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Sphingolipids are highly enriched in the nervous system where they are

pivotal constituents of the plasma membranes and are important for

proper brain development and functions. Sphingolipids are not merely

structural elements, but are also recognized as regulators of cellular events

by their ability to form microdomains in the plasma membrane.

The significance of such compartmentalization spans broadly from being

involved in differentiation of neurons and synaptic transmission to neur-

onal–glial interactions and myelin stability. Thus, perturbations of the

sphingolipid metabolism can lead to rearrangements in the plasma mem-

brane, which has been linked to the development of various neurological

diseases. Studying microdomains and their functions has for a long time

been synonymous with studying the role of cholesterol. However, it is

becoming increasingly clear that microdomains are very heterogeneous,

which among others can be ascribed to the vast number of sphingolipids.

In this review, we discuss the importance of microdomains with emphasis

on sphingolipids in brain development and function as well as how disrup-

tion of the sphingolipid metabolism (and hence microdomains) contributes

to the pathogenesis of several neurological diseases.
1. Introduction
The nervous system is among the tissues in the mammalian body that has the

highest lipid content as well as the highest lipid complexity. This complexity

can be ascribed to the lipid class of sphingolipids. Sphingolipids are particu-

larly abundant in the brain and are essential for the development and

maintenance of the functional integrity of the nervous system [1,2]. The grey

matter and neurons are highly enriched in the glycosphingolipid (GSL)

subgroup gangliosides, while the sphingolipid species sphingomyelin (SM),

galactosylceramide (GalCer) and sulfatide are enriched in oligodendrocytes

and myelin [3,4]. However, the sphingolipid profile of the brain is far from

static as it continuously changes as the brain develops and ages [4–6].

The plasma membrane is a very heterogeneous environment composed of

several hundreds of different lipid species [7]. Yet the movement of lipids

and proteins has been shown to be more or less restricted due compartmenta-

lization of the membrane as a consequence of lipid–lipid, lipid–protein and

membrane–cytoskeletal interactions [8]. The compartmentalization is a conse-

quence of the generation of microdomains that can be described as dynamic

assemblies enriched in cholesterol and/or sphingolipids, which are located in

the outer leaflet of the plasma membrane [9]. The saturated acyl chains of the

sphingolipids allow these to pack more readily against cholesterol, which

leads to the formation of highly packed liquid-ordered phases that are distinct

from the bulk liquid-disordered phase of the plasma membrane [10]. Indeed,

the plasma membrane of cells in the nervous system is highly enriched in
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both cholesterol and sphingolipids, especially GSLs [11–13].

The existence of microdomains has been highly debated, as

they have proven difficult to define experimentally and

thus study. Recent studies indicate that this may very well

be attributed to the heterogeneity of microdomain compo-

sition, which is reflected in the numerous combinations of

lipids as well as proteins [14]. Morphologically only one

type of microdomain has been defined, namely the caveolar

microdomain. Caveolae are small 50–100 nm invaginations

of the plasma membrane where the protein caveolin associates

with membrane enriched in cholesterol and sphingolipids [15].

However, sphingolipid- and cholesterol-dependent micro-

domains with a diameter less than 20 nm and an average

lifespan of 10–20 ms have been identified in living cells [16,17].

Neurons and oligodendrocytes are highly polarized cells,

and compartmentalization of signalling events is required in

order to maintain normal neuronal physiology, including

neuronal differentiation, polarization, synapse formation,

synaptic transmission and glial–neural interactions [18].

Studies show the involvement of sphingolipids in all these

processes (reviewed in [2,3,18,19]). Dysregulation of the

sphingolipid metabolism has been associated with a vast

number of neurological diseases via disturbances of mem-

brane organization [2,20,21]. The list of ion channels and

signalling receptors that localize to and are regulated by

sphingolipid microdomains in the brain is expanding, but

for a long time cholesterol has been the pivot when studying

the formation of membrane microdomains. In the present

review, we discuss the connection between sphingolipids

and their involvement in membrane microdomains, brain

development as well as neurological diseases.
2. Biosynthesis and metabolism
of sphingolipids

Numerous studies during the past decades have led to sig-

nificant advances in our understanding of the biosynthesis

and degradation of the sphingolipid pathway [22–24]. Cera-

mide constitutes the basal building block for the more

complex sphingolipids and consists of a long-chain sphingoid

base (LCB), sphinganine or sphingosine, with a fatty acid

attached via an amide bond at the C2 position [25]. More

complex sphingolipids are generated by attaching various

head groups in the C1 position of ceramide [26]. Sphingoli-

pids constitute a very diverse group of lipids, which counts

several hundred different species. The vast number of species

originates from the structural diversity and combinations

within LCBs, fatty acids and head group variants [27–30].

Figure 1 outlines the synthesis and major parts of the

metabolism of sphingolipids. The de novo synthesis of cera-

mide is initiated at the cytosolic leaflet of the endoplasmic

reticulum (ER) where it is generated in a four-step process

[31–33]. Briefly, serine and palmitoyl-CoA are condensed to

3-ketodihydrosphingosine by the serine palmitoyltransferase

(SPT). 3-ketodihydrosphingosine is rapidly reduced to

sphinganine before a ceramide synthase (CERS) converts

sphinganine to dihydroceramide. Lastly, dihydroceramide is

desaturated resulting in the formation of ceramide [34].

Six different mammalian CERSs have been identified. They

all display unique expression profiles as well as fatty acyl-

CoA specificity ranging from C14 to C26 carbon atoms [35].

For instance CERS1, which mainly uses C18 CoAs, is highly
expressed in the brain and skeletal muscles, while CERS2 is

more ubiquitously expressed, but with a high expression in

oligodendrocytes and generates mainly C20–C26 ceramides.

Once formed, ceramide can be converted into more com-

plex sphingolipids through different pathways. In the ER

lumen, ceramide can either be turned into ceramide phos-

phoethanolamine or be glycosylated to GalCer [36,37].

GalCer is a precursor for sulfatides that along with GalCer

are important components in myelin that insulates neurons in

the central nervous system (CNS) [22]. Ceramide can also be

delivered to the Golgi apparatus where it is converted into

SM or glucosylceramide (GluCer). GluCer can then be con-

verted into lactosylceramide (LacCer) by addition of galactose

[22]. LacCer serves as an intermediate in the synthesis of

more complex GSLs, which is conducted by sequential transfer

of sugars and other chemical groups by galactosyltransferases,

sialyltransferases, N-acetylgalactosamine transferases and

GalCer sulfotransferases all residing in the Golgi apparatus

[24]. Gangliosides constitute a rather large GSLs subgroup,

which is particularly abundant in the grey matter of the

brain. Combinations of glucose, galactose and N-acetylgalacto-

samine constitute the head groups of gangliosides and give rise

to a highly structural diversity [38].

Once synthesis is complete, SM and GSLs are relocated to

the plasma membrane where they are known to participate in

microdomain formation [24]. The fact that complex GSL syn-

thesis occurs on the luminal side of Golgi apparatus renders

that GSLs are oriented towards the extracellular matrix after

trafficking to the plasma membrane. The plasma membrane

is very dynamic in the sense that microdomains form and dis-

perse in response to cellular signals. Sphingolipids in the

plasma membrane can undergo remodelling, which allows

for fast modulation of membrane composition in response

to stimuli. For instance, ceramide can be generated from

both SM and GM3 by the action of sphingomyelinases

(SMases) and N-acetyl-a-neuraminidase 3 (Neu3) in combi-

nation with glycosylhydrolases, respectively [39,40], and

SM can be re-synthesized by the action of SM synthase 2 [41].

Removal of sphingolipids from the plasma membrane

occurs through the endolysosomal pathway where SM and

GSLs are degraded to ceramide by the action of acid sphingo-

myelinase (aSMase) and glycosidases, respectively [42]. Here

ceramide is further deacylated to sphingosine by the acid cer-

amidase (aCDase). Sphingosine can either be re-acylated by

CERSs, allowing sphingosine to enter the recycling pathway

and be used as a precursor for complex sphingolipids, or

alternatively be broken down.

As the function of each sphingolipid species depends on

their specific structure, pathway and subcellular localization

[43], tight regulation of the sphingolipid network is necessary

in order to ensure proper brain functions, as discussed below.
3. Sphingolipid composition during brain
development and ageing

The sphingolipid composition of the human brain has been

studied in detail since the 1960s [4,5,44–48]. Numerous

studies have shown that sphingolipids are found in high

concentrations in nervous system and that the distribution

and composition of sphingolipids are distinct in different

regions as well as cell types of the CNS. The grey matter

and neurons are particularly enriched in gangliosides, while
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Figure 1. Overview of the sphingolipid metabolism. Sphingolipids encompass a broad spectrum of lipids. Ceramide is central in the sphingolipid metabolism as it
serves as a precursor for the synthesis of more complex sphingolipids. Ceramide is synthesized de novo from serine and palmitoyl-CoA. Subsequently, complex
sphingolipids are synthesized by attachment of different head groups to ceramide as indicated in the figure. In particular, ganglioside biosynthesis has been high-
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addition of sugars and sialic acids. Degradation of complex sphingolipids contributes to the pool of ceramide that can either be re-used for complex sphingolipid
synthesis or alternatively be broken down. Degradation of glycosphingolipids by glycosidases and sialidases is not indicated in the figure. Abbreviations: beta-1,4-N-
acetyl-galactosaminyl transferase 1 (B4GALNT1), beta-1,3-galactosyltransferase 4 (B3GALT4), beta-1,4-galactosyltransferase 6 (B4GALT6), ceramidase (CDase),
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(GCSs), serine palmitoyltransferase (SPT), sphingomyelin synthase (SMS), sphingomyelinase (SMase), sphingosine kinase (SK), sphingosine 1-phosphate phosphatase
(SPP), sphingosine 1-phosphate lyase (SPL), ST3 beta-galactoside alpha-2,3-sialyltransferase 2 (ST3GAL2), ST3 beta-galactoside alpha-2,3-sialyltransferase 3
(ST3GAL3).
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oligodendrocytes and myelin are highly enriched in galacto-

lipids GalCer and its sulfated derivate sulfatide [48].

Furthermore, the sphingolipid profile changes continuously

as the brain develops and ages (figure 2), indicating that

sphingolipids are involved in the differentiation and main-

tenance of neural functions [4–6]. Consistently, expression

of enzymes involved in sphingolipid biosynthesis follows

brain development [3].

Gangliosides are major components of the neuronal mem-

branes as they account for 10–12% of the lipid content [49].

They are located on the external leaflet of the plasma membrane

from where they participate in key processes maintaining neur-

onal functions such as neuronal development and myelin

stability [13,38,49]. In the adult mammalian brain, the four

major brain gangliosides are GM1, GD1a, GD1b and GT1b

[46,50]. It is well known that the ganglioside profile changes

remarkably during development of the nervous system as

well as throughout life, and these changes are region-specific
[46,51]. The tight regulation of ganglioside expression is

thought to instruct brain maturation processes, which as

the brain ages are being reversed [52]. The importance of the

ganglioside changes in brain maturation is highlighted by

the fact that they correlate with several neurodevelopmental

milestones including neural tube formation, neuronal

differentiation, axongenesis, outgrowth of dendrites and

synaptogenesis. During embryogenesis in mice, there is a

marked shift from the simplest gangliosides, GM3 and GD3,

to the more complex gangliosides [53]. There is a rapid increase

in GD1a in human cortical layers between weeks 16 and 30 of

gestation, coinciding with a rapid cortical synaptogenesis

[51]. Increase of GM1 and GD1a in the human frontal cortex

correlates with neuronal differentiation, outgrowth of

dendrites and axons, as well as synaptogenesis [46]. Further-

more, the four major brain gangliosides GM1, GD1a, GD1b

and GT1b all increase significantly from 5 months of gestation

to 5 years of age, which is coinciding with the most active
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period of myelination [46]. After 5 years of age, the proportion

of GM1 and GD1a decreases, while the levels of GM3, GD3,

GT1b and GD1b increase with age [6,46]. It is not only the

ganglioside head group that changes with age. The length of

LCB and the fatty acid attached to the LCB also changes [45].

The most common ganglioside chain lengths of both LCBs

and fatty acids in the human brain are C18, but C20 species

increase from birth [30,45,49].

SM and the galactolipids are major lipids in myelin and

their concentrations increase proportionally during the devel-

opment of myelin [44]. GalCer and sulfatide comprise 23 wt%

and 4 wt% of the total lipid of myelin, respectively [54].

During the first 2 years of post-natal life, there is a marked

shift in the type of SM in the white matter [5]. C18 SM

decreases from 82% to 33%, while C24:0 SM and C24:1 SM

increases from 4% to 33% and 2% to 11%, respectively. This

pronounced shift from medium-long-chain to very-long-

chain SMs is not observed in the cerebral cortex. Here, the

SM pattern remains fairly constant from birth to 2 years of

age with C18:0 SM constituting more than 85% [5]. GalCer

in myelin is enriched in very-long-chain fatty acids

(C22–C26) [55]. Thus, overall the dominating fatty acid in

ceramide found in the grey matter of the brain is C18,

while C24 dominates the white matter. This is in line with

a high expression of CERS1 and CERS2 in the grey and

white matter, respectively.

It is important to keep in mind that the changes in sphin-

golipid composition can be highly regional. For instance,

there is an age-dependent increase in SM and GM1 in synap-

tosomes isolated from mice brains [56,57]. Enrichment of

GM1 occurs in microdomains isolated from synaptosomes

that are resistant to cholesterol depletion indicating the pres-

ence of GSL microdomains at synaptic terminals [57]. Thus

local changes in the sphingolipid profile, which might be

hidden in the overall level of brain sphingolipids, can be

functionally important.
4. Microdomains in brain development
and maintenance

Neurons and oligodendrocytes are highly polarized cells with

morphological differences that allow them to carry out special-

ized functions. This is attributed to the organization of their

membranes in specific sub compartments of which sphingoli-

pids play an important role. During neuronal development,

the composition and organization of synaptic membranes are

being remodelled. Establishment and maintenance of mem-

brane organization is crucial in order to maintain neuronal

physiology including neuronal differentiation, polarization,

synapse formation and glial–neural interactions. Hence, per-

turbations of the sphingolipid network, and thus membrane

microdomains, have been implicated in multiple dysfunctions

affecting neuronal physiology. The diverse roles of sphingoli-

pids in brain development and maintenance are described

below and outlined in figure 3.

4.1. Neural differentiation, polarization and synapse
formation

As discussed above, the ganglioside profile changes during

embryonic development with simple gangliosides dominat-

ing the early phases. The simple ganglioside GD3 may have

a central role in early neurogenesis as the activity of the

GD3 synthase increases during this period, where it also

constitutes the major ganglioside [58]. This is supported by

studies showing GD3 being crucial for sustaining the self-

renewal capability and neurogenesis of mice neural stem

cells [59,60]. Sorting of the epidermal growth factor receptor

(EGFR) has proven to be essential for the regulation of stem

cell renewal, and it has been shown that EGFR co-localizes

with GD3 in membrane microdomains in mice neural stem

cells [59]. Furthermore, neural stem cells from GD3
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synthase-deficient mice have reduced level of EGFR

expression and accelerated EGF-induced EGFR degradation

consistent with decreased self-renewal capacity [59].

Early studies have shown that exogenously supplemented

gangliosides promote neurite outgrowth in neuroblastoma

cell lines, primary neurons and sensory ganglia [61–64].

The nerve growth factor (NGF) induces neurite extension

through binding to and activation of the tropomyosin recep-

tor kinase A (TrkA) receptor leading to the activation of the

Ras/Raf/MEK/Erk pathway [65]. Accordingly, exogenous

GM1 binds to the TrkA receptor in membrane microdomains

augmenting NGF-induced activation in the rat pheochromo-

cytoma cell line PC12 and in rat primary hippocampal

neurons [66–69]. Interestingly, overexpression of the GD3

synthase in PC12 cells leads to continuous activation of

TrkA signalling through the Ras/Raf/MEK/Erk pathway

[70]. Overexpression of the GD3 synthase also leads to an

increase in GD1b and GT1b, while the level of GM1 decreases

indicating that GD1b and GT1b might also be involved in

regulating TrkA signalling. Surprisingly, overexpression

of the GM1 synthase (B3GALT4) in PC12 cells prevents

NGF-induced activation of TrkA, which is probably due to

significant changes in the intracellular localization of the recep-

tor [71]. Thus, balancing the level of GM1, as well as GD1b and

GT1b, is important in controlling the TrkA signalling response

in neuronal polarization.

Axonal outgrowth, projection of the axon from the soma

of a neuron towards a target cell, is an essential process in the

wiring of the neural network. It has been shown that inhi-

bition of CERS activity leading to depletion of ceramide,

SM and GSLs significantly reduces axonal outgrowth in cul-

tured hippocampal neurons [72]. The depletion of GSLs

might be the primary effector responsible for this phenotype

as inhibition of GluCer synthesis decreases axonal outgrowth

as well as axonal branching in cultured hippocampal neurons

[73], whereas the opposite effect is observed when GluCer

degradation is inhibited. As inhibition of ceramide synthesis

leads to build-up of the ceramide precursors, sphingosine

and sphinganine, it is possible that these precursors contrib-

ute to the decrease in axonal growth as treating distal neuritis

of cultured rat sympathetic neurons with exogenous sphingo-

sine causes neurites to retract and/or degenerate [74]. GM1

may very well be a central player in determining axonal

fate, as Neu3, which converts more complex gangliosides to

GM1, is essential for determining which growth cone of

unpolarized neurons will become the axon (axon specifica-

tion) in rat primary embryonic hippocampal neurons [69].

Consistently, overexpression of Neu3 accelerates the axon

specification as well as axonal growth, while suppressing

Neu3 activity blocks axonal generation [69]. Furthermore,

NGF-induced polarization is significantly enhanced by

Neu3 overexpression, which is in line with a pronounced

increase in TrkA phosphorylation, indicating Neu3 induces

axon specification through enhancing TrkA signalling [69].

Purkinje cells are some of the largest neurons in the

human brain and are characterized by their extensive dendri-

tic arborization. It has been shown that inhibition of CERS

activity compromises dendrite genesis by decreasing length,

expanse and arborization of dendrites along with reduced

survival of rat Purkinje cells [75]. Consistent with the fact

that CERS1 is the primary neuronal CERS, loss of CERS1

function in mice leads to shortening of dendritic arbours

and degeneration of Purkinje cells [76]. Similar phenotypes
have been observed for inhibition of SPT in Purkinje neurons,

indicating that the de novo sphingolipid synthesis is pivotal

for dendritic development and survival [77]. Pinpointing

the sphingolipid species responsible for these phenotypes is

highly challenging. Purkinje cell-specific knockout (KO) of

the glucosyltransferase has little effect on dendrites, but

leads to axonal degeneration and disrupted myelin sheath,

which suggests that GSLs are not responsible for the dendri-

tic phenotypes [78]. Inhibition of CERS activity and loss

of CERS1 in Purkinje cells result in accumulation of the

ceramide precursors sphinganine, sphingosine and 1-deoxy-

sphinganine [76,79]. Ectopic expression of CERS2 in neurons

suppresses Purkinje cell death in CerS12/2 mice through

restoration of LCBs to wild-type levels indicating that

elevation of LCBs is the primary cause of neuronal death in

CERS1-deficient mice [79]. This is supported by the obser-

vation that treatment of cultured neurons with LCB levels

corresponding to the levels found in the brain of CerS12/2

mice causes neurite fragmentation [79]. Thus, LCBs may be a

central player of neurodegeneration upon disruption of the

sphingolipid metabolism.

During brain development neurons migrate to a final local-

ization where they interact with their appropriate signalling

partners ensuring correct formation of pre- and post-synaptic

elements at the right time and place. Early in the developing

rat nervous system the expression of a variant of GD3, 9-O-

acetyl GD3, appears to be involved in glial-guided neuronal

migration and neurite outgrowth [80]. A similar role might

be performed by GM1 in the early stages of the human brain

development as GM1 has been implicated in glial-neuronal

contacts during the migration of neuroblasts [81].

Synapses are key sites of communication between neuronal

cells where the presynaptic cell propagates a response to the

postsynaptic cell through either a chemical or electrical

signal. Compartmentalization is pivotal at synapses in order

to transmit the signal as efficiently as possible. In rat hippocam-

pal neurons disruption of microdomains by simultaneous

cholesterol depletion and CERS inhibition leads to fewer, but

larger clusters of both the excitatory AMPA receptor and the

inhibitory GABAA receptor [82]. Structurally the microdomain

disruption means loss of inhibitory and excitatory synapses as

well as reduction in the number of dendritic spines [82]. As

excitatory synapses are usually located on spines in hippo-

campal neurons the morphological consequences caused by

microdomain disruption most probably also have functional

consequences. This is in line with the fact that gradual loss of

synapses and spines are characteristic for neurodegenerative

diseases [83].

4.2. Sphingolipids mediating axon-glial architecture
Myelination of axons is crucial in order to provide electrical

insulation of axons ensuring rapid and efficient action poten-

tial propagation. Proper myelination in the CNS requires

oligodendrocytes to form multilayered myelin membranes

wrapped around axons, the myelin sheaths, which involves

precise sorting and compartmentalization of myelin proteins

as well as GSLs and galactosphingolipids into microdomains

(reviewed in [3,55,84]). Disruption hereof leads to deterio-

ration of myelin, resulting in axon degeneration, which

contributes to the pathogenesis of demyelinating diseases

[14]. Indeed, myelin defects have been associated with several

enzymes of the sphingolipid pathway including the GM2/
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GD2 synthase, UDP-galactose:ceramide galactosyltransferase

(CGT) and GalCer sulfotransferase (CST) [85–89].

Formation and stability of the myelin sheath depends on

protein–lipid interaction between the sheath and axon, but it

also depends on lipid–lipid interactions between myelin

sheath layers. Gangliosides GD1a and GT1b localized in

microdomains in the axonal membrane interact and regulate

the myelin protein myelin-associated glycoprotein (MAG)

[87,90,91], which itself is located in GalCer-enriched micro-

domains in mature myelin [92]. Disturbance of GD1a and

GT1b in neurons by either neuramidase treatment, blockage

of ganglioside biosynthesis or blockage of access by specific

IgG-class anti-ganglioside antibodies all prevent MAG-

mediated inhibition of neurite outgrowth [90]. Other major

myelin proteins found within GalCer-enriched microdomains

in mature myelin are myelin basic protein (MBP), 20,30-cyclic-

nucleotide 30-phosphodiesterase (CNP), myelin/oligodendro-

cyte glycoprotein (MOG) and proteolipid protein (PLP) [92].

Sorting of the myelin proteins into the GalCer-enriched

microdomains may already occur in the Golgi apparatus as

it has been shown that PLP association with GalCer- and

cholesterol-enriched microdomains in the Golgi is necessary

for correct localization in the membrane of oligodendrocytes

[93]. Besides controlling the localization of the major myelin

proteins, GalCer contributes to the long-term stability of

myelin by interacting with sulfatide located in the membrane

of opposing layers in the myelin sheath forming what is

known as a glycosynapse [94,95].

Between myelin sheaths there are regularly spaced

unmyelinated regions of the axon, also known as nodes of

Ranvier, where ion channels driving the action potential

propagation are highly enriched. The structural stability of

the nodes and their neighbouring functional regions (parano-

dal, juxtaparanodal and internode region) depends on cell

adhesion molecules (CAMs) in the axonal and glial mem-

branes, as well as oligodendrial GalCer and sulfatide

[85,86,96,97]. Disturbances of the nodes of Ranvier have

been observed in CGT-deficient mice lacking the ability to

synthesize both GalCer as well as sulfatide, and in CST-

deficient mice, which are unable to synthesize sulfatide

from GalCer [96,98]. Both mice strains have disrupted

axo–glial interactions, which in turn lead to dislocation of

axolemma proteins including juxtaparanodal Kþ channels

transcending into the paranodal region and diffuse distri-

bution of the axonal CAMs contactin-associated protein

(Caspr) and paranodin [86,96,98]. These disturbances result

in conduction deficits and pronounced tremor combined

with progressive ataxia [86,89]. Similar ultrastructural

dysfunctions may very well be present in the CerS22/2

mouse. As mentioned, CERS2 is responsible for the synthesis

of very-long-chain ceramides including C22 and C24 cera-

mide. The lipid composition of myelin in CERS2-deficient

mice is significantly changed on the level of ceramide, SM,

and in particular GalCer [99]. As WT mice age from birth

to 1 month, the acyl chain length of GalCer changes from

C18 to C22/C24 coinciding with active myelination. As

CerS22/2 mice are not able to compensate for the loss of

C22 and C24 GalCer, these mice develop unstable myelin

including degeneration and detachment [99]. This is consist-

ent with myelin degeneration after the age of 1.5 months as

seen in CGT-deficient mice [86]. Not only galactolipids

have proven to be important for maintaining the structure

of the nodes of Ranvier; imbalance in the ganglioside profile
has been shown to challenge their stability. Mice deficient in

the GM2/GD2 synthase have normal levels of ganglioside,

but express only the simple gangliosides GM3 and GD3,

yet no major abnormalities have been observed in the gross

development of their nervous system [100]. However, ultra-

structural defects have been detected, including axon

degeneration and demyelination resulting in progressive be-

havioural neuropathies as deficits in strength, coordination

and balance as well as development of tremor and catalepsy

[88,100]. GM2/GD2 synthase-deficient mice have abnormal

microdomain composition at the nodes of Ranvier affecting

the myelination, which might be explained by attenuated

expression of the axonal CAM Caspr and the glial CAM neu-

rofascin 155 (NF155) [85]. Furthermore, in these mice the

microdomain disturbance leads to mislocalization of Kþ

channels and Naþ channels that in turn results in ion channel

dysfunction and reduced motor nerve conduction [85]. These

effects only get more prominent with age.

4.3. Neuronal plasticity
The brain is far from being static after development has com-

pleted. Throughout life the brain adapts to stimuli, which

underlie functions of learning, behaviour and memory, and

it is this ability that helps the brain to overcome brain

damage. Neuronal plasticity is evident as modulation of

synapse efficacy, which is controlled by organization and

composition of the synapse structure. As sphingolipids play

an important role in organizing neuronal membranes, it is

not surprising that alterations in the sphingolipid pathway

have been associated with disturbances in neuronal plasticity.

Several lines of evidence point towards the neutral sphin-

gomyelinase-2 (nSMase) being able to modulate postsynaptic

function. nSMase is enriched in the hippocampus, where it

quickly can hydrolyse SM to ceramide [101]. It has been

shown that nSMase regulates excitatory postsynaptic currents

by controlling membrane insertion and clustering of NMDA

receptors [102]. Not surprisingly, mice deficient in nSMase

show compromised plasticity by having impaired spatial

and episodic-like memory [103]. It is becoming evident that

the balance between SM and ceramide is important in

order to maintain a normal state of mind as increased level

of ceramide has been associated with major depression

[104,105]. Several anti-depressant drugs have been shown

to inhibit the aSMase thereby lowering the concentration of

ceramide in the hippocampus resulting in increased neuronal

proliferation, maturation and survival as well as improving

stress-induced depression in mice [104]. Similar effects are

seen in mice deficient in aSMase activity, while the reverse

is observed in mice accumulating ceramide by either over-

expression of aSMase, heterozygous loss of acid ceramidase,

pharmalogic inhibition of ceramide metabolism or direct

injections of C16 ceramide into the hippocampus [104].

Thus the concentration of ceramide appears to determine

the behaviour mediated through hippocampal functions.

Synaptic plasticity covers several phenomena including

long-term potentiation (LTP), the strengthening of synapse

signalling through repeated presynaptic stimulation. LTP is

one of the major mechanisms constituting the basis for

memory and learning. The molecular mechanisms governing

LTP are diverse, and are neuronal and region-specific [106].

In the hippocampus, regulation of the glutamate receptor

NMDA in number and localization in postsynaptic
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membranes is one of these mechanisms. NMDA receptors

localize to membrane microdomains enriched in sphingoli-

pids [102,107], indicating that the sphingolipids may very

well be involved in NMDA-mediated LTP. Indeed, several

studies have associated exogenous gangliosides with regu-

lation of LTP in hippocampal neurons [108,109]. Both

exogenous GQ1b and stimulation of ganglioside synthesis

enhance ATP-induced LTP in hippocampal CA1 neurons,

which can be blocked by NMDA antagonists [109]. Further-

more, GQ1b has been found to increase brain-derived

neurotrophic factor (BDNF), an important protein in synaptic

plasticity, through regulation of the NMDA receptor in rat cor-

tical neurons [110]. Understanding the mechanisms behind

sphingolipid modulation of neural plasticity will be a valuable

tool in treatment of disabilities of learning, behaviour and

memory as well as brain injury.
0069
5. Brain ion channels and receptors
in microdomains

A vast number of ion channels and receptors have been

reported to localize to brain membrane microdomains

(reviewed in [7] and [111]). However, the focus has primarily

been on microdomains defined by detergent methods and

cholesterol depletion and less on the role of sphingolipids.

Table 1 gives an overview of neuronal ion channels and

receptors that have been shown to be affected by sphingoli-

pids. When interpreting the effect of changed sphingolipid

metabolism on ion channel/receptor function, it should be

kept in mind that table 1 includes findings in neuronal cells

as well as in non-neuronal model cells. Future research

will help determine whether or not the findings in the

non-neuronal cells can be equated with neurons.

The multifaceted nature of membrane microdomains is

reflected in the way they regulate ion channel and receptor

functions. The effect can be direct through protein–lipid inter-

actions, but also more indirect by influencing the physical

properties of the membrane. The consequence of the effect is

highly dependent on the ion channel/receptor in question,

and can include alterations in kinetics, membrane localization

and trafficking. Yet some overall regulation strategies can be

deduced, which are described in the following sections.

The list of sphingolipid-binding proteins is expanding,

but only relatively few sphingolipid-binding motifs have

been identified [129–131]. SM has been shown to regulate

the activity of the Kv2.1 channel by interacting with the

helix-turn-helix motif found in the S3b and S4 voltage-

sensing domains of the channel in oocytes [113,116].

Hydrolysis of SM into ceramide profoundly inhibits Kþ con-

ductance along with ionic and gating currents [113]. The

latter was also observed for the Kv1.3 channel pointing

towards a general regulation mechanism of the channel’s

voltage sensor by SM. Furthermore, hydrolysis of SM into

ceramide-1-phosphate causes a hyperpolarization shift in the

conductance–voltage relation along with slowing of the deacti-

vation, which overall leads to a stabilization of the open state

of Kv2.1 [113,116,117]. However, removal of SM phospho-

heads also inhibits Kþ conductance of the Kir1.1 channel,

which contains no voltage sensor, indicating that SM has several

modes of ion channel regulation [113].

The major feature of microdomains is their ability to

include or exclude proteins and thereby dictate which
proteins are in close proximity to each other. The tightly

packed microdomains favour incorporation of molecules

with saturated and unbranched side chains, and thus

many of the proteins that reside in the microdomains are

often acylated, primarily palmitoylated and/or myristoylated

[132,133]. Acylated proteins include postsynaptic density

protein 95 (PSD-95), caveolin, GPI-anchored proteins,

Src-family of tyrosine kinases and the neural protein

GAP-43 [132,134]. As several ion channels are regulated by

phosphorylation, co-localization of ion channels with kinases

provides a convenient mode of ion channel modulation. It

has been shown that Kv1.5 associates with the Src kinase

Fyn in mammalian hippocampus through Kv1.5’s Src hom-

ology 3 (SH3) domain [135]. This association facilitates

phosphorylation of Kv1.2 and Kv1.4 subunits, which both

lack the SH3 domain, but reside in a heteromultimeric com-

plex with the Kv1.5 subunit. The phosphorylation of Kv1.2

and Kv1.4 leads to suppression of depolarization-evoked

currents [135]. Kv1.5 is also an example of an ion channel

that localizes to caveolin-rich microdomains. Interestingly, dis-

ruption of the microdomains by cholesterol depletion and

hindering of ceramide synthesis by inhibition of CERS activity

cause hyperpolarizing shifts in both the voltage-dependent

activation and inactivation of Kv1.5 in Ltk cells [115].

The strategy of targeting ion channels/receptors to micro-

domains varies depending on the specific ion channel/

receptor. Protein acylation is one strategy, as mentioned

above, while recruitment to microdomains through binding

to an acylated microdomain-residing protein has proven to

be another strategy. PSD-95, a major synaptic scaffolding-

protein, is an example of such a protein in the postsynaptic

membrane. Palmitoylation of PSD-95, a PSD-95/Dlg/ZO-1

(PDZ) domain protein, localizes it to microdomains to

which it has been shown to recruit the Kv1.4 ion channel

and NMDA receptor subunits through interaction with the

PDZ domain [134,136]. The recruitment of Kv1.4 is elimi-

nated when palmitoylation of PSD-95 is prevented

[134,137]. Interestingly, disturbance of the SM/ceramide bal-

ance by inhibition of nSMase results in increased level of

PSD-95 in mice brain, which further leads to changes in

NMDA subunit composition and an increase in AMPA recep-

tors [103]. This illustrates the ripple effect that can occur

when alterations in synaptic sphingolipids affect central

synapse functions.

Sphingolipids have also proven to be important for the

ability of receptors to bind and respond to ligands. Blockage

of ceramide synthesis resulting in SM depletion leads to loss

of agonist binding to the serotonin1A and serotonin7 receptors

in CHO cells and HeLa cells, respectively [122,123]. Further-

more, disturbance of microdomains has been shown to

regulate initiation of signal transduction through nicotinic

acetylcholine receptors (nAChRs). Simultaneous cholesterol

removal and hydrolysis of SM into ceramide in rat hippocam-

pal neurons increased the rate of recovery from desensitization

and agonist affinity of the neuronal a7 nAChR, which overall

led to slowing of the desensitization kinetics [112]. However,

the same treatment gave an opposite effect for the a3b2

nAChR where the desensitization half-time was decreased

[112]. This underlines the very individual nature of how ion

channels are being regulated by microdomains.

Collectively, the mechanism by which ion channel/receptor

functions is altered, and as a consequence of changes, micro-

domain composition remains elusive in most cases. There are



Table 1. Examples of neuronal ion channels and receptors being affected by sphingolipid metabolism.

tissue/cell line functional effects/comments references

ion channels

a3b2 nicotinic

acetylcholine

receptor

rat hippocampal neurons removal of cholesterol and hydrolysis of SM into ceramide decreases

desensitization half-time

[112]

a7 nicotinic

acetylcholine

receptor

rat hippocampal neurons removal of cholesterol and hydrolysis of SM into ceramide slows down

the desensitization kinetics including increased agonist affinity

[112]

Kir1.1 oocytes hydrolysis of SM into ceramide inhibits Kþ conductance and decreases

ionic and gating currents

[113]

Kv1.3 jurkat T-lymphocytes constitutively localized in sphingolipid-rich microdomains; generation of

ceramide mediates formation of large ceramide-enriched domains

and inhibits channel activity

[114]

oocytes hydrolysis of SM into ceramide decreases ionic and gating currents [113]

Kv1.5 Ltk cells Co-localizes with caveolin; inhibition of CERS activity induces

hyperpolarization shift of the activation and inactivation curve

[115]

Kv2.1 oocytes hydrolysis of SM into ceramide-1-phosphate induces hyperpolarization

shift in the conductance – voltage relation

[113,116,117]

oocytes interaction with SM. Hydrolysis of SM into ceramide-1-phosphate

induces hyperpolarization shift in the conductance – voltage relation;

hydrolysis of SM into ceramide decreases current to 90% and

reduces gating currents

[113]

oocytes interacts with SM probably through the S3b and S4 voltage-sensing

domains

[116]

TRPA1 rat trigeminal neurons SM hydrolysis and inhibition of de novo synthesis of ceramide decrease

AITC-induced Ca2þ uptake, which is not due to an increase in

ceramide or sphingosine

[118]

rat peripheral sensory

nerve terminals

SM hydrolysis inhibits AITC-induced release of CGRP, which is not due

to an increase in ceramide or sphingosine

[118]

TRPM8 rat trigeminal neurons SM hydrolysis and inhibition of de novo synthesis of ceramide decrease

icilin-induced Ca2þ uptake

[118]

TRPV1 rat trigeminal neurons SM hydrolysis as well as inhibition of the synthesis of GSLs and de

novo ceramide decrease both capsaicin- and resiniferatoxin-evoked

Ca2þ uptake

[119]

rat trigeminal neurons SM hydrolysis and inhibition of de novo synthesis of ceramide decrease

capsaicin-induced Ca2þ uptake, which is not due to an increase in

ceramide or sphingosine

[118]

rat peripheral sensory

nerve terminals

SM hydrolysis inhibits capsaicin-induced release of CGRP, which is not

due to an increase in ceramide or sphingosine

[118]

GPCRs

AMPA receptor rat hippocampal neurons disruption of microdomains by simultaneous cholesterol depletion and

CERS inhibition results in fewer, but larger receptor clusters; loss of

synapses and dendritic spines

[82]

GABAA rat hippocampal neurons disruption of microdomains by simultaneous cholesterol depletion and

CERS inhibition result in fewer, but larger receptor clusters, meaning

reduced synapse number; loss of synapses and dendritic spines

[82]

(Continued.)
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Table 1. (Continued.)

tissue/cell line functional effects/comments references

NMDA receptor rat forebrain localized into PSD-95-rich microdomains and synaptic microdomains [107]

rat hippocampal neurons generation of ceramide by TNFa-induced activation of nSMase2

stimulate NMDA receptor clustering

[102]

CA1 pyramidal cells in

rat hippocampal slices

C2-ceramide induces a sustained synaptic current depression probably

mediated through the activation of protein phosphatases 1 and/or 2A

[120]

rat hippocampal slices long-term treatment with S1P agonist increases phosphorylation and

membrane level of NMDA receptor subunit GluN2B probably through

activation of the microdomain-associated Src kinase Fyn

[121]

serotonin1A receptor CHO cells inhibition of ceramide synthesis leads to impaired function of the

serotonin1A receptor due to reduced ligand binding

[122]

serotonin7 receptor HeLa cells inhibition of ceramide and GSL synthesis reduces maximum agonist

binding

[123]

other receptors

Trk A PC12 cells GM1 directly associates with Trk and enhances neurite outgrowth and

neurofilament expression induced by nerve growth factor (NGF)

[66]

GM1 enhances NGF-dependent homodimerization of Trk [68]

GM1 depletion by inhibition of GluCer synthase inhibits NGF-induced

neurite outgrowth, which is abolished by co-treatment with GM1

[67]

EGFR mouse neural stem cells GD3 mediates membrane microdomain localization of EGFR; ablation of

GD3 results in reduced level of EGFR expression and accelerates EGF-

induced EGFR degradation leading to decreased self-renewal

capability

[59]

insulin receptor CerS22/2 mouse liver lack of C22 – C24 ceramides inhibits phosphorylation and translocation

of the insulin receptor into microdomains upon insulin stimulation

[124]

Huh7 cells clustering of GM2 inhibits signalling through the insulin receptor by

excluding the receptor from non-caveolar membrane microdomains

[125]

3T3-L1 adipocytes TNFa-induced accumulation of GM3 eliminates insulin receptor from

microdomains and inhibits insulin signalling

[126]

GM3 disturbs interaction between the insulin receptor and caveola

protein Cav-1 resulting in exclusion of the receptor from caveola and

impairs insulin signalling

[127]

inhibition of GluCer synthase counteracts TNFa-induced abnormalities

in insulin signalling by normalizing GM2 and GM3 levels

[128]
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many possible scenarios of how changes in the sphingolipid

metabolism may affect the synaptic structure and hence func-

tion: lack of lipid–protein interaction, mislocalization,

incorrect assembly of ion channel/receptor subunits, hindering

of activity-regulating proteins/factors, changes in trafficking,

altered agonist affinity and so on. Extensive research is

needed in order to decipher the role of sphingolipids in

regulation synaptic function through microdomains.

6. Sphingolipids and microdomains
in neurological diseases

In the previous sections, we have discussed how alterations

in sphingolipid metabolism can lead to abnormal organiz-

ation and functions of membrane microdomains, and how
functions of many neuronal ion channels and receptors

depend on proper microdomain composition and integrity.

Not surprisingly, defects in the sphingolipid metabolism

have been linked to numerous neurological diseases, includ-

ing Alzheimer’s disease (AD), Parkinson’s disease (PD),

several types of epilepsy, Huntington’s disease, Krabbe’s dis-

ease, Gaucher’s disease, inherited sensory and autonomic

neuropathy, and dementia. This section outlines examples

of how sphingolipids and microdomains are involved in

the development of neurological diseases.

6.1. Alzheimer’s disease
One of the major characteristics of AD is accumulation of the

amyloid beta-peptide (Ab), which ultimately leads to
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formation of plaques linked to disease progression. Several key

enzymes associated with AD have been shown to localize to

membrane microdomains including amyloid precursor protein

(APP), b-site APP cleaving enzyme (BACE-1), g-secretase com-

plex and neprilysin (an Ab-degrading enzyme) (reviewed in

[2,18,138]). Co-localization of APP and secretases in micro-

domains promotes APP processing leading to accumulation

of Ab, which is abolished upon microdomain disturbance by

cholesterol depletion [139]. An SM-binding motif has been

identified in Ab, and in vitro studies have shown that SM pro-

motes aggregation of Ab [130,140]. Accumulation of Ab leads

to SM depletion by activation of SMase, which is thought to

disrupt a range of protein–lipid interactions and hence down-

stream signalling pathways [141]. Furthermore, activation of

aSMase correlates with reported elevated levels of ceramide

in the brain and cerebrospinal fluid of AD patients, which

possibly is a result of increased expression of CERS1, CERS2,

aSMase, nSMase and galactosylceramidase [142–146]. Spread-

ing of plaque formation in the brain is thought to involve

ceramide-enriched exosomes of Ab and phosphorylated Tau

[147]. A recent study has shown that ablation of nSMase in

the AD mouse model 5xFAD improves AD pathology by

reducing brain exosomes, ceramide levels, Ab, phosphorylated

Tau and plaques [148]. Thus, tilting the SM/ceramide balance

towards ceramide contributes to the development of AD.

Evidence points towards gangliosides contributing to the

initiation and progression of AD. Using model membranes, it

has been shown that Ab can bind to GM1 and that GM1

facilitates Ab aggregation in membrane microdomains

[149,150]. Consistently, increased levels of GM1 and GM2

have been found in microdomains isolated from the frontal

and temporal cortex of AD patients and in brains of AD

mice models, which correlate with accelerating plaque for-

mation [151–153]. Recently, GM1 has been proposed to

have a protective role towards Ab aggregation rather than

contributing to it. Using physiological concentrations of

GM1 and Ab in model membranes, it has been shown that

GM1 in nanodomains does not induce Ab oligomerization,

but rather prevents SM-induced aggregation [140]. Thus, as

the overall level of GM1 decreases during ageing [154], the

protective role of GM1 decreases, thereby contributing to

the onset of AD. However, it has been shown that GM1 is

enriched in microdomains isolated from mice synaptosomes

in an age-dependent manner despite an overall reduction of

GM1 with age [57], indicating that regionally GM1 might

facilitate plaque formation. The latter is supported by enrich-

ment of GM1 and GM2 found in microdomains isolated from

AD patients [151]. Additional studies are necessary in order

to elucidate the role of GM1 in plaque formation in AD,

which probably depends on the timing of disease onset [152].

It is evident that AD is accompanied by deregulated

sphingolipid metabolism, yet the precise mechanisms

behind AD pathogenesis need to be clarified. Meanwhile, a

sphingolipid profile and microdomain composition might

function as a diagnostic tool in the development of AD.

6.2. Parkinson’s disease
The cause of PD is generally not known, but it is characterized

by accumulation and fibrillation of a-synuclein in neurons

leading to neurodegeneration. An increasing number of

studies report that mutations in the glucocerebrosidase

(GCase) gene confer increased susceptibility to the
development of PD [155–158]. A reduced activity of GCase

has been found in the brain of PD patients [159,160].

In line with this, GCase deficiency promotes accumulation of

a-synuclein in cultured neurons [161]. GCase is located in

lysosomes where it cleaves GluCer into ceramide and glucose.

a-synuclein has been shown to bind to gangliosides, sharing

the GluCer core structure, derived from the human brain

[162]. GCase deficiency leading to increase in GluCer has

been shown to control intracellular accumulation of a-synu-

clein in mice and human brains as well as in cultured

neurons [161]. Additionally, the assemblies of a-synuclein

were shown to inhibit normal activity of GCase and matu-

ration of lysosomes, thereby contributing to pathology [161].

Other studies show no changes in the level of GluCer in

human PD brains [163,164], indicating that GluCer is not

pivotal to PD development. The attention has turned to

membrane microdomains as a-synuclein has been observed

to bind to lipids within these microdomains [165]. Indeed,

membrane microdomains isolated from the frontal cortex

of patients with incidental PD display profound alterations

in lipid composition with a higher content of saturated

lipids and lower content of unsaturated lipids as well as a

reduction in cerebrosides and sulfatide, which overall

indicates an increase in microdomain order [166]. GM1 has

been of great interest as it binds a-synuclein, thereby pro-

moting oligomerization. [167]. However, treatment of

primate PD models with GM1 has shown beneficial effects

including restoring neurochemical and physiological par-

ameters [168–170]. Additionally, a study has shown that a

consistent portion of PD patients have increased anti-GM1

antibodies [171]. The positive effect of GM1 may be

explained by its ability to stabilize a-synuclein in an

a-helix structure, thereby preventing fibrillation [167]. This

effect is abolished in the familial PD mutant A30P of a-synu-

clein. Further studies are necessary in order to elucidate

the role of membrane microdomains and sphingolipids in

PD development.

6.3. Epilepsy
An increasing number of studies implicate defects in the

sphingolipid metabolism, both in the biosynthesis and

degradation pathway, with the development of epilepsy.

Although our knowledge of how these defects affect mem-

brane microdomains in the epileptic brains is limited, it can

be speculated that the changed sphingolipid profiles perturb

microdomain functions.

Recently, a homozygous mutation in the CERS1 gene and

a heterozygous deletion of the CERS2 gene have been associ-

ated with the development of progressive myoclonic epilepsy

[172,173]. CERS1 is the primary CERS in neurons responsible

for synthesis of C18 ceramide. Downregulation of CERS1 in a

neuroblastoma cell line induces ER stress and proapoptotic

pathways, which points towards a role of CERS1 in neuro-

degeneration [172]. CERS1 deficiency in mice results in a

pronounced decrease in brain gangliosides, along with dim-

inution and neuronal apoptosis in the cerebellum [76,174].

Moreover, loss of CERS1 also causes impaired lysosomal

degradation leading to accumulation of lipofuscin, which is

a common mechanism observed in ageing and neurodegen-

erative diseases [76]. CERS1 deficiency in mice also leads to

a reduction in MAG in oligodendrocytes, indicating how

the lipid composition of neuronal membranes can affect the
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protein expression in oligodendrocytes [174]. CERS2 is the

major CERS in oligodendrocytes, and lipidomic analysis of

skin fibroblasts from the CERS2þ/2 patient shows that the

SM profile resembles the changes in SM observed in the

CerS22/2 mice [99,173,175,176]. CERS2 is important for

maintaining membrane integrity shown by severely altered

biophysical properties of membranes isolated from the

brain of CerS22/2 mice [177]. Ablation of CERS2 in mice

results in degeneration and detachment of myelin as well as

cerebellar degeneration [99,175]. The latter again pinpoints

the functional relationship between neurons and oligoden-

drocytes as insufficient myelination of neurons leads to

their degeneration.

There have been multiple reports associating mutations

in the gene encoding the aCDase with spinal muscular

atrophy with progressive myoclonic epilepsy (SMA-PME)

[178–181], although initially the interest of aCDase was on

its involvement in the lysosomal storage disease Farber’s

disease [182]. Loss of aCDase in mice is embryonically

lethal due to early apoptotic cell death [183]. It has been

speculated that the development of SMA-PME instead of

Farber’s disease is a result of different residual activities of

aCDase in the two diseases [182]. Knockdown of the

aCDase orthologue in zebrafish compromises motor

neuron axonal branching and increases apoptosis in the

spinal cord [178]. It is known that increased levels of cera-

mide rearrange microdomains into larger membrane

domains of which one of the possible outcomes is apoptosis

[182,184]. Thus, control of ceramide levels is crucial in order

to prevent neuronal loss.

Defect ganglioside biosynthesis has been associated with

the development of epilepsy through the discovery of a

homozygous loss-of-function mutation of the GM3 synthase

gene linked to infantile-onset symptomatic epilepsy syn-

drome and refractory epilepsy [185,186]. Loss of GM3

synthase activity in the affected children was accompanied

by complete lack of GM3 and its downstream biosynthetic

derivatives in plasma with evidence of increased flux through

the remaining functional ganglioside synthesis pathways

[185]. However, a compensatory effect is not observed in

patient-derived GM3 synthase-deficient skin fibroblasts,

which have a 93% reduction in ganglioside content com-

pared with control skin fibroblasts [187]. This leads to a

decrease in EGF-induced proliferation as well as migration

of the patient skin fibroblasts caused by lack of GM3 facili-

tation of EGF binding to the EGFR receptor, which is

known to localize to membrane microdomains [187,188].

GM3 synthase-deficient mice show no obvious neurological

defects [189], and thus an alternative model system must be

employed in order to evaluate the role of GM3 synthase in

brain membrane microdomains.
7. Concluding remarks
Genetically engineered mice models with defective sphingo-

lipid metabolism at various stages of the sphingolipid

pathway have paved the way for understanding how sphin-

golipids are involved in regulating the nervous system. The

phenotypes observed in KO mice deficient in ganglioside

synthases have often been milder than expected, pointing

towards a redundancy in the functions of gangliosides. Yet

some ganglioside functions are highly specific and cannot

be substituted for by others. It is important to take into

account that what we see in mice models might not be repre-

sentative for humans. For instance, KO of the GM3 synthase

in mice does not show any major abnormalities [190], while

the human equivalent has been diagnosed with infantile-

onset symptomatic epilepsy [185,186]. Thus, even though

our knowledge of how the brain functions has expanded sub-

stantially through animal models, we must always keep in

mind the limitations of these models.

Membrane microdomains play a central role in brain

development and maintenance. The existence of membrane

microdomains has been highly debated, but accumulating

evidence indicates that the lipid composition of the plasma

membrane is very heterogeneous and laterally organized

into microdomains [191]. Technological advances such as

stimulated emission depletion (STED) microscopy now

allow us to visualize these former enigmatic compartments

in living cells [16,17]. Perturbations of the sphingolipid

metabolism affect dynamics, integrity and functions of the

microdomains. Disarrangement of sphingolipid micro-

domains has been associated with numerous neurological

diseases, and it has been proposed that analysis of membrane

microdomain disorder can function as a diagnostic tool in the

early diagnosis of neuropathological development [18]. The

challenge is how to take advantage of this early diagnosis

in the treatment of patients as it can be challenging to dis-

tinguish between primary and secondary effects. Future

research will help clarify the role of sphingolipids in neuro-

logical disorders, and further reveal whether individual

sphingolipid species or collective changes in the sphingolipid

profile are primary effectors. This will be pivotal in the devel-

opment of therapeutic strategies in treatment of sphingolipid

related neurological diseases.
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