLU), triglycerides (TG), total cholesterol
(T-CHO), High-Density Lipoprotein Cholesterol (HDL-C)), Low-Density Lipoprotein Cholesterol
(LDL-C), albumin (ALB), proteinuria (PRO), and urine protein to creatinine ratio (UPCR). The t-test is
used to compare the averages of age for CKD and Non-CKD. We utilized the chi-square test to evaluate
the associations between the dependent variable and all independent variables except age.

We found that age (p < 0.001), gender difference (p < 0.001), normal or abnormal performances of
RBC (p < 0.001), GLU (p = 0.004), TG (p = 0.011), HDL (p = 0.029), PRO (p < 0.001), and UPRC (p < 0.01)
were significantly associated with the prevalence of CKD. The t-test results showed that the CKD
group’s mean age was significantly different from the non-CKD group. The chi-square test analysis
suggested that different genders had dissimilar interference on prevalence of CKD, and the paired
comparison revealed that the proportion of males in the CKD group was higher (48.3% vs. 39.6%) than
that in the non-CKD group.
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Table 3. Subject demographics.

Characteristic Non-CKD CKD p-Value

N (%) 14,169 (73.5%) 5101 (26.5%)

Gender
Male 5608 (39.6%) 2465 (48.3%) <0.001 **

Female 8561 (60.4%) 2636 (51.7%)

Age
Mean (±SD) 63.37 ± 11.56 69.19 ± 10.74 <0.001 *

RBC
Normal 11,460 (80.9%) 3917 (76.8%) <0.001 **

Abnormal 2709 (19.1%) 1184 (23.2%)

GLU
Normal 11,502 (81.2%) 1055 (20.7%) 0.004 **

Abnormal 2667 (18.8%) 4046 (79.3%)

TG
Normal 5878 (41.5%) 2012 (39.4%) 0.011 *

Abnormal 8291 (58.5%) 3089 (60.6%)

T-CHO
Normal 9198 (64.9%) 3284 (64.4%) 0.491

Abnormal 4971 (35.1%) 1817 (35.6%)

HDL-C
Normal 11,954 (84.4%) 4369 (85.6%) 0.029 *

Abnormal 2215 (15.6%) 732 (14.4%)

LDL-C
Normal 11,400 (80.5%) 4095 (80.3%) 0.782

Abnormal 2769 (19.5%) 1006 (19.7%)

ALB
Normal 14,162 (100.0%) 5097 (99.9%) 0.457

Abnormal 7 (0.0%) 4 (0.1%)

PRO
Normal 9203 (65.0%) 915 (17.9%) <0.001 *

Abnormal 4966 (35.0%) 4186 (82.1%)

UPCR
Normal 12,364 (87.3%) 1639 (32.1%) <0.001 *

Abnormal 1805 (12.7%) 3462 (67.9%)

** p-value < 0.01; * p-value < 0.05.

A higher proportion of subjects with abnormal RBC was found in the CKD group than the
non-CKD group (23.2% vs. 19.1%), and a higher proportion of normal GLU was found in the CKD
group than the non-CKD group (20.7% vs. 18.8%).

The CKD group contained a higher proportion of subjects with abnormal triglycerides (TG)
than the non-CKD group (60.6% vs. 58.5%), as well as a higher proportion of subjects with normal
high-density lipoproteins (HDL) (85.6% vs. 84.4%). The CKD group contained a higher proportion
of subjects with abnormal proteinuria (PRO) than the non-CKD group (82.1% vs. 35.0%) and a
higher proportion of subjects with abnormal UPRC compared to the non-CKD group (67.9% vs.
12.7%). No significant differences were found between normal and abnormal performances of T-CHO
(p = 0.491), low-density lipoproteins (p = 0.782), or ALB (p = 0.457).

We randomly selected 15,416 patients (80% of the total patients) as the training samples, while the
remaining 3854 patients (20% of the total patients) were employed as the testing sample for measuring
out-of-sample predictive ability of the four methods. Moreover, a 10-fold cross validation method was
used for training the classification models of the four method.
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Table 4 shows the classification results of the CART, ELM, C4.5, and LDA methods. It shows
that the AUC values of the CART, ELM, C4.5, and LDA models were 0.779, 0.692, 0.788, and 0.773,
respectively. The C4.5 model provided the highest AUC value, followed by the CART, the LDA, and
the ELM model, respectively. The accuracy, sensitivity, and specificity values of the C4.5 model are all
greater than the three competing models. Figure 1 shows the ROC curves of the four classification
methods for the occurrence of early CKD. This figure also depicts that the C4.5 method showed the
best predictive ability compared to the three comparison models and is a promising method for early
CKD prediction.

Table 4. Classification results of the four methods.

Methods Accuracy Sensitivity Specificity AUC

Classification and Regression Tree (CART) 0.819 0.670 0.871 0.779
Extreme Learning Machine (ELM) 0.715 0.539 0.777 0.692

C4.5 0.820 0.673 0.872 0.788
Linear Discriminant Analysis (LDA) 0.818 0.669 0.868 0.773
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4. Discussion

The goal of the analysis was to identify the most important risk factors from ten potential factors:
gender, age, RBC, GLU, TG, T-CHO, HDLC, LDLC, ALB, PRO, and UPCR. Our results revealed that
the C4.5 method can generate the best classification and most promising results to predict CKD. The
C4.5 method automatizes the detection of associations between predictors and outcomes and the
interactions among predictors and provides metrics of predictor importance. Figure 2 shows the
classification tree of CKD predictors using the C4.5 method. Table 5 shows the summarized rules of
condition variables.
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Table 5. Summarized rules of condition variables.

Rules No. Combinations of Condition Variables Cases of (Ab)normal Accuracy

1 UPCR (NL) 9879 NL 88.3%
2 UPCR (ABNL) + PRO (NL) 287 NL 74.9%
3 UPCR (ABNL)+PRO (ABNL) + Age (>65.45) 1826 ABNL 79.9%
4 UPCR (ABNL) + PRO (ABNL) + Age (≤65.45) + RBC (ABNL) 261 ABNL 75.7%

5 UPCR (ABNL) + PRO (ABNL) + Age (≤65.45) + RBC (NL) +
Age (≤51.95) + GLU (ABNL) 196 ABNL 68.5%

6 UPCR (ABNL) + PRO (ABNL) + Age (≤65.45) + RBC(NL) +
Age (>51.95) + TG(ABNL) 343 ABNL 58.3%

7 UPCR (ABNL) + PRO (ABNL) + Age (≤65.45) + RBC (NL) +
Age (≤51.95) + GLU (ABNL) + TG (ABNL) 15 ABNL 68.2%

8 UPCR (ABNL) + PRO (ABNL) + Age (≤65.45) + RBC(NL) +
Age (≤51.95) + GLU (ABNL) + TG(NL) 14 NL 82.4%

9 UPCR (ABNL) + PRO (ABNL) + Age (≤65.45) + RBC (NL) +
Age (≤51.95) + GLU (ABNL) + TG (NL) + T-CHO (NL) 112 NL 59.6%

10
UPCR (ABNL) + PRO (ABNL) + Age (≤65.45) + RBC (NL) +
Age (≤51.95) + GLU (ABNL) + TG (NL) + T-CHO (ABNL) +

Gender (M)
15 NL 68.2%

11
UPCR (ABNL) + PRO (ABNL) + Age (≤65.45) + RBC (NL) +
Age (≤51.95) + GLU (ABNL) + TG (NL) + T-CHO (ABNL) +

Gender (F)
66 ABNL 72.5%

UPCR: Urine protein and creatinine ratio, PRO: Proteinuria, RBC: Red blood cells, GLU: Glucose Fasting, TG:
Triglycerides, T-CHO: Total Cholesterol.
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Subjects were divided into 11 subgroups, from root node to leaf nodes, through different branches.
As previously explained, the UPCR variable has a great influence on the interpretation of the eGFR
value and was, therefore, identified as the root node of the classified decision tree. The first-level
decision tree was obtained from the determining factor: UPCR. The accuracy (ACC) obtained was
88.3% across the 11,189 samples. It means that out of 11,189 non-CKD patients, 9879 patients were
correctly classified using UPCR variable. The second-level decision tree was generated by the following
factors: PRO, age, RBC, GLU, TG, T-CHO, and gender. Therefore, the decision tree can be divided
into abnormal (ABNL; CKD) or normal (NL; non-CKD) situations. The accuracy ranged from 58.3%
to 88.3%.

The second-level decision tree was obtained from the following determining factors: UPCR (with
ABNL) + PRO (with NL), and the accuracy obtained was 0.749 across 383 samples. The third-level
decision tree was obtained from the following determining factors: UPCR (ABNL) + PRO (ABNL) +

age (>65.45), and the accuracy obtained was 0.799 across 2285 samples. The fourth-level decision tree
was obtained from the following determining factors: UPCR (ABNL) + PRO (ABNL) + age (<65.45)
+ RBC (ABNL), and the accuracy obtained was 0.757 across 345 samples. The left-hand fifth-level
decision tree was obtained from the following determining factors: UPCR (ABNL) + PRO (ABNL) +

age (<65.45) + RBC (NL) + age (<51.95) + GLU (ABNL), and the accuracy obtained was 0.685 across
286 samples. Meanwhile, for the following determining factors: UPCR (ABNL) + PRO (ABNL) + age
(<65.45) + RBC (NL) + age (<51.95) + GLU (NL) + TG (ABNL), the accuracy obtained was 0.682 across
22 samples.

The right-hand fifth-level decision tree was obtained from the following determining factors:
UPCR (ABNL) + PRO (ABNL) + age (<65.45) + RBC (NL) + age (<51.95) + TG (NL) + T-CHO (ABNL)
+ gender (male), and the accuracy obtained was 0.682 across 22 samples. Meanwhile, for the following
determining factors: UPCR (ABNL) + PRO (ABNL) + age (<65.45) + RBC (NL) + age (<51.95) + TG
(NL) + T-CHO (ABNL) + gender (female), the accuracy obtained was 0.725 across 91 samples. By using
these different decision tree models, clinicians can identify the combinations of factors for a condition
of interest.

The findings of this study were consistent with those of previous reports, including the most
recent report of the National Health Research Institutes Annual Report on Kidney Disease in the
urine protein to creatinine ratio (UPCR) [4] and the red blood cell count (RBC) [5], and Xiao’s report
on the prediction of chronic kidney disease in proteinuria (PRO) [35]. The findings of the albumin
(ALB) and fasting glucose level (GLU) are consistent with previous studies following Korbut et al. [36]
and Kshirsagar et al. [37]. Similarly, Xue et al. [38], Mahmood et al. [39], and Kshirsagar et al. [37]
reported that triglycerides (TG), age, and gender are critical for prediction of chronic kidney disease.
As suggested from our results, the main issue is how to predict CKD who are asymptomatic and who
only undergo a routine adult health examination program. A comprehensive, clinical approach to
prevention that considers all of these factors is therefore required to successfully tackle and specifically
target the high-risk exposures in the adult population.

Optimal preclinical management of early CKD would therefore benefit from better understanding
of the nature. Many of the risk factors that are possibly associated with early CKD awareness, i.e.,
management of hypertension, are interesting and warrant further investigation.

The empirical results showed that C4.5 slightly outperformed the CART and LDA methods. But,
as our work was to explore important risk factors of early CKD and discuss the association between
each other, the results of the best method with promising performance is the most suitable for the
further discussion. Thus, the classification tree depicting CKD predictors of C4.5 is discussed in this
study. Using different kinds of CKD data to compare the effectiveness of C4.5, CART, and LDA for the
prediction of early CKD can be considered as one of future research directions.

This study used ELM, C4.5, CART, and LDA to predict early CKD. LDA is a statistical method.
The important characteristic of LDA is that LDA projects the data onto a lower dimensional vector
space, which is a more discriminant sub-space since the ratio of the between-class distance to the
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within-class distance is maximized. ELM is a neural network method. Its main characteristic is that
the parameters of hidden layers are randomly generated independent of training samples without
fine-tuning, thus it has faster learning speed compared with the traditional neural network learning
algorithms. The CART and C4.5 are both decision tree methods. The characteristic of a decision tree
is to use a set of “if-then” conditions to perform classification of cases. The main feature of CART is
that it generates only binary trees based on the Gini impurity index. The C4.5 used gain ratio as the
goodness measure to generate decision trees which include multi-branch (i.e., not only binary) splits
at each node. However, the ELM model performed poorly in this study. ELM is a neural network
algorithm and its modeling mechanism is different from that of the other three methods, C4.5, CART,
and LDA. Neural network algorithms are powerful tools for clinical data analysis for prediction of an
outcome. Actually, it may be useful but the neural network will not give us any insight information in
this study as it cannot be used to select important variables.

5. Conclusions

Chronic kidney disease (CKD) is a major global public health problem, but early-stage diagnosis
is problematic due to asymptomatic presentation. Currently, there are no widely accepted predictive
instruments for early CKD; therefore, physicians must make clinical decisions about which patients
to treat. In this study, our aim was to explore important risk factors of early CKD and discuss the
associations between them. Importantly, early CKD awareness is essential for potential patients
to participate in, and comply with, health examination programs, and is of great clinical and
economic significance.

Moreover, to the best knowledge of the authors, there are no studies using data mining classification
techniques for building predictive models for early CKD prediction tasks. In this study, we applied
nine physical examination variables and two demographic parameters to determine CKD risk factors
using four data mining algorithms. The C4.5 algorithm yielded an output of eight features that were
important for early CKD prediction. It was found that reducing the number of features increased the
accuracy of the results. Another important finding of this paper was that the C4.5 method had the best
predictive ability compared to the other three comparison models. C4.5 also revealed that different
combinations of dataset attributes resulted in different accuracy rates ranging from 59.6% to 88.3%. We
also identified that UPCR, PRO, age, RBC, GLU, TG, T-CHO, and gender had important impacts on the
predictivity of the models, while other predictors, such as HDL, LDL, and ALB, were less important.

With the slow progress of CKD, early detection and effective treatment are the only ways to reduce
mortality. Timely risk assessment of CKD and appropriate community monitoring are important for
preventing further kidney injury in early CKD patients. In conclusion, this work presents evidence
of the applicability of an adult health examination dataset and the robustness of the four models for
clinical risk assessment of early CKD.
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