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Abstract: microRNAs (miRNAs) are endogenous non-coding RNAs that control gene expression at the 

posttranscriptional level. These small regulatory molecules play a key role in the majority of biological 

processes and their expression is also tightly regulated. Both the deregulation of genes controlled by miRNAs 

and the altered miRNA expression have been linked to many disorders, including cancer, cardiovascular, 

metabolic and neurodegenerative diseases. Therefore, it is of particular interest to reliably predict potential 

miRNA targets which might be involved in these diseases. However, interactions between miRNAs and their 

targets are complex and very often there are numerous putative miRNA recognition sites in mRNAs. Many 

miRNA targets have been computationally predicted but only a limited number of these were experimentally 

validated. Although a variety of miRNA target prediction algorithms are available, results of their application are 

often inconsistent. Hence, finding a functional miRNA target is still a challenging task. In this review, currently 

available and frequently used computational tools for miRNA target prediction, i.e., PicTar, TargetScan, 

DIANA-microT, miRanda, rna22 and PITA are outlined and various practical aspects of miRNA target analysis 

are extensively discussed. Moreover, the performance of three algorithms (PicTar, TargetScan and DIANA-

microT) is both demonstrated and evaluated by performing an in-depth analysis of miRNA interactions with 

mRNAs derived from genes triggering hereditary neurological disorders known as trinucleotide repeat 

expansion diseases (TREDs), such as Huntington’s disease (HD), a number of spinocerebellar ataxias (SCAs), 

and myotonic dystrophy type 1 (DM1). 

Keywords: Bioinformatics, gene regulation, miRNA, miRNA-mRNA interaction, neurodegeneration, target 
prediction algorithm, target validation, trinucleotide repeat expansion disorders. 

INTRODUCTION 

microRNAs (miRNAs) are small non-coding RNAs 
about 22 nucleotides in length that play an important 
role in posttranscriptional regulation of target genes 
both in plant and animal cells. It is estimated that over 
half of mammalian protein coding-genes are regulated 
by miRNAs and most human mRNAs have binding 
sites for miRNAs [1, 2]. Until now 1048 human miRNAs 
have been annotated in miRNA registry (miRBase, 
Release 16) [3] and this number is steadily growing. 
miRNAs downregulate gene expression mostly by 
imperfect binding to complementary sites within 
transcript sequences and suppress their translation, 
stimulate their deadenylation and degradation or 
induce their cleavage [4, 5]. miRNAs originate from 
genome-encoded primary transcripts (pri-miRNAs) 
forming distinctive hairpin structures that are cleaved 
by the ribonuclease Drosha [6, 7] to ~60 nucleotide-
long pre-miRNAs which are further trimmed by the 
ribonuclease Dicer [8, 9] to imperfect ~22-nt duplexes. 
One strand of the duplex is incorporated into RNA-
induced silencing complex (RISC) [10, 11] and 
becomes a functional miRNA. miRNAs have been 
shown to be crucial for the majority of physiological 
processes; development, cell proliferation and cell 
death [12, 13]. Therefore, their deregulation has been  
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associated with many diseases such as cancer, 
cardiovascular and neurodegenerative diseases or 
metabolic disorders [14-17]. Hence, miRNA expression 
analysis has a diagnostic value and normalizing miRNA 
levels is one of the promising therapeutic approaches 
[18-20]. 

Several types of miRNA target binding sites, 
differing in the position and localization of Watson-Crick 
pairings and mismatches, have been distinguished 
[21]. Plant miRNA target sites are located within open 
reading frames (ORFs) of target genes and nearly full 
complementarity is required between miRNAs and their 
target transcripts [22]. Therefore, a basic matching of 
plant miRNA and mRNA sequences serves as an 
efficient and accurate prediction method [23]. 
Unfortunately, this strategy could not be simply applied 
to the animal models since strict complementarity 
between the target site and the miRNA is a rare 
phenomenon [24]. Moreover, miRNAs are 
predominantly found in 3’ untranslated regions (3’ 
UTRs) of target genes and only sporadically in 5’UTRs 
or ORFs [25-27]. 

Effective prediction of miRNA-mRNA interactions in 
animal systems remains challenging due to the 
interaction complexity and a limited knowledge of rules 
governing these processes. Therefore, it is necessary 
to take advantage of the newest findings in miRNA 
biology and their targets prediction algorithms to find 
possible miRNA-mRNA interactions. Numerous target 
prediction algorithms exploiting different approaches 
have been recently developed, and many methods of 
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experimental validation have been designed. In this 
review we summarize hitherto known facts on miRNA-
mRNA interactions, describe functions and approaches 
of commonly used target predictions algorithms and 
methods for experimental validation. We also draw 
attention to practical aspects of computational miRNA 
target analysis and present our approach to miRNA 
target prediction using the example of genes causing 
trinucleotide repeat expansion diseases (TREDs). 

miRNA-mRNA INTERACTIONS 

Target sites for animal miRNAs are not evenly 
distributed within 3’UTR but they rather tend to group at 
both ends of 3’UTR [28]. It is typical of genes with short 
3’UTRs to have target sites at 5’ part of 3’UTR [29]. 
Alternative transcripts with varied length of 3’UTRs 
could be regulated by different sets of miRNAs [30]. 
There is also an abundance of mRNAs having potential 
multiple sites for the same miRNA [31-33]. It was 
reported that multiple sites enhance the degree of 
downregulation [34] and many target prediction 
algorithms exploit this fact in their search and scoring. 
Two sites of the same or different miRNAs located 
closely to each other could act synergistically [33, 35]. 
Regions of strict complementarity, bulges and 
mismatches have been observed in almost all known 
miRNA-mRNA interactions in animals [21, 36]. Each of 
these duplexes has a region called the “seed”, a site 
located at 5’ part of miRNA (positions 2-7) which is 
characterized by a strict or almost strict Watson-Crick 
pairing between miRNA and its target site and shows 
the best conservation among the miRNA sequence 
[37]. It has to be pointed out that there is no single 
model that would depict all miRNA-mRNA interactions 
because of their relative heterogeneity. The 
classification of miRNA target sites is based on the 
complementarity within 5’ (the seed region) and 3’ part 
of miRNA (Fig. 1) and distinguishes three types of 
sites: 1) canonical, 2) 3’-supplementary and 3) 3’-
compensatory sites [21].  

The majority of known targets called canonical sites 
have a complete paring within the seed region which 
determines the certainty of the interaction. There are 
three types of canonical sites [38]: the 7mer1A that has 
an adenine in position 1 at the 5’ end of miRNA, the 
8mer having matched adenine in position 1 and an 
additional match in position 8 and the 7mer-m8 that 
has a match in position 8. Canonical sites account for 
the majority of validated conserved targets, 7mer sites 
are most abundant for highly conserved miRNAs [1] 
and the adenine opposite position 1 of miRNA 
improves the degree of gene silencing [39]. There are 
also known sites with shorter, 6-nt seed but they are 
thought to have a limited functionality. All of these 
groups can have an additional pairing within 3’ part of 
miRNA and corresponding nucleotides of the transcript 
(3’-supplementary sites) but it usually has a less 
profound effect on target recognition and its efficacy 
[33]. At least 3-4 nucleotides consecutively paired in 
positions 13-16 of miRNA are usually required to 

enhance the effectiveness of miRNA-mRNA interaction 
which facilitates target prediction. There is also a 
possibility of a mismatch in the seed which is 
compensated by additional extended pairing in 3’ part 
of miRNA (3’-compensatory sites). 

The complexity of miRNA-mRNA interactions is one 
of the main reasons why algorithms based on a 
miRNA-mRNA sequence matching only are insufficient 
and additional parameters such as orthologous 
sequences alignment, UTR context or free energy of 
complexes have to be taken into account. 3’UTR 
orthologous sequence analysis is a basic method of 
making the miRNA target prediction more efficient [40] 
and it is restricted to a comparison of conservative 
sequences in human transcriptome to relatively 
evolutionally distant species such as the mouse, the 
dog or the fish. It is based on the assumption that sites, 
as targets for miRNA regulation, have been kept 
unchanged because of evolutionary pressure [1, 41]. It 
has been well proven that some miRNA families are 
highly conserved among closely related species, have 
many conserved targets and family members differ in 
the 3’ region that enables distinction of sensitivity to 
transcript targets [38]. Friedman et al. [1] suggested 
that most mammalian targets retain sites for conserved 
miRNAs. The use of an approach based on sequence 
conservation seems to be entirely justifiable for an 
analysis of seed regions [38, 42]. However, this 
strategy should be applied with caution because even 
conserved 3’UTRs have a large number of non-
conserved targets. This is one of the main reasons why 
algorithms based on orthologous sequence alignment 
generate a number of false negative results. There is 
also an abundance of miRNAs that are not conserved 
and different approach is needed for prediction of their 
targets. In this case it is extremely important to 
implement other search parameters. It is known that 
simple base pairing is insufficient for miRNA target 
prediction [43] and the secondary structure of 
miRNA/target duplexes is a factor that should be taken 
into consideration [44, 45]. Many existing algorithms 
based on conservation analyses include the sequence-
based binding energy of miRNA-target duplex 
calculations into a final score. Kertesz et al. [46] 
conducted a more in-depth analysis which centered on 
the site accessibility for miRNA downregulation 
efficacy. It turned out that upstream and downstream 
flank regions of miRNA binding sites tend to have weak 
base-pairing to reduce the energy cost of unpairing 
bases in order to make the site more accessible for 
RISC. This observation is in agreement with the fact 
that target flanking regions have high local AU content 
[33]. It was proposed that some miRNAs downregulate 
moderately targeted mRNAs and they are engaged in 
tuning gene-expression levels [47]. Moreover, certain 
target sites may act as competitive inhibitors of miRNA 
activity since the effect of miRNA regulation on them is 
very mild [48]. These sites will retain their conservation 
since they have a biological function as miRNA 
sequestration regulators. 
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Fig. (1). Types of miRNA-mRNA interactions. 

Different classes of miRNA target sites are presented in a schematic way. Vertical dashes represent single Watson-Crick pairing. 

Nucleotides involved in binding have been arbitrarily defined to depict positions of required complementarity between miRNA 

and mRNA. Seed regions of miRNAs are marked by red color and the adenine at binding position 1 by green. Interactions 

between mRNA and the 3’ end of miRNA have not been shown because they are sequence-dependent and do not significantly 

contribute to the miRNA downregulation effect. In the case of 3’-suppelmentary and 3’-compensatory sites two regions of pairing 

(base pairs colored in blue) force middle mismatches to form a loop structure. Additionally, features of particular site types have 

been listed. 

miRNA TARGET PREDICTION ALGORITHMS 

Many different algorithms have been developed for 
prediction of miRNA-mRNA interactions. The rules for 
targeting transcripts by miRNAs have not been fully 
examined yet and are based mainly on experimentally 
validated miRNA-mRNA interactions [49, 50] that are 
only a slice of possibly existing in vivo. This situation 
led to the development of a variety of approaches to 
miRNA target prediction. The available algorithms have 
been extensively discussed by others [51-54]. 
Moreover, they were recently reviewed by Yue et al. 
[55] with the focus on their bioinformatical, 
mathematical and statistical aspects. The available 
algorithms can be classified into two categories 
established on the basis of the use or non-use of 
conservation comparison, a feature that influence 
greatly an outcome list of targets by narrowing the 
results [1, 33]. The algorithms based on conservation 
criteria are for example the following: miRanda [56], 
PicTar [42, 57], TargetScan [38], DIANA-microT [36]; 

while PITA [46] and rna22 [58] belong to the algorithms 
using other parameters, such as free energy of binding 
or secondary structures of 3’UTRs that can promote or 
prevent miRNA binding. Since all these algorithms 
were successfully used to predict miRNA targets in 
mammals we describe them in more detail below. 
Additionally, to facilitate the assessment of these 
algorithms, we summarize their performance and 
characteristic features (Table 1). 

miRanda 

The miRanda algorithm [56] is based on a 
comparison of miRNAs complementarity to 3’UTR 
regions. The binding energy of the duplex structure, 
evolutionary conservation of the whole target site and 
its position within 3’UTR are calculated and account for 
a final result which is a weighted sum of match and 
mismatch scores for base pairs and gap penalties. 
There is one wobble pairing allowed in the seed region 
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that is compensated by matches in the 3’ end of 
miRNA. The usage of this strategy incorporates 
different nature of miRNA-mRNA interactions (Fig. 1). 
miRNAs with multiple binding sites within 3’UTR are 
promoted, which contributes to the increase in 
specificity but it underestimates miRNAs with a single 
but perfect base pairing. It takes into account the 
evolutionary relationships of interactions more globally 
focusing on the conservation of miRNAs, relevant parts 
of mRNA sequences and the presence of a 
homologous miRNA-binding site on the mRNA [59]. 

TargetScan and TargetScanS 

These algorithms [38] use different approach to the 
prediction of interactions of miRNAs with mRNAs. 
Firstly, the search is narrowed to the sites that have full 
complementarity in the miRNA seed region that is 
defined as 6-nt long (nucleotides 2-7) and then they are 
extended to 21-23 nucleotide-long fragments 
representing true interactions. Results are classified 
within three groups on the basis of length of exact 
matching and an occurrence of adenine at the first 
position of mRNA target site which seems to be 
evolutionally conserved [39] and may act as a 
recognizing anchor for RISC. Several parameters 
determined in previous signal-to-noise analyses on an 
experimentally validated dataset contribute to the 
outcome score such as the type of seed matching, 
pairing contribution outside the seed region, AU 
content 30 nt upstream and downstream of predicted 
site and the distance to the nearest end of the 
annotated UTR of the target gene [33]. The 
conservation of seed regions among orthologous 
3’UTRs within miRNA binding regions has a 
fundamental importance for an outcome score [1]. Less 
conservative miRNA-mRNAs interactions with wobble 
pairings and bulges, especially within 5’ region of 
miRNA, are also predicted in the newest versions. 

TargetScanS [38] is an alternative, simplified 
version of TargetScan which predicts targets having a 
conserved 6-nt seed match flanked by either a 7-nt 
match or 6-nt with A on the 3’ terminus with no 
consideration of free energy values. 

PicTar 

PicTar [42, 57] searches for nearly but not fully 
complementary regions of conservative 3’UTRs and 
then calculates the free energy of created duplexes. 
Each result is scored using Hidden-Markov Model 
(HMM – a simple example of dynamic Bayesian 
network), miRNAs with multiple alignments are favored. 
It was the first method that considered a parallel 
expression on the cellular level or an action in a 
common biological pathways of a miRNA and 
transcript. PicTar uses sequence alignment to eight 
vertebrate species to eliminate false positive results 
and it scores the candidate genes of each species 
separately to create a combined score for a gene. It is 

necessary for the mRNA to have recurring nucleobases 
at overlapping positions among species paired. 

DIANA-microT 

This algorithm [36] uses a 38nt-long frame that is 
moved along 3’UTR. The minimum energy of potential 
miRNA binding, that allows mismatches, is measured 
after every shift and compares with the energy of 100 
per cent complementary sequence bound to the 3’UTR 
region. DIANA-microT searches for sites with canonical 
central bulge and it requires 7, 8 or 9 nt–long 
complementarity in 5’ region of miRNA. 6 nt-long 
matches within seed region or with one wobble pairing 
are also considered while enhanced by additional base 
pairing in 3’ region of miRNA [60]. Because of 
exploiting experimental deduction of rules governing 
miRNA-mRNA site by their mutation it is constructed 
for single site prediction. DIANA-mciroT use 
conservative alignment for scoring but also considers 
non-conservative sites. It gives unique signal-to-noise 
ratio (SNR) which is a ratio between a total of predicted 
targets by single miRNA in searched 3’UTR and a total 
of predicted targets by artificial miRNA with randomized 
sequence in searched 3’UTR. It also provides users 
with a percentage probability of existence for each 
result depending on its pairing and conservation profile. 

PITA 

PITA [46] offers a brand new view on the miRNA 
target prediction. It focuses on the target accessibility 
that is strictly connected to the secondary structure of 
the transcript. The main assumption is based on the 
fact that the mRNA structure plays a role in target 
recognition by thermodynamically promoting or 
disfavoring the interaction. PITA first predicts targets 
using complementarity analysis within seed regions 
(single mismatch or G:U wobble pairing can be 
allowed) and then compares the free energy gained 
from the formation of the miRNA-target duplex and the 
energetic cost of unpairing the target to make it 
accessible to the miRNA. 

Rna22 

Rna22 [58] is a target prediction algorithm that is 
based on a search for patterns that are statistically 
significant miRNA motifs created after a sequence 
analysis of known mature miRNAs. It first searches for 
reverse complement sites of patterns within mRNA of 
interest and determines sites with many patterns 
aligned (so called ‘hot spots’). The next step is 
identification of miRNAs that are likely to bind to these 
sites. This approach also allows to identify sites 
targeted by yet-undiscovered miRNAs. The minimum 
number of base-pairs between miRNA and mRNA, the 
maximum number of unpaired bases and the free 
energy cutoff are user-defined parameters. Rna22 
does not exploit cross-species conservation alignment 
for final scoring. 
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PRACTICAL ASPECTS OF miRNA TARGET 
PREDICTION ALGORITHMS  

Since the appearance of target prediction 
algorithms there has been a need to evaluate their 
precision and authenticity of outcome scores in order to 
estimate their effectiveness and select the best ones. 
Target prediction programs are a type of binary 
classification tests addressing the question of whether 
there is an interaction between miRNA and given target 
transcript or not. There are two statistical parameters 
that could be used to characterize their performance, 
namely sensitivity, a percentage of correctly predicted 
targets out of total correct ones, and specificity, a 
percentage of correctly predicted among overall 
predicted ones. These parameters are strictly 
connected with the false positive and false negative 
rates that, respectively, describe a number of targets 
that were experimentally rejected as untrue and targets 
that exist in vivo but are not predicted computationally. 
The choice of a program or programs for the analysis 
should take these two measures into account. In 
general, the emphasis is put more on sensitivity in the 
search of all potential targets for specific miRNA and 
on specificity in the examination of miRNAs regulating 
a single gene. 

Comparison of miRNA Target Prediction Algori-
thms 

The first study of target prediction algorithms 
performance was carried out by Sethupathy et al. in 
2006 [61]. The specificity and sensitivity were 
calculated using a set of experimentally validated 
mammalian targets from TarBase [49]. TargetScanS, 
PicTar and miRanda used alone or as a union (targets 
indicated by at least one of these algorithms) made the 
best tradeoff between sensitivity and specificity while 
TargetScan and DIANA-microT did not succeed. Also, 
only the intersection of TargetScanS and PicTar 
(interactions predicted by both programs) achieved 
good results which could be explained by exploiting 
similar strategy for miRNA target prediction based on 
evolutionary conservation of binding sites and strict 
complementarity within seed regions. The method of 
examination proposed by Sethupathy, however, might 
lead to wrong conclusions. The group of experimentally 
validated targets was not large and, more importantly, it 
consisted of only such interactions that had been 
discovered with the usage of the predetermined set of 
rules for miRNA target prediction. Because of still not 
having defined all possible types of miRNA-mRNA 
interaction, the analyzed group could not be regarded 
as representative. 

High throughput methods provided information 
about the miRNA effects at the proteome level. The 
whole context of miRNA regulation was analyzed and 
therefore miRNA target prediction algorithms were 
compared more precisely. Baek et al. in 2008 [62] 
applied a quantitative-mass-spectrometry-based 
approach using SILAC (stable isotope labeling with 
amino acids in cell culture) to study the influence of 

miR-223 on the protein output in mouse neutrophils. 
The comparison between in vivo results and 
predictions in silico revealed that TargetScan and 
PicTar seemed to be the best ones and moreover, only 
TargetScan total context score, that is assigned to 
each result, correlated with protein downregulation. 
Algorithms not using evolutionary analysis such as 
PITA should be rather used for non-conserved targets 
only and still need an improvement. Analogous 
research was carried out by Alexiou et al. in 2009 [63]. 
They used data obtained inter alia from Selbach et al. 
experiments [64] that consisted in employing a 
modified SILAC method (pulse-labeling with two 
different heavy isotopes) combined with mass-
spectroscopy analysis to observe changes in protein 
production after overexpression of 5 miRNAs (miR-1, 
miR-16, miR-30a, miR-155 and let-7b) in HeLa cells. 
The results showed that five programs (TargetScan, 
TargetScanS, PicTar, DIANA-microT and EIMMO [29]) 
had a specificity of around fifty per cent and six to 
twelve per cent of sensitivity which correlates with other 
reports [65]. Furthermore, they conducted similar 
analysis for all unions and intersections of miRNA 
target prediction algorithms. It can be concluded that a 
target predicted by more than one program is more 
likely to be true than other targets, although such an 
intuitive tendency may be misleading in many cases. 
The combinations of algorithms may result in the 
increase of the sensitivity at the cost of specificity. 

In sum, there is no universal miRNA target 
prediction algorithm that can be used routinely and 
efficiently for every 3’UTR sequence since not all rules 
of mRNA-miRNA interactions have been discovered 
yet. Therefore, instead of having a clear result of 
computational analysis specifying whether there is a 
functional binding site or not, target prediction 
programs give point scores and percentages that only 
assess the possibility of interaction. This is a reason 
why researches from other fields of biomedical 
sciences are often lost in the abundance of available 
information and variety of miRNA target prediction 
algorithms.  

Practical Insight into miRNA Target Prediction 

To meet the need of a guidance in miRNA target 
prediction, the information about distinctive features of 
commonly used algorithms and their performance, 
advantages and drawbacks has been gathered (Table 
1) and a flow chart showing the stages of the miRNA 
target prediction has been shown (Fig. 2). Table 1 
presents the main parameters that are considered by 
programs for final scoring and also provides 
information about the conservation, which is the main 
feature distinguishing miRNA target prediction 
algorithms. Some of programs use the cross-species 
alignment as an indispensable factor to filter out false 
negatives (e.g., PicTar) or as a user-defined parameter 
to reduce the number of putative target sites (PITA), 
while other algorithms do not exploit this feature for 
final scoring (rna22). In many cases, the basic concept 
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employed by algorithms in search of miRNA-mRNA 
predetermines the outcome advantages and weak 
points of used strategies. For instance, miRanda allows 
a wobble pairing within the seed region which adds 3’ 
compensatory sites to the list of predicted targets. 
However, at the same time, the allowance of wobble 
pairing lowers the algorithm precision. DIANA-microT 
examines each target site independently, providing 
additional parameters such as SNR and the probability 
of being a true site. Therefore DIANA-microT does not 
favor miRNAs with multiple target sites. PITA and 
rna22 are examples of algorithms focusing on novel 
features of miRNA-mRNA interaction; target site 
accessibility and pattern recognition, respectively. Their 
use broaden the list of potential miRNA target sites but 
these sites are predicted with low efficiency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). The flow chart of steps for efficient miRNA target 

prediction. 

Details discussed in the main text. 

The most suitable approach for miRNA target 
prediction seems to be dependent on the nature of 
planned experiments. Basic scientists want to perform 
comprehensive analysis to discover all true interactions 
while clinically-orientated researchers may be satisfied 
with the strongest interactions that could be employed 

in gene therapies. In Fig. (2) we present a schematic 
procedure which we believe will help to choose the 
appropriate strategy for computational analysis of 
miRNA-mRNA interactions. The first step is to use one 
of the programs that consider site conservation (PicTar, 
TargetScan or DIANA-microT) because they are 
characterized by high precision and sensitivity. As it 
was mentioned before, the combined use of them as 
an intersection or a union is less effective in most 
cases and therefore this procedure should not be used. 
These algorithms cannot be used for newly evolved 
genes that do not have their orthologs in distantly 
related species. The next step is to add targets 
indicated by programs exploiting other parameters for 
final scoring (e.g. PITA, rna22). This action should be 
treated as optional and it is encouraged to follow 
especially if previous steps give few putative miRNA-
mRNA interactions. After selection of predicted 
miRNAs regulating the gene of interest, the expression 
profile of miRNAs and the gene should be compared to 
detect the overlaps and/or inverse correlations. 
miRGator, a tool for an integration of miRNA and 
mRNA expression data have been created [66]. It is a 
crucial step for assessing the putative physiological 
regulation of gene by miRNAs, especially when tissue-
specific expression of miRNA may be linked to the 
disease of interest. Finally, close attention should be 
paid to putative target sites that are located in the 
immediate vicinity. Both the genome-wide analysis [33] 
and the experimental data [35] demonstrated that sites 
located close to each other often act synergistically. 
Although this feature is still not included in miRNA 
target prediction algorithms, it may play an important 
role in the mechanism of miRNA-mediated gene 
regulation. 

EXPERIMENTAL VALIDATION OF PREDICTED 
TARGET SITES 

Once miRNA has bound to its binding site within 
3’UTR of the targeted transcript the following biological 
effects may be exerted: translational arrest effecting in 
protein level decrease, deadenylation of the transcript 
and/or its degradation resulting in both mRNA and 
protein levels reduction [4, 5]. The most straightforward 
method for verification of miRNA function is a 
transfection of cells with miRNA mimetics or miRNA 
inhibitors, followed by quantitative analyses of target 
mRNA and protein levels [67, 68]. miRNA mimetics 
imitating endogenous miRNAs may be delivered either 
in the form of synthetic siRNA-like duplexes or miRNA-
encoding vectors (recently reviewed in [69]). Specific 
miRNA inhibitors commonly used to silence miRNA 
function are complementary oligoribonucleotides, 
usually modified, such as 2’-O-methyl-modified 
oligoribonucleotides [70], LNAs (locked nucleic acids) 
[71] and antagomirs (cholesterol-conjugated single-
stranded RNAs) [72], or vector-based transcripts called 
“miRNA sponges”, containing multiple miRNA binding 
sites that absorb miRNAs and prevent binding their 
targets [73, 74]. To confirm direct interactions between 
miRNAs and mRNAs comprehensive analyses should 
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be performed. Several methods for experimental 
verification of predicted miRNA-mRNA interactions are 
currently being used and percentage shares of targets 
validated by the use of a particular method are 
presented in Fig. (3). The most commonly used 
methods, i.e., reporter assays, microarrays and 
proteome analyses are detailed below. Experimentally 
validated miRNA-mRNA interactions have been 
gathered in various databases, such as TarBase [50], 
MiRecords [75], Ago [76] and miRNAMAP [77]. 

Gene Reporter Assays 

The very first approach exploited in the field of 
experimental validation of putative miRNA-mRNA 
interactions was the use of reporter assays, usually 
luciferase reporter assays, because miRNA activity on 
such reporter genes can be easily measured [42, 58]. 
This method is based on cloning 3’UTRs of genes of 
interest or 3’UTR segments containing miRNA binding 
site(s) into expression vectors bearing a reporter gene. 
As a negative control, constructs carrying 3’UTRs with 
mutated target sites that unable miRNAs binding are 
also used [36, 40, 78-82]. Transient transfection of cells 
with reporter constructs followed by measurement of 
the reporter activity enables validation of predicted 
miRNA-mRNA interactions. Cells not expressing a 
miRNA of interest may be co-transfected with the 
reporter construct and either a miRNA mimetic or a 
miRNA-encoding vector. This method is frequently 
extended and the miRNA-mRNA interaction is further 
confirmed by a transfection with miRNA inhibitors. The 
reporter assay still serves as an efficient and routinely 
used strategy for the verification of individual miRNA-
mRNA interactions [83] (Fig. 3). Simplicity of the 
method is its main advantage, while the fact that it does 

not allow a high-throughput identification of miRNA 
targets is an important drawback. 

Microarray Analysis 

An increasingly popular and high-throughput 
method used in the experimental validation of miRNA-
mRNA interactions is microarray analysis [65, 84] 
which takes advantage of the fact that one of the direct 
effects of miRNA binding is a simultaneous reduction in 
targeted transcripts’ levels [5, 62]. Such an analysis 
consists in the comparison of cell transcriptomes after 
miRNA overexpression or knockdown with reference to 
the transcriptome of untreated cells. The significant 
advantage of this method ids the fact that it enables 
performing a large-scale analysis. However, not all 
miRNA-mRNA interactions may be discovered by this 
method since miRNAs can downregulate genes by 
lowering protein expression levels with an undetected 
change in transcript levels [5]. Moreover, the 
transcriptomes vary between different tissues and 
highly depend on the cell physiology. Therefore, a 
strategy involving multiple set of microarrays was 
proposed to overcome these problems and ensure 
reliability of the method [85]. 

Proteome Analysis 

Another high-throughput method successfully used 
in validation of miRNA target sites is the proteome 
analysis [62, 64]. Similarly to microarrays, the 
proteomics approach is based on measuring the 
change of protein level in response to miRNA 
introduction. This method employs stable isotope 
labeling with amino acids in cell culture (SILAC) 
followed by a quantitative-mass-spectrometry [62, 86]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). The pie chart showing percentage shares of methods used successfully to validate experimentally miRNA 

targets.  

The numbers show the percentage shares of targets validated by the use of a particular method. Data were obtained from the 

latest release of Tarbase v 5.0, June 2008 [50]. 
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Later, this technique was modified by conducting pulse 
labeling with two different heavy isotopes [64]. The 
proteome analysis is considered to be more proper to 
detect functional miRNA-mRNA interactions than 
microarrays but still both methods share common 
limitations, such as high dependency of trancriptome 
and proteome on cell physiology. Moreover, certain 
changes detected in protein levels may result from an 
indirect miRNA regulation instead of a direct effect of 
miRNAs binding to the targeted transcripts which is 
also a disadvantageous feature of the method. 

Immunoprecipitation and Other Methods 

Apart from the strategies mentioned above, other 
methods for experimental validation of miRNA-mRNA 
interactions have been introduced and successfully 
used (recently reviewed in [87]). AGO proteins of RISC 
can bind both miRNAs and mRNAs and this feature 
was exploited in co-immunoprecipitation assays [88, 
89]. Used collectively with deep sequencing, AGO 
immunoprecipitation allowed validating of miRNA-
mRNA interactions in a genome-wide manner. HITS-
CLIP, namely high-throughput sequencing of RNAs 
isolated by crosslinking immunoprecipitation, was used 
to directly identify AGO-bound miRNAs and their target 
mRNAs in the mouse brain [90]. Such an approach 
complemented the bioinformatic way of the miRNA 
target identification and reduced the number of false-
positive predictions. More recently, CLIP method was 
modified in respect of an ultraviolet irradiation used to 
covalently crosslink RNA-protein complexes within 
cells. The improved CLIP, termed PAR-CLIP (Photo-
activatable-Ribonucleoside-Enhanced Crosslinking and 
Immunoprecipitation) was used by Hafner et al. [91] to 
analyze miRNPs (miRNA-RNA-protein) complexes in 
HEK293 cells. Despite being regarded as a very 
modern and elegant way to perform large-scale 
analyses, CLIP methods have some weaknesses. Not 
only are they technically challenging and expensive but 
frequently encounter problems with distinguishing 
between direct and indirect miRNA-mRNA interactions.  

Furthermore, methods based on different 
approaches were also successfully implemented for the 
verification of miRNA-mRNA interactions. Davis et al. 
[92] conducted RNA-ligase-mediated (RLM) 5’ RACE 
experiments to verify miRNA-target interactions, and Li 
et al. [93] proposed that high cytoplasmic-to-nucleic 
ratio of mRNA expression may indicate genes that are 
likely to be controlled by miRNAs. In the latter report it 
was suggested that a measurement of the transcript 
level by a microarray or fluorescent real time PCR 
(qPCR) preceded by a computational analysis can be 
performed to create a list of potential targets [93].  

Evaluation of miRNA Target Validation Methods 

Commonly used methods for experimental 
validation have their own assumptions, strengths and 
weaknesses (reviewed in [94]). The most promising 
techniques are those which may be converted to a 

multiplex format, however they are not fully satisfying in 
terms of their sensitivity. On the other hand, more 
sensitive methods (e.g., reporter assays) cannot be 
used in large-scale analyses. Certain targets validated 
by reporter gene assays may be also false negatives 
as an effect of RISC saturation due to miRNA 
overexpression. Furthermore, inhibitors designed to 
exclusively repress the function of the specific miRNA 
(frequently used in all validation methods) may not be 
selective enough since many miRNAs belong to 
miRNA families with common seed regions and such 
inhibitors could trigger non-specific repression in many 
cases. Taken together, there are many pitfalls 
associated with miRNA target validation. All validation 
methods, including their advantages and drawbacks as 
well as future perspectives of miRNA target 
identification and miRNA-mRNA interaction analyses, 
have been extensively discussed elsewhere [54, 87, 
94-96]. 

PREDICTION OF miRNA TARGETS IN TREDs 

Many studies showed that miRNAs play a crucial 
role in the development and functional regulation of 
nervous system and deregulation of miRNAs was 
postulated and proved in various neurological disorders 
[97-100]. There have been published several reviews 
summarizing our current knowledge of 
neurodegeneration and its connections with miRNA 
regulation [101-105] but have been rather focused on 
neurodegenerative diseases such as Alzheimer’s and 
Parkinson’s. In this section we have summarized 
current knowledge about experimentally proven 
associations between miRNAs and TREDs (Table 2). 
Moreover, we provide a detailed analysis and show the 
practical side of miRNA target prediction on the 
example of miRNA interactions with mRNAs derived 
from genes triggering the pathogenesis of trinucleotide 
repeat expansion diseases (TREDs). 

Brief Characteristics of TREDs and Mechanisms of 
Pathogenesis 

TREDs comprise mostly neurodegenerative 
disorders, such as Huntington’s disease (HD) and a 
number of spinocerebellar ataxias (SCAs), and 
neuromuscular disorders, such as myotonic dystrophy 
type 1 (DM1). The underlying cause of TREDs is an 
expansion, to an abnormal length, of trinucleotide 
repeats (TNRs), CAG, CTG, CGG and GAA, that occur 
both in coding and non-coding regions of human genes 
[106-108]. The same type of mutation is a 
characteristic of all genes triggering TREDs but these 
genes do not perform similar functions. However, this 
group of disorders could be divided into categories with 
regard to the localization of expanded TNRs within 
genes and the mechanism of pathogenesis. The 
expansion of TNRs could result in either the loss-of-
function mechanism which consists in protein function 
impairment, i.e., reduction or absence of protein 
production, or the gain-of-function resulting in an 
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Table 2. The Summary of Current Examinations of Links Between miRNA Regulation and TREDs 
 

Disease 
miRNA 

change/regulation 

miRNA target 
prediction 
algorithms 

Methods used for experimental 
validation 

Experimental 
models 

References 

transfection with miRNA duplexes 
and their specific inhibitors followed 

by western blot analysis and RT-
PCR 

MCF7, HEK293T, 
NIH3T3 and HeLa 

cell lines 

luciferase reporter assays with 
vectors carrying 3’UTR fragments 

or mutated target sites 
HeLa cell line 

miRNA detection by northern blot 
analysis and in situ hybridization of 

mouse RNAs derived from 
cerebellum  

C57/B6 WT mouse 

Spinocerebellar 
ataxia type 1 

(SCA1) 

miR-19, -101 and  
-130a downregulate 

ATXN1 gene 

PicTar was used to 
computationally 
predict miRNAs 
targeting ATXN1 

transcript. Eight most 
likely miRNAs were 

chosen for 
experimental 

validation 

cell death assays with mutant 
ATXN1deprived of target sites  

HEK293T cell line 

[111] 

phenotype comparison analysis 
(mutants) 

D. melanogaster 

cell death assays 
D. melanogaster 
cell line with ban 
overexpression 

Spinocerebellar 
ataxia type 3 
(SCA3) and 

possibly other 
polyQ 

disorders 

ban, a dma-
miRNA, modulates 

polyQ-toxicity 
– 

Dicer downregulation 
flies and human 

cell lines 

[118, 119]  

phenotype comparison analysis 
(mutants) 

D. melanogaster 

mutant expression profiling 
microarray analysis 

fruit fly pupae 

real-time RT-PCR with intron 
specific primers 

fruit fly pupae 

luciferase reporter assay with 
vectors containing 3’UTR with 

mutated target sites 

fruit fly pupae and 
S2 cell line 

Dentatorubral 
pallidoluysian 

atrophy 
(DRPLA) 

dma-miR-8 
downregulates  

D. melanogaster 
atrophin gene 

–  

in vivo studies of miR-8/atrophin 
functionality (death assays of 

mutants with atrophin and/or miR-8 
underexpression, 

immmunocytochemistry for 
apoptotic cell detection) 

D. melanogaster, 
fruit fly embryos 

[129] 

quantitative real-time PCR (qPCR) 
using TaqMan miRNA assays 

human brain post 
mortem samples of 

the Brodmann’s 
area 4 (BA4) cortex Huntington’s 

Disease (HD) 

downregulation of 
miR-9, -9*, -29b,  

-124 and 
upregulation of 

miR-132 
associates with HD 

– 
co-transfection of miRNA 

precursors and REST/CoREST 
3’UTRs with luciferase assay 

followed by western blot analysis 

HEK293 cell line 

[130]  

infection with adenovirus 
expressing a dominant-negative 
REST construct followed by RT 

PCR 

cell lines of wt and 
mutant Hdh knock-
in embryonic mice  

Huntington’s 
Disease (HD) 

downregulation of 
miR-132 and 

upregulation of 
miR-29a and -330 
associate with HD 

– 

qPCR using pre-miRNA stem loop 
primers 

R6/2 mouse (and 
human) post 

mortem samples of 
the cortex (BA4 

cortex) 

[131, 132] 

Huntington’s 
Disease (HD) 

downregulation of 
15 miRNAs

1
 and 

upregulation of 19
2
 

and miRNA editing 
alterations 

associate with HD  

microPred pipeline for 
novel miRNAs 

prediction [133], 
TargetScan for 

prediction of genes 
regulated by altered 

miRNAs 

massively parallel sequencing of 
small non-coding RNAs (ncRNAs) 

followed by TaqMan microRNA 
assays 

human brain post 
mortem samples of 
the frontal cortex 

(FC) and the 
striatum (ST) 

[127] 
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(Table 2). Contd….. 

Disease 
miRNA 

change/regulation 

miRNA target 
prediction 
algorithms 

Methods used for experimental 
validation 

Experimental 
models 

References 

Huntington’s 
Disease (HD) 

downregulation of 
15 miRNAs

3
 and 

upregulation of 9
4
 

associates with HD 

qPCR using stem loop primers 

Spinocerebellar 
ataxia type 17 

(SCA17) 

miR-146a 
downregulates 

TBP gene 

miRNAMap 2.0 
resource [77] 

(miRanda, 
TargetScan, 

RNAHybrid) was used 
for prediction of genes 
regulated by altered 

miRNAs 

luciferase reporter assay with 
vectors containing exogenous TBP 
3’UTR with western blot analysis 

co-transfection of miRNA 
precursors and TBP 3’UTR 

followed by northern blot analysis 

STHdh
Q111

/Hdh
Q111

 
cells - cell lines of 

wt and mutant Hdh 
knock in embryonic 

mice 

[115] 

Myotonic 
dystrophy type 

1 (DM1) 

overexpression of 
miR-206 

associates with 
DM1 

– 

qPCR using TaqMan microRNA 
assays 

northern and western blot analysis 

in situ hybridization of miR-206 
using locked nucleic acid probes 

(LNA) 

human muscle 
samples of vastus 

lateralis 

[134] 

Fragile X 
syndrome 

(FXS) 

dFmrp associates 
with RISC and 
endogenous 

miRNAs 

– 

transcfection with vectors 
containing dFmrp 

co-immunoprecipitation with RISC 
proteins and miRNAs, norther and 

western blot analysis 

S2 cell line [123] 

in situ hybridization of dma-miR-
124a 

D. melanogaster 
embryos 

Fragile X 
syndrome 

(FXS) 

dFmrp is required 
for processing of 

miR-124a 
– 

immunoprecipitation with miR-
124a, norther and western blot 

analysis 

qPCR using stem loop primers 

 

transgenic fruit fly 
pupae 

 

[125] 

Fragile X 
syndrome 

(FXS) 

miR-19b, -302b* 
and -323-3p 

downregulate 
FMR1 gene 

intersection of 
computationally 

predicted targets by 
miRbase [3], miRanda 
and miRDB was used 

for validation 

luciferase reporter assays with 
vectors containing native 3’UTR or 
with mutated target sites combined 
with co-transfection of GFP-tagged 
plasmids expressing pre-miRNAs 

HEK293 cell line [116] 

1
miR-95, -124, -128, -127-3p, -139-3p, -181d, -221, -222, -382, -383, -409-5p, -432 , -433, -485-3p and -485-5p. 

2
miR-15b, -16, -17, -19b, -20a, -27b, -33b, -92a, -100, -106b, -148b, -151-5p, -193b, -219-2-3p, -219-5p, -363, -451, -486-5p and -887. 

3
miR-9, -9*, -100, -125b, -135a, -135b,-138, -146a, -150, -181c, -190, -218, -221, -222 and -338-3p. 

4
miR-145, -199-5p, -199-3p, -148a, -127-3p, -200a, -205, -214 and -335-5p. 

altered function of the mutant protein or toxicity of the 
mutant transcript. The mechanism of pathogenesis also 
determines the choice of miRNA features that should 
be considered in the employment for therapy.  

microRNAs as Therapeutic Agents 

Polyglutamine (Poly-Q) diseases, a group of TREDs 
such as HD and several SCAs where the translated 
CAG repeats expand, are predominantly caused by the 
toxic polyQ-expanded protein [106-108] with possible 
contribution from mutant transcript [109, 110]. As yet 
no conventional therapy could be applied to treat 
patients with these diseases and employment of 
miRNA machinery and function seems to be one of the 
promising therapeutic approaches. Pioneering research 
in this area was conducted by Lee et al. [111]. They 
showed that the level of ATXN1, the protein being a 
product of ATXN1 gene, is modulated by miRNAs and 

the inhibition of miRNAs targeting ATXN1 transcript 
enhanced cell toxicity. In the case of polyQ-diseases, 
miRNAs could reduce levels of both the affected 
protein and mutant transcripts. Although miRNAs would 
not discriminate between the mutant and normal 
transcripts, tighter regulation of the protein level itself 
was demonstrated to have therapeutic efficacy in HD 
[112]. Another possibility to consider is to construct 
artificial miRNAs targeting new sites in 3’UTRs. Taking 
advantage of miRNAs as therapeutic agents may be 
more beneficial in some circumstances than the use of 
siRNAs since miRNAs could offer better specificity and 
lower toxicity [20]. It appears to be prudent to deliver to 
the affected tissue lower doses of different specific 
miRNAs instead of a high dose of single miRNA 
regulating the gene of interest, since the effect of lower 
doses should be additive. This approach may also 
diminish the undesired effect of decreasing the off-
target genes’ expression because the most 
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downregulated would be genes having target sites for 
all introduced miRNAs. An interesting approach to 
explore would be a use of miRNAs that regulate the 
gene of interest but are not expressed in the affected 
tissues. This strategy could provide higher specificity 
since a smaller number of existing transcripts may 
have target sites for the miRNA not expressed normally 
in this tissue. 

DM1 is caused by the accumulation of a toxic 
transcript in the nucleus [113] which apparently limits 
the use of miRNAs in the therapy since miRNA 
regulation takes place predominantly in the cytoplasm. 
The transcript toxicity would narrow down miRNAs to 
those that act as gene regulators both on the protein 
and the transcript levels but this does not seem to be a 
serious limitation as it was proved recently that majority 
of miRNAs decrease target mRNA levels [5]. 
Furthermore, it was shown that miRNAs having nuclear 
localization signal were imported to the nucleus and 
downregulated nuclear transcripts [114]. It may be 
beneficial to employ this knowledge in constructing 
artificial miRNAs for targeting the DMPK transcript 
retained in the nucleus. The possibility of targeting 
genes in an allele-specific manner in the disease 
caused by expanded CUG repeats such as DM1 was 
also considered as miRNAs with CAG repeats in their 
seed regions may potentially regulate mutated alleles 
more tightly. It was proposed in Hon and Zhang [28] 
that the length of CUG repeats could correlate with the 
miRNA repression in the case of 3’UTR of DMPK. Six 
miRNAs having CAG repeats within their seed regions 
were identified and it was indicated by in silico studies 
that they could regulate the expression of DMPK by 
multiple targeting the region of CTG repeats in its 
3’UTR. Further analysis and experimental validation of 
this proposition is needed. 

Analysis of miRNA-mRNA Interactions on the 
Example of TREDs’ Triggers 

In our analysis, we have focused on searching for 
miRNAs directly regulating genes causing TREDs by 
exploiting three commonly used algorithms 
(TargetScan, PicTar and DIANA-microT) for the target 
prediction. We combined the results obtained by these 
algorithms and showed graphically the distribution of 
putative miRNA binding sites in 3’UTRs (Fig. 4). The 
detailed list of all identified miRNAs and interaction 
parameters is presented as supplementary data.  

Since both the number of miRNA sites and their 
arrangement influence the degree and specificity of 
miRNA-mediated gene repression [28] it is of utmost 
importance to carefully analyze the distribution of 
miRNA binding sites throughout the whole 3’UTR. 
Close attention should be paid to the following: the 
3’UTR length, density of miRNA binding sites, 
existence of multiple sites and the distance between 
them (see the paragraph “miRNA-mRNA interactions”). 
We mapped miRNA recognition sites for 16 genes 
involved in the pathogenesis of TREDs and the 

outcomes of three algorithms were shown collectively 
one below the other as a triplicate-like analysis. Such a 
graphical presentation facilitates swift and correct 
interpretation of the results and therefore may help to 
choose miRNA-mRNA interactions for experimental 
validation. Additionally, we presented experimentally 
verified target sites found in the case of ATXN1 and 
FMR1 3’UTRs; the sites which were confirmed to be 
true are marked by green and rejected as untrue by red 
color. The analyzed TREDs-related genes varied 
significantly in their 3’UTR lengths, ranging from 436 nt 
in the case of AR gene to 9330 nt for AFF2 gene. 
3’UTR lengths did not correlate with the number of 
miRNA binding sites. The HTT gene was predicted to 
have only a few sites for miRNA-mRNA interactions 
despite its significant length (3900 nt) while an 
abundance of putative miRNA sites was found for a 
relatively short (596 nt) ATXN2 gene. There were 7 and 
19 binding sites in HTT and ATXN2 3’UTRs, 
respectively. Moreover, neither the number of miRNA 
sites nor their location in 3’UTR was readily 
comparable between results obtained by three 
algorithms. Although we chose programs that are 
based on sequence conservation alignment, their 
outcomes overlapped only to a limited extent. It is 
justifiable and seems to be a consequence of putting 
emphasis on different parameters for final scoring.  

Our target prediction analysis served as a point of 
reference to discuss the recent achievements in the 
field of searching for links between miRNA and TREDs. 
Lee et al. [111] exploited PicTar for target prediction 
analysis of ATXN1 gene and showed its 
downregulation by three miRNAs while two out of three 
having multiple biding sites within 3’UTR of ATXN1 
mRNA. Eight predicted miRNAs were chosen for the 
experimental analysis while PicTar predicts a lot more 
miRNAs being likely to associate with 3’UTR of ATXN1 
(Fig. 4). PicTar indicated binding sites which are 
equally distributed within 3’UTR whereas TargetScan 
and DIANA-microT predicted fewer binding sites but 
they coincided to a high degree. Interestingly, all 
experimentally confirmed target sites were detected by 
each used algorithm which proved that approaches 
used by algorithm designers seem to be similarly 
efficient. One target site which turned out to be a false 
negative was detected only by PicTar, the second one 
both by DIANA-microT and PicTar while the third one 
by all algorithms. Although the minority of putative 
target sites were selected for validation, Lee et al. 
analyzed them thoroughly. miRNAs of chosen target 
sites were examined by miRNA duplex transfection and 
by the use of specific 2’-O-methyl inhibitors followed by 
measurement of the level of protein (western blot) and 
RNA decrease (RT-PCR). Exact validation of chosen 
target sites was carried out by using whole or parts of 
ATXN1 3’UTR fused with firefly luciferase reporter 
genes and by mutagenesis of putative sites. 
Furthermore, the coexpression of ATXN1 and specific 
miRNAs were shown by conducting a northern blot 
analysis and RNA in-situ hybridization. Such complete 
analysis meets the criteria elaborated by Kuhn et al. 
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Fig. (4). The graphical presentation of miRNA target sites distribution in 3’UTRs of TREDs genes predicted by selected 

algorithms. 

The following algorithms were used for miRNA target prediction: TargetScanHuman Release 5.1 (only conserved sites for 

miRNA families broadly conserved among vertebrates were considered) (T), PicTar (Lall et al. 2006) (P) and DIANA-microT 

version 3.0 (D). A vertical bar depicts a single seed region of a miRNA target site predicted by the particular algorithm; putative 

target sites are marked by black vertical bars, experimentally validated by green rectangular-headed and false positives 

(experimentally rejected as untrue) by red star-headed bars. The absence of bars indicates that the algorithm did not predict any 

miRNAs targeting specified transcript or the transcript was not included in the UTR base used by this algorithm. The horizontal 

black lines with the division are scales with base pairs as a unit of measure. 3’UTRs of TREDs genes are grouped on the basis 

of their length. The sequence of 3’UTR that is common for all three algorithms is colored in pink. In the case of ATXN3 and 

CNBP 3’UTRs, the blue color indicates regions not analyzed by PicTar due to different criteria used to define 3  UTR boundaries. 

No target sites were found for ATN1 and FXN genes. 3’UTR of ATXN8(OS) gene is not identified. The images of 3’UTRs with 

miRNA distribution were created using FancyGene v 1.4 [128]. 

[95] to validated target sites as confirmed. Sinha et al. 
[115] demonstrated that gene encoding TATA-binding 
protein (TBP), which is mutated in SCA type 17 
(SCA17), is downregulated by miR-146a. It was 
predicted by miRanda and RNAHybrid but none of the 

three algorithms used in our analysis managed to 
predict this interaction. This is another proof that 
miRNA target prediction still needs further modification 
and it is highly likely that all true miRNA interactions 
may not be predicted by using only one, two or even 
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three algorithms. Recently, it has been demonstrated 
that three miRNAs interact with binding sites in the 
3’UTR of FMR1 mRNA [116]. Yi et al. created 
constructs expressing a firefly luciferase with native 
FMR1 3’UTR and 3’UTR with mutated putative target 
sites and constructs of pre-miRNAs fused with green 
fluorescent protein (GFP). More extensive research 
has to be conducted to examine the impact of miRNAs 
downregulating the 3’UTR of FMR1 on its transcript 
and protein levels. The first of the positively validated 
sites were predicted both by PicTar and DIANA, the 
second one only by DIANA-microT and the third one 
exclusively by PicTar. The first site was also indicated 
by TargetScan with the annotation that this site is 
conservative but the potential miRNA belongs to the 
non-conservative family among mammals. Moreover, 
one of the rejected target site as untrue were not 
detected by neither of three target prediction programs. 
Other TREDs genes were not investigated for their 
direct regulation by miRNAs. Our computational 
analysis clearly shows that some of them, most of all 
AFF2 and ATXN2, may have multiple functional binding 
sites for miRNAs (Fig. 4) which are worthy for further 
examination and experimental validation. On the other 
hand, TBP has a short 3’UTR with only a few possible 
binding sites which is consistent with the results of the 
comprehensive analysis of the length and sequence of 
3’UTRs of different genes. Taken together, this 
analysis showed that among TREDs’ triggers there are 
genes that are tightly regulated by miRNAs and genes 
involved in basic functions such as housekeeping 
genes, avoiding miRNA sites which observation has an 
evolutional explanation [117]. 

Studies of miRNA Deregulation in TREDs  

Another approach to exploit miRNA regulation in 
TREDs studies for a better understanding the 
mechanism of neurodegeneration and a possible future 
clinical application was to compare miRNA expression 
levels between non-affected and affected individuals. 
Studies of D. melanogaster showed miRNAs are 
involved in modulation of neuron survival in response 
to the degeneration caused by polyglutaminate (polyQ) 
tracts [118, 119]. Ban, a fruit fly miRNA involved in 
tissue growth and programmed cell death [120], plays a 
protective role in polyQ-induced degeneration. 
Although there is no orthologue of ban in human cells, 
this regulation suggests that miRNAs can participate in 
TREDs pathogenesis by regulating cell degeneration or 
by being affected by mutant proteins  or transcripts. 
Furthermore, many links between miRNA pathways 
and FMR1, the gene mutated in fragile X syndrome 
(FXS), were discovered [121, 122]. FMRP, the protein 
product of FMR1 gene, was proved to interact with key 
RISC proteins such as AGO1, AGO2 and Dicer and 
associate with endogenous miRNAs [123, 124]. 
Moreover, FMRP plays role in processing of pre-
miRNAs [125, 126]. Several studies [92-94] proved that 
mutant huntingtin, a product of the HTT gene, is 
incapable of associating with Repressor element 1-
silencing transcription factor (REST) which leads to 

repression of neural miRNAs and their lower levels in 
the brains of HD patients. Recent publications show 
miRNA deregulation in HD may be more extensive [86]. 
Marti et al. [127] used next generation sequencing 
(NGS) methods to identify the changes of miRNAs 
composition and their expression levels in patient with 
HD with reference to non-affected individuals. 
Moreover, significant changes in miRNA editing have 
been observed. Prediction and validation of genes 
targeted by miRNAs that are altered in HD patients is 
important for better understanding of pathogenic 
mechanisms leading to neurons death. 

CONCLUDING REMARKS  

Many computational tools have been designed for 
miRNA target prediction but may frequently lead to 
growing confusion. There is no single algorithm that 
can be used routinely for every analysis of 3’UTR 
sequences. Gaining more and more knowledge about 
miRNAs and their role in gene regulation prompted 
researchers to revise the way of analyzing individual 
miRNA-mRNA interactions. It is recommended to see 
miRNA regulation as a complex network involving 
genes targeted by many miRNAs and often having 
multiple sites for the same miRNA [94]. The outcome of 
such interactions is context-dependent and therefore it 
is difficult to reconstruct reliable miRNA-mRNA 
interactions in experiments conducted in vitro. 
Moreover, it is hard to assess to which extent the 
transcript level should be repressed to consider 
miRNA-mRNA interaction is truly functional. 

On the strength of our current knowledge of miRNA-
mRNA interactions we propose to follow a few 
guidelines for miRNA target prediction (Fig. 1). They 
originate in research studies considered in this paper 
and our discussions. We advise to use first miRNA 
target prediction algorithms focusing on the 
orthologous sequence alignment and then possibly 
apply algorithms considering other parameters such as 
free energy of binding or target site accessibility. The 
inverse correlation between expression levels of 
putative miRNA and targeted mRNA and/or protein 
levels increases the likelihood that this interaction is 
real and functional. Expression data can be obtained 
from microarray or proteomics databases or with the 
use of miRGator [66]. We would like to draw attention 
to the possibility of mutual interactions between miRNA 
sites located close to each other. We hope these 
conclusions will be beneficial for researches from other 
fields of biomedical sciences willing to implement the 
search for miRNAs in their molecular studies. 
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