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Neuro-Oncology: Practice- 
Changing Developments

Background
Glioblastoma is a fatal disease with the majority 
of patients dying within 15–18 months from diag-
nosis, with less than 5% of patients alive at 5 
years.1 Even within the more favorable selected 
clinical trial patient population the 5-year survival 
rates are around 10%.2 Age <50 years and a com-
plete macroscopic tumor removal are associated 
with longer survival; on a molecular level these 
tumors often exhibit two favorable molecular 
aberrations: O6-methylguanine DNA methyl-
transferase (MGMT) promoter methylation2,3 or 
isocitrate dehydrogenase (IDH) mutation.4 There 
is a large disconnect between enormously 

evolving preclinical concepts and a very limited 
clinical therapeutic armamentarium, which is 
somewhat resistant to the novel biological con-
cepts, that is, to apply the available biomarkers 
for treatment decisions, and on the other hand 
easy to impact by nonconventional strategies, that 
is, by regionally different one-fits-all approaches 
with drugs like cannabis, valaciclovir or 
methadone.

Epidemiology
The incidence of primary brain tumors between 
2007 and 2011 was 21.4 per 100,000 individuals, 
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Abstract: The diagnosis of a glioblastoma is mainly made on the basis of their microscopic 
appearance with the additional determination of epigenetic as well as mutational analyses as 
deemed appropriate and taken into account in different centers. How far the recent discovery 
of tumor networks will stimulate novel treatments is a subject of intensive research. A 
tissue diagnosis is the mainstay. Regardless of age, patients should undergo a maximal safe 
resection. Magnetic resonance imaging is the surrogate parameter of choice for follow up. 
Patients should receive chemoradiotherapy with temozolomide with the radiation schedule 
adapted to performance status, age and tumor location. The use of temozolomide may 
be reconsidered according to methylguanine DNA methyltransferase (MGMT) promoter 
methylation status; patients with an active promoter may be subjected to a trial or further 
molecular work-up in order to potentially replace temozolomide; patients with an inactive 
(hypermethylated) MGMT promoter may be counseled for the co-treatment with the 
methylating and alkylating compound lomustine in addition to temozolomide. Tumor-treating 
fields are an additive option independent of the MGMT status. Determination of recurrence 
is still challenging. Patients with clinical or radiographic confirmed progression should be 
counseled for a second surgical intervention, that is, to reach another macroscopic removal 
of the tumor bulk or to obtain tissue for an updated molecular analysis. Immune therapeutic 
approaches may be dependent on tumor types and molecular signatures. In newly diagnosed 
and recurrent glioblastoma, bevacizumab prolongs progression-free survival without affecting 
overall survival in an unselected population of glioblastoma patients. Whether or not selection 
can be made on the basis of molecular or imaging parameters remains to be determined. 
Some patients may benefit from a second radiotherapy. In our view, the near future will 
provide support for translating the amazing progress in understanding the molecular 
background of glioblastoma in to more complex, but promising therapy concepts
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with an incidence of gliomas of 6.6 per 100,000 
people of which about half were glioblastomas.1 For 
reasons unknown, there is regional variability in the 
incidence. The rate for glioblastoma in Japan is 
<50% of that in Scandinavia or the United States. 
The incidence of glioblastoma in general increases 
with age, with the most pronounced increase in glio-
blastoma incidence (per 100,000 people) ranging 
from 0.15 in children and 0.41 in young adults to 
13.1 in those aged 65–75 years and 15.0 in individ-
uals between 75 and 84 years of age.5

Risk factors
Overall, manageable risk factors are hardly known. 
Specifically, therapeutic radiation in long-term sur-
vivors seems to have a dose and volume dependent 
impact.6 These doses are not reached with diagnos-
tic doses of radiation, for example, by regular cranial 
computed tomographies (dose in the range of 1–3 
milli Sievert, comparable with the annual environ-
mental radiation exposure or a long-distance flight). 
Relevance of other factors, like cytomegalie virus 
infection or mobile phone use has not been con-
firmed. In addition to the well described familial 
tumor syndromes, there are genetic associations for 
example, rs4977756 in the cyclin-dependent kinase 
inhibitor 2A (CDKN2A) and the CDKN2B gene,7,8 
a retinoic acid modulator CCDC26 on 8q24,9 
pleckstrin homology-like domain family B member 
1 (PHLDB1) on 11q23.3,10 the TP53 (cellular 
tumor antigen p53) polyadenylation site rs78378222 
on 17p13.1,11 and rs11979158 and rs2252586 in 
the epidermal growth factor receptor (EGFR) gene 
on chromosome 712 with a higher likelihood of glio-
blastoma in one family.

Also, telomerase reverse transcriptase (TERT) 
and telomerase RNA component (TERC), which 
are both involved in regulating telomere length, 
have been suggested as interesting candidate 
genes for increased glioma risk in genome-wide 
association studies.13,14

Overall, until now, there is no firm manageable 
risk factor, no screening test or prevention con-
cept available for glioblastoma. In turn, there is 
not role for regular magnetic resonance imaging 
(MRI) scans in relatives of glioblastoma patients.

Biological considerations
Glioblastoma is a whole brain disease with a vari-
able focal increase in proliferation generating a 

tumor mass, which then may become sympto-
matic. These days, more weight is put on the 
largely invisible, diffusely infiltrating part poten-
tially consisting of a functional network of glio-
blastoma cells (and other brain cells) connected 
by transmembrane nanotubes (tumor microtubes 
or ‘TMs’).15 In addition to the classical hallmarks, 
such as pathological angiogenesis, necrosis and 
the immunologically cold environment,16 these 
networks not only provide a more stringent con-
cept for the diffuse infiltrative growth, but may 
also serve as the long-awaited Achilles’ heel for 
this disease.

Basic requirement for diagnosis
The diagnosis of a glioblastoma is made tissue-
based according to the most recent update of the 
World Health Organization (WHO) classification 
of brain tumors including immunohistochemistry 
and selected molecular tests.17 Recently, a high-
throughput methylation-based classifier18 has 
been shown to effectively diagnose glioblastoma 
based on quantitative methylation classes.19

Standard of care

Surgery
The standard of care for adult patients largely irre-
spective of age, but with a good performance status 
with radiographically suspected newly diagnosed 
glioblastoma is a maximal safe surgical resection. 
This may result in a stereotactic or open biopsy in 
some patients with tumors in eloquent areas or in 
a removal of all contrast-enhancing parts of the 
disease in adequate patients. The goal of a com-
plete macroscopic resection may be reached with 
the help of intraoperative imaging20 or fluores-
cence-guided visualization of tumor tissue with the 
aid of 5-aminolevulinic acid.21,22 As long as the 
community is not prepared to complete a con-
trolled trial on the relevance of resection at pro-
gression, we will base our recommendations for a 
second surgery on some pragmatism, the need for 
an updated molecular or tissue diagnosis in cases 
with molecular-directed treatment options, the 
need for reduction of global or focal intracranial 
pressure, local expertise and patient preference.

Radiotherapy
Radiotherapy, together with surgery, has been the 
mainstay treatment in the management of patients 
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with glioblastoma since the 1970s and the combi-
nation of both doubles overall survival in patients 
with malignant gliomas.23,24 Little clinical progress 
was made over the past decades. The prognosis of 
patients with glioblastoma remains poor with 
median survival of ~14 months after adjuvant 
temozolomide-based radiochemotherapy2,25 with 
relevant predictive impact of inactivation of the 
methylguanine DNA methyltransferase gene pro-
moter.26 Local recurrence within 2.0 cm of the pre-
surgical initial tumor margin is the main pattern of 
failure following treatment of glioblastoma;27,28 a 
biomarker helping to dissect responding patients is 
missing. Delineation of target volumes by meta-
bolic imaging and more sophisticated MRI tech-
niques with focus on tumor areas with a need for 
higher doses or better sparing of sensitive structures 
is in the center of most research to optimize radio-
therapy. A second pillar with little news to report is 
the assessment of radiosensitizers. The third aspect 
at least in sites with the respective technical prereq-
uisites is the emergence of heavy ion radiotherapy 
using carbon ions (CIR) and raster scanning tech-
nique demarcating a landmark development in the 
field of high precision radiotherapy.28 High preci-
sion radiotherapy holds the promise in escalating 
the dose in the tumor and improving local control 
while sparing normal tissue.26 However, previous 
data indicate that escalating the dose alone will not 
suffice to improve outcome in these radioresistant 
tumors in the clinic. Conceptually, precision radio-
therapy is an effective therapy with intrinsic limita-
tions in highly infiltrative disease. In our view, more 
weight may be put on integrating radiotherapy into 
current biological concepts, for example, into 
immunotherapy, for example, by understanding 
‘remote’, so-called abscopal (bystander) effects.29 

As already discussed in the surgery section, imple-
mentation of novel radiation qualities or planning 
strategies would require controlled trials. Similarly, 
it is surprising to realize that despite many thou-
sand patients being treated each year with radia-
tion, molecular biomarkers to predict response are 
still lacking.30,31

Chemotherapy
To date, the landmark contribution of the 
European Organization for Research and 
Treatment of Cancer (EORTC) with the EORTC 
26981 trial defines the standard of chemotherapy, 
that is concomitant treatment with temozolomide 
at 75 mg/m2 body surface, on empty stomach 
approximately 2 h prior to the radiotherapy 

session and fasting in the mornings or later after 
breakfast of nonradiation days. Adaption is made 
with treatment pauses according to blood counts 
and a Pneumocystis jirovecii pneumonia prophy-
laxis is recommended especially in lymphcyto-
penic individuals. There is a 4-week break and the 
chemotherapy is completed by six maintenance 
cycles of temozolomide on 5 out of 28 days at 150 
mg (cycle 1) and at 200 mg (cycles 2–6)/m2 body 
surface adapted according to general and more 
specifically hematological tolerance.2,25 Again, 
supportive measures may include a PcJ prophy-
laxis and an antiemesis. Steroid use is regarded a 
negative factor for the efficacy of treatment.

Neither the adaption of the schedule, for exam-
ple, 21/28 days or 7/14 days temozolomide in the 
maintenance phase32,33 nor the longer exposure34 
has a proven impact to date.

Impact of molecular diagnostics
According to the most recent adaption of the 
WHO classification, MGMT promoter methyla-
tion is predictive for efficacy and response to 
alkylating and methylating chemotherapy 
agents2,26 in glioblastoma. Long-term surviving 
patients have >90% glioblastoma with methyl-
ated MGMT promoter2 versus 35% in the general 
glioblastoma patient population.35

IDH1/2 mutations are relevant positive prognos-
tic factors and in glioblastoma strongly associated 
with glioblastoma progressive from a lower grade 
glioma.36 The existence of de novo IDH-mutated 
glioblastoma is a topic of controversy.

There is no consistent correlation of EGFR ampli-
fication with survival, largely irrespective of the age 
at clinical manifestation. The variant III of EGFR 
seems to get lost in the progression at east of a frac-
tion of patients.37 Loss of heterozygosity (LOH) 
10q is the most frequent genetic alteration in glio-
blastoma and is associated with reduced survival. 
The presence of PTEN mutations is not associated 
with prognosis of glioblastoma patients.17,38

Adaptions/options to the standard in newly 
diagnosed patients

Elderly patients
The Scandinavian Neuro Oncology Network, the 
Neurooncology Working Group of the German 
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Cancer Society (NOA) as well as the CCTG 
(Canadian Cancer Trials Group) and the EORTC 
have provided randomized data for the treatment 
of elderly patients with glioblastoma. These trials 
provide evidence that hypofractionated radiother-
apy over 3 weeks is equivalent to longer treatment 
and that chemoradiation using that shorter radio-
therapy with temozolomide as well as mainte-
nance temozolomide is superior to radiotherapy 
alone.39 In the absence of comparative data 
between regular fractionated and hypofraction-
ated chemoradiotherapy as well as a lack of these 
data compared with temozolomide alone leaves 
room for individualized treatment decisions based 
on clinical assumptions, but not data. Today, 
increased age (>65/70 years), relevant comorbid-
ities, Karnofsky performance status (<70) and 
some considerations on frailty are used to provide 
guidance (Figure 1). Molecular testing is of some 
help. It has revealed a low prevalence of favorable 
prognostic markers in elderly patients.40 The vir-
tual absence of IDH mutations in patients over 
the age of 65, according to the new WHO classi-
fication, suggest that differential prognosis is not 
based solely on age but rather that separate enti-
ties exist with a distinct age distribution.38 The 
prevalence of MGMT promoter methylation is 

similar to that in younger patients. Specifically, in 
the elderly patients a string call was made for the 
use of MGMT as a predictive biomarker.26,39

Treatment according to MGMT
Current (European) guidelines are explicit that 
only in elderly or frail patients the use of temozo-
lomide can be adapted according to the methyla-
tion of the O6-methylguanin DNA meth- 
yltransferase gene promoter. Otherwise, MGMT 
testing though performed with increasing fre-
quency has no practical impact in the manage-
ment of patients. Some centers take recent data 
on the MGMT-dependence of response to temo-
zolomide43 or lomustine44 at glioblastoma pro-
gression as decisive to not expose patients again 
to alkylating or methylating chemotherapies at 
progression, but this concept is neither generally 
supported nor explicitly stated in our guidelines. 
Trials in patients without MGMT promoter 
methylation26 showed that leaving out temozolo-
mide from first-line treatment was of no detri-
ment to patients, challenging the view that 
temozolomide should be used in every patient 
despite the absence of MGMT promoter methyla-
tion. Recent data might further help to decipher 

Figure 1. Therapy options and recommendations for patients with glioblastoma in different age groups 
according to Karnofsky performance status.41 Prevalence (according to CBTRUS, 1) is depicted by the size of 
the boxes (adapted from Wick and colleagues, 2018).42
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the benefitting patient population. TERT expres-
sion may be necessary to ensure the MGMT 
methylation related benefit to alkylating chemo-
therapy.45 Overall, MGMT status testing without 
taking consequences is unsettling for patients, 
creates a lot of second consulting and finally 
undermines trust in our profession. On the other 
hand, testing offers the opportunity to safe 
patients a treatment with no or little chances for 
help plus offers options for alternatives, which 
should be based on further precision measures by 
looking for molecular lesions potentially relevant 
for targeted or immunotherapies (see Outlook). 
This should be avoided in patients <70 years 
without the patient-physician team willing to take 
any consequences.

Use of tumor-treating fields
Tumor-treating fields (TTFields) use alternating 
electrical fields to inhibit mitoses via disruption of 
the spindle apparatus. In a randomized trial that 
was published originally in JAMA, the addition of 
TTFields to standard radiotherapy (RT) and 
temozolomide (TMZ) in newly diagnosed glio-
blastoma extended overall survival [hazard ratio 
(HR), 0.64 (99.4% confidence interval (CI), 
0.42–0.98); p = 0.004].46 The effect of the fields 
is maintained at long-term (final) analysis,47 
though the selected patient group, the lack of a 
control for the more active supportive care and 
the relatively small difference in long-term sur-
vival at 5 years compared with the EORTC trial2 
raised questions in the ‘expert’ community. 
Whether the magnitude of overall survival 
increase outweighs the individual burden and the 
societal cost is yet to be determined. The long-
term relevance of the fields will be determined by 
whether they are routinely integrated into daily 
practice and the success (or not) of other con-
cepts discussed below.

Concepts at recurrence

Re-surgery
As already stated above, we might consider reop-
eration to improve symptoms, in the case of early 
progression in patients in whom initial surgery 
was not adequate or later progressors, when the 
initial treatment might just be repeated. We are 
uncertain about the effect of second surgery on 
overall survival. It is considered that another gross 
total resection of enhancing tumor48 is relevant, 

but prospective controlled data are lacking. 
Recently, there is an increasing demand for post-
progression tissue extraction as targeted treat-
ments may offer valid options and also therapy 
with checkpoint inhibitors49 should be restricted 
to patients with the most likely benefit.

Re-radiotherapy
The efficacy of re-irradiation is uncertain until 
date. Its appreciation varies between sites, coun-
tries, recurrence pattern and with the time interval 
to the first treatment. Fractionation depends on 
tumor size. Fractionation between 2.0 and 2.4 Gy 
has been tested, but also higher doses per fraction 
of 5–6 Gy using stereotactic hypofractionated radi-
otherapy to a total dose of 30–36 Gy, and also 
radiosurgery with a single dose of 15–20 Gy. 
Overall toxicity seems not to be the main issue.50 
As with systemic therapies, there is a lack of rele-
vant efficacy, for example, progression-free sur-
vival rate of 3.8% at 6 months in the APG101 
randomized trial at 18 fractions of 2 Gy.51 There is 
a clear need of a definition for a population candi-
date for re-irradiation, research on biomarkers 
involved in radioresistance52 and also trial concepts 
that provide controlled information on whether or 
not this is a reasonable approach. The aforemen-
tioned applies to conventional photon therapy and 
may or may not be challenged if different radiation 
qualities, like C12 ions or protons are being used.

Chemotherapy at progression
Most studies at progression are of limited size 
therefore impacted by the heterogeneity of the 
disease, non-comparative or fail to use a control 
arm lacking the experimental drug. In addition to 
re-exposure to temozolomide at standard dose, 
most patients will receive one of the nitrosoureas, 
that is, carmustine (BCNU), lomustine (CCNU), 
or fotemustine. They alkylate at the N7 and O6 
positions of guanine and introduce interstrand 
crosslinks as well as act by carbamoylation of 
amino acids interfering with transcriptional, 
translational and posttransscriptional pro-
cesses.53–56 These are DNA alkylating and meth-
ylating agents that cross the blood–brain barrier 
and have been extensively used in glioma treat-
ment. They may induce considerable hematologi-
cal toxicity with long-lasting bone marrow 
suppression, liver and renal toxicity, and, specifi-
cally carmustine, interstitial lung disease. Efficacy 
is dependent on MGMT status both in the 
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AVAREG trial57 and also in the EORTC 26101 
trial.44 At the same level, temozolomide re-expo-
sure is only meaningful if patients are diagnosed 
with a progressive glioblastoma harboring a meth-
ylated MGMT promoter.43 It may be extrapolated 
from the BR12 trial that used standard dose and 
dose-intensified temozolomide after radiotherapy 
alone (and not re-challenge after temozolomide)58 
and the dose-dense maintenance treatment of 
RTOG 052532 that conventional (5 out of 28 
days) chemotherapy is not inferior to any dose-
intensification43 and the latter may not be used 
unless new data appear.

Experimental options at progression
Certainly, many treatments can be tried in 
patients with progressive glioblastoma after the 
above mentioned. As present, we would recom-
mend trial participation. Also, performance status 
and the general situation are impacting options. 
In the United States, bevacizumab is approved 
and may offer a further treatment line with the 
promise of prolonging progression-free survival 
and potentially in selected patients also overall 
survival. In the European Union, this option is 
very restricted due to a lack of approval. Here, we 
recommend a pragmatic approach that involves 
obtaining post-progression tissue and assess for 
potential molecularly informed treatment deci-
sions.59 The fields although sometimes advertised 
differently did not hold the promise at progres-
sion therapy.60

Outlook

Antiangiogenesis
After the failure of bevacizumab to demonstrate 
an effect on overall survival in newly diagnosed 
patients,61 the subsequent randomized, phase III 
EORTC 26101 compared lomustine with or with-
out bevacizumab at progression. Despite prolong-
ing progression-free survival (HR 0.49; CI 0.39, 
0.61), combined lomustine and bevacizumab 
treatment does not confer an overall survival 
advantage (HR 0.95; CI 0.74, 1.21; p = 0.650) 
over treatment with lomustine alone in patients 
with progressive glioblastoma.44 In this study, 
crossover to bevacizumab occurred in 35.5% of 
patients in the control arm; whereas 18.7% of 
patients in the combination arm continued beva-
cizumab at progression. However, bevacizumab 

continues to play a role in the treatment of glio-
blastoma in large areas of the world. Many prac-
ticing clinicians regard its positive effect on 
progression-free survival, and other palliative 
effects, and neurological improvement seen in 
many patients as meaningful benefits, in the 
absence of any overall survival gain in the entire 
patient population. Pragmatically, bevacizumab 
with its documented beneficial effect on radione-
crosis-related edema and neurological dysfunc-
tion62 might be particular interesting for patients 
with radiological and clinical deterioration, fre-
quently called ‘pseudoprogression’.

Immunotherapy
Immunotherapy is regarded a valid option for 
patients with glioblastoma though data to prove 
this hypothesis are largely confined to case reports 
and by analogy to the successes in other malig-
nancies. Independent of the approach (e.g. check-
point inhibition, targeted vaccine, adoptive T-cell 
transfer), the clonal representation of the target 
antigen and the immunosuppressive microenvi-
ronment have to be taken into account for clinical 
development. For instance, EGFR vIII is a sub-
clonal antigen with heterogeneous expression in 
the tumor tissue, which may, in theory, be sub-
jected to immune evasion. Despite promising ini-
tial data, a large phase III trial failed.37 VXM01 is 
encoding vascular endothelium growth factor 
receptor 2 (VEGFR2) in order to evoke an 
immune response specifically directed against the 
tumor vasculature. It is currently in clinical devel-
opment as a treatment for solid cancer types. The 
oral T-cell vaccine platform of the company 
VAXIMM is based on the approved, live attenu-
ated Salmonella typhi vaccine strain Ty21a, which 
has been applied in millions of individuals for 
prophylactic vaccination against typhoid fever.63 
IDH1R132H64 and H3.3K27M65 as early founder 
mutations represent clonal antigens, but con-
trolled clinical data on their relevance are yet to 
be generated. The Glioma Actively Personalized 
Vaccine Consortium (GAPVAC) realized an 
immunotherapy, for which the selection of 
actively personalized peptide vaccines (APVAC) 
for treatment of newly diagnosed glioblastoma 
was based not only on whole-exome sequencing 
but also on human leukocyte antigen (HLA)-
ligandome analyses providing information of the 
actual presentation of relevant epitopes in the 
tumor. Mutated peptides identified by next 
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generation sequencing and mass spectrometry 
may not only be used for peptide vaccination, but 
serve as a platform for personalized immunother-
apies with potentially more aggressive cell-based 
treatments. Controlled clinical trials assess the 
efficacy of nivolumab in progressive and newly 
diagnosed glioblastoma. Whereas the trials in 
newly diagnosed patients separated according to 
MGMT promoter methylation status are ongo-
ing, results from the study in progressive glioblas-
toma comparing nivolumab and bevacizumab 
have been reported. A total of 369 patients, pro-
gressive after standard of care, were randomized 
to nivolumab 3 mg/kg every 2 weeks (n = 184) or 
bevacizumab 10 mg/kg every 2 weeks (n = 185). 
Progression-free survival was superior in the bev-
acizumab arm (HR = 1.97; 1.57, 2.48) with 
medians of 3.5 months (2.9, 4.6) and 1.5 months 
(1.5, 1.6), respectively. There was no signal for 
any difference in overall survival in this unselected 
patient population (HR = 1.04; 0.83, 1.30; 
p = 0.76) with medians of 10.0 months (9.0, 11.8) 
for bevacizumab and 9.8 months (8.2, 11.8) for 
nivolumab.66 Nivolumab or temozolomide in 
combination with radiotherapy in newly diag-
nosed patients with MGMT-unmethylated glio-
blastoma are treated in CheckMate 498. 
CheckMate 548 assesses nivolumab or placebo in 
combination with radiotherapy and temozolo-
mide in patients with MGMT-methylated or 
indeterminate glioblastoma at first diagnosis. 
These trials also do not enrich for patients more 
likely to benefit from the immune intervention.67

Checkpoint inhibitors in glioblastoma may work 
only with a specific immunogenic background, 
potentially to be defined by MSI-H or  
dMMR, or with associated treatment, for 
example,vaccination. The most prominent 
checkpoints in other malignancies may not be 
the most relevant in glioblastoma;68 other fac-
tors like the CD95 system, tryptophan-2,3-di-
oxygenase (TDO)69,70 or other programmed 
death family members71 may be of greater 
importance. In addition to being restrictive 
based on molecular stratification, there are con-
cepts in development that promise a stronger 
immunoeffect. Several chimeric antigen recep-
tors are in clinical development for glioblas-
toma. The currently available data are for 
interleukin 13 receptor (IL13R)-α2, EGFR var-
iant III, and HER2 as targets. There are already 
cases and small series showing feasibility of 
delivery and manageable toxicity,72 but 

translational research regarding efficacy and 
resistance mechanisms are ongoing.73,74

Targeted treatments
Biomarkers that predict response and ultimately 
benefit from a given therapy plus an effective 
treatment are the cornerstones of precision neuro-
oncology. MGMT is a good example for a predic-
tive biomarker in the field of gliomas.26,41 
However, no officially accepted (accredited) test 
exists. Further, it is possible that predicting 
response to temozolomide is more complex than 
by just determining MGMT methylation status. 
The delineation of the right subgroups may also 
involve global methylation profiles and TERT 
status.75,5

Please find a strategy for treatment of newly diag-
nosed or recurrent glioblastoma and examples of 
putative predictive biomarkers in Figure 2. 
Importantly, the prerequisite until now is a tissue 
sample from the tumor that needs treatment (and 
not just archival information).

Further, there are interesting examples of drug 
repurposing with less intuitive compounds for the 
glioblastoma field. Also, these compounds may 
deserve testing in an otherwise difficult clinical 
situation and with indicative biomarkers associated 
(Table 1). In a pilot series that serves as model for 
the examples provided in the current review, com-
pounds were recommended in combinations, fol-
lowing the concept that blocking multiple pathways 
with combination therapy may be more effective 
than single agent therapy especially when treating 
recurrent, progressive glioblastoma.59

Therefore, well-considered allocation of newly 
diagnosed as well as progressive patients to clinical 
trials based on molecular characteristics of the 
tumor as well as necessary retrospective validation 
of potential biomarkers are essential in a clinical 
setting. A current concept prospectively using  
biomarkers to enrich for potentially benefitting 
patients is the Nationales Centrum für 
Tumorerkrankungen (NCT) Neuro Master Match 
(N2M2), a trial of molecularly matched targeted 
therapies plus radiotherapy in patients with newly 
diagnosed glioblastoma without MGMT promoter 
methylation.76 The Glioblastoma Adaptive, 
Global, Innovative Learning Environment 
(AGILE) consortium is planning to take a differ-
ential approach by reassessing potential 
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biomarkers from an unselected cohort with given 
therapies first and integrating these information  

via adaptive processes to enrich while the trial 
accrues.77

Figure 2. Sketch to show a way towards precision. Putative work flow from a glioblastoma tissue sample.
BBB, blood–brain barrier; CNV, copy-number variation; GBM, glioblastoma; IDH, isocitrate dehydrogenase; MGMT, O6-
methylguanine DNA methyltransferase; n, no; y, yes.
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