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Abstract

The skeletal dysplasias are disorders of the bone and cartilage tissues. Similarly to humans, several dog breeds have been
reported to suffer from different types of genetic skeletal disorders. We have studied the molecular genetic background of
an autosomal recessive chondrodysplasia that affects the Norwegian Elkhound and Karelian Bear Dog breeds. The affected
dogs suffer from disproportionate short stature dwarfism of varying severity. Through a genome-wide approach, we
mapped the chondrodysplasia locus to a 2-Mb region on canine chromosome 17 in nine affected and nine healthy
Elkhounds (praw = 7.4261026, pgenome-wide = 0.013). The associated locus contained a promising candidate gene, cartilage
specific integrin alpha 10 (ITGA10), and mutation screening of its 30 exons revealed a nonsense mutation in exon 16
(c.2083C.T; p.Arg695*) that segregated fully with the disease in both breeds (p = 2.5610223). A 24% mutation carrier
frequency was indicated in NEs and an 8% frequency in KBDs. The ITGA10 gene product, integrin receptor a10-subunit
combines into a collagen-binding a10b1 integrin receptor, which is expressed in cartilage chondrocytes and mediates
chondrocyte-matrix interactions during endochondral ossification. As a consequence of the nonsense mutation, the a10-
protein was not detected in the affected cartilage tissue. The canine phenotype highlights the importance of the a10b1
integrin in bone growth, and the large animal model could be utilized to further delineate its specific functions. Finally, this
study revealed a candidate gene for human chondrodysplasias and enabled the development of a genetic test for breeding
purposes to eradicate the disease from the two dog breeds.
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Introduction

The human skeletal dysplasias are rare disorders of varying

severity that present with abnormalities in the skeletal patterning,

development, growth and maintenance [1,2]. Majority has an

autosomal recessive or dominant inheritance pattern [3]. In the

most recent classification effort, over 450 distinct entities were

placed in the broad group of human genetic skeletal disorders, and

altogether 226 skeletal dysplasia genes were reported [3]. The

known causative genes, which explain 316 of the characterized

skeletal disorders [3], encode a variety of different proteins,

including extracellular matrix (ECM) components, enzymes, ion

channels, signal transducers and transcription factors [1,2,4,5].

Three general subgroups of skeletal dysplasia are commonly

recognized, although the clinical characteristics can overlap.

Osteodysplasia and chondrodysplasia are generalized disorders

of the bone and cartilage tissues, whereas the dysostoses affect

individual bones or group of bones [1]. Primary osteodysplasias

are characterized by altered bone mineral density and chron-

drodysplasias by abnormal endochondral ossification, which

affects the linear growth of bones and typically results in

disproportionate short stature [6,7]. Bone formation through

endochondral ossification takes place in the epiphyseal growth

plates of the long bones. The cartilaginous growth plates are

composed of ECM and linear columns of differentiating chon-

drocytes that are organized into zones of resting, proliferating,

mature and hypertrophied cells, subsequently replaced by

trabecular bone [8,9]. Disruptions in genes and proteins that

affect growth plate physiology have direct effects in endochodral

ossification and lead to various pathologies [4,9]. A significant

group of chondrodysplasia-causing genes constitute those that

code for cartilage ECM proteins, such as cartilage oligomeric

matrix protein (COMP), proteoglycans aggrecan and perlecan and

several different collagens [10–13]. Other examples of causative

genes include fibroblast growth factor receptor 3 (FGFR3) and

parathyroid hormone 1 receptor (PTHR1), which encode receptors

that regulate growth plate chondrocyte differentiation and

proliferation [14–17], and a sulfate transporter (SLC26A2), which

codes for a sulfate transporter that maintains adequate sulfation of

ECM proteoglycans [18–20].

In addition to humans, inherited chondrodysplasia occurs in the

pure-bred dog [21,22]. The population structure of modern dog

breeds is characterized by high inbreeding, severe bottlenecks and

isolation, all of which have increased the incidence of simple and
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complex inherited diseases [23,24]. As a result of the unique

population history, linkage disequilibrium is relatively long within

breeds, enabling genome-wide association studies (GWAS) to be

performed using small sample numbers [25,26]. Inherited

chondrodysplasia has been described in several breeds, including

the Alaskan Malamute [27–29], Norwegian Elkhound [30],

Figure 1. Chondrodysplastic and normal Norwegian Elkhounds and Karelian Bear Dogs. (A) A 5-year-old affected female Norwegian
Elkhound with chondrodysplasia (left) and a 3-year-old unaffected female Norwegian Elkhound (right). The height at withers was 42 cm for the
affected and 48 cm for the unaffected dog. (B) A 7-year-old affected male Elkhound with a height at withers of 38 cm. (C) A normal 5-month-old male
Karelian Bear Dog together with its severely affected and significantly smaller male littermate. (D) An adult, less severely affected Karelian Bear Dog
that is actively used in hunting. (E) The 5-month-old affected male puppy has prominent bilateral carpal valgus (arrows) and knock knees (genu
valgus) (arrowheads). The muscles of the pelvis and thigh are underdeveloped due to severe hip dysplasia. (F) The left forepaw of the 5-month-old
affected puppy. Outer digits are abnormally short (arrows). (G) The left forepaw (left) and the left hind paw (right) of an adult affected Elkhound.
Similarly to the Karelian Bear Dog, the outer digits are abnormally short in this affected dog (arrows).
doi:10.1371/journal.pone.0075621.g001
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Miniature Poodle [31] Samoyed [32], Labrador Retriever [33,34],

Scottish Deerhound [35], English Pointer [36], Great Pyrenees

[37] and the Irish Setter [38]. Autosomal recessive inheritance has

been proposed in Alaskan Malamutes [39], Great Pyrenees [37]

and Irish Setters [38]. The causative mutation is known in few

breeds but the majority of the phenotypes have an unknown

molecular genetic cause. Recently, a collagen type XI (COL11A2)

mutation was associated with mild chondrodysplasia in Labrador

Retrievers [40], and a sodium/sulfate cotransporter (SLC13A1)

mutation was shown to cause severe dwarfism in the Miniature

Poodle breed [41]. Furthermore, an oculo-skeletal dysplasia in

Samoyeds and Labrador Retrievers has been linked to recessive

collagen type IX mutations (COL9A2 and COL9A3, respectively)

[42]. In addition to being an anomalous phenotype, chondrodys-

plasia occurs in some breeds as a fixed, breed-defining trait [43–

47]. In a number of these breeds, the short-limb phenotype has

been shown to be due to an expressed fibroblast growth factor 4

(FGF4) retrogene [47].

The Norwegian Elkhound (NE) is a Nordic hunting breed that

suffers from disproportionate short-limbed dwarfism. The condi-

tion, which is caused by a generalized dysfunction in the

endochondral ossification process, has been clinically and histo-

logically characterized in the 1980’s [30]. The radiographic

findings in affected NEs include curved front limbs, carpal valgus,

shortening of vertebral bodies, delayed ossification of carpal bones

and increased metaphyseal width and flaring [30]. Growth plate

histology reveals several changes, which include unusual wide bars

of ECM, disorganized columnar structure and atypical large

chondrocytes with altered morphology [30]. The genetic back-

ground of the phenotype has not been studied before.

We report here our efforts to identify the gene mutation behind

NE chondrodysplasia. We successfully mapped the disease locus

through a genome-wide approach and identified a fully segregat-

ing nonsense mutation. We also show that the same recessive

mutation segregates with a similar short-limbed dwarfism in

another Nordic hunting breed, the Karelian Bear Dog (KBD),

supporting its causative nature. Our present findings have both

scientific and practical implications on bone biology and canine

breeding programs, respectively.

Results

Pedigree Analysis and Radiographic Examinations Reveal
a Recessive Condition with Variable Skeletal Changes

Our research group was approached by Finnish NE breeders

that were concerned about the relatively high occurrence of short-

legged dwarf dogs in the breed. The affected NEs were viable with

normal cognition but had approximately 10 cm shorter limbs than

normal (Figure 1A and B). In order to verify the dwarf

phenotype, NE owners were asked to provide three size

parameters as a part of the sampling effort: height at withers,

forearm length and the length from wrist to paw (metacarpal and

carpal bones). The size measurements were obtained from nine

adult affected NEs, comprising six males and three females

and from 25 unaffected adult NEs, comprising 14 males and 11

females (Table 1). The mean height at withers and the length

of the forearm differed significantly between the affected

and unaffected groups in both males (pwithers = 0.001 and

pforearm = 0.000, two-tailed Mann-Whitney U-test) and females

(pwithers = 0.000 and pforearm = 0.002, two-tailed t-test) (Figure 2A
and B). No statistically significant difference was found in the

length of metacarpal and carpal bones in either sex (Figure 2C).

Blood samples were obtained from altogether 13 adult affected

NEs from Finland and four adult affected NEs from the United

States. The pedigrees established around the known affected NEs

suggested an autosomal recessive mode of inheritance (Figure 3A
and B). All the parents of affected dogs were normal height dogs

and both genders were affected.

As the study had progressed with NEs, it came to our attention

that a similar type of dwarfism occurred in another Nordic breed,

the KBD (Figure 1C–E). At least three different litters with

affected dogs were reported in the KBDs. All affected litters could

be traced back to a single male (arrow) that lived in the 1980’s and

sired over 450 puppies in its lifetime (Figure 3C). There was a

strong suspicion within the breed that this popular sire had not

been a purebred KBD but a NE-KBD mix, which suggested that

the two breeds might share a causative mutation. As in NEs, the

mode of inheritance in KBDs was consistent with a recessive

model since the parents were unaffected (Figure 3C). Altogether

four affected KBDs were sampled for this study, three of which

were 5-month-old juvenile dogs from the same litter and the fourth

was an adult affected dog.

A 3-year-old affected male NE and affected and healthy 5-

month-old male KBD littermates (Figure 1C) volunteered for a

clinical study and were referred to a radiographic examination.

On outward appearance, the affected NE had short stature but no

ambulatory difficulties, whereas the juvenile affected KBD

preferred sitting down to standing up as it suffered from hip

dysplasia and subsequent underdevelopment of pelvis and thigh

muscles (Figure 1E). In addition, the affected KBD had

abnormally developed digits, a condition, which was also present

in a few affected NEs (Figure 1F and G).

Radiographs of limbs, spine and skull were obtained from all

three dogs. The adult dwarf NE was skeletally less affected than

the juvenile KBD (Figure 4). The radii of the affected NE were

slightly bowed cranially (Figure 4C), the epiphyses were wider

and the thorax shallower than normally but otherwise the skeleton

appeared to be within normal limits. The radiological findings in

the affected KBD were more pronounced. Compared to the

narrow and even growth plates of the normal littermate, the

growth plates of the affected KBD were wide and irregular and the

metaphyseal regions were flared (Figure 4A and B). The limbs,

especially the forearms (radius and ulna), were considerably

shortened and curved cranially (Figure 4A and B). The femoral

heads and necks were misshapen and the hip joints subluxated

(Figure 4D–F). The length of metacarpi and proximal phalanges

was not constant and varied in and between the limbs

(Figure 4G–H). The spine and skull appeared more normal

even if the vertebral epiphyses were somewhat widened.

Genetic Analyses Map the Chondrodysplasia Locus to
CFA17 and Reveal a Nonsense Mutation in the ITGA10
Gene

A GWAS was performed to map the chondrodysplasia locus in

the NE breed. Nine affected and nine control NEs were genotyped

by using Illumina’s 22K canine SNP chip. A case-control

association analysis revealed a genome-wide significant association

on CFA17 (praw = 7.4261026, pgenome-wide = 0.013; Fisher’s exact

test) (Figure 5A). At the associated locus, all affected dogs shared

a 2-Mb homozygous haplotype block that spanned from 60 to

62 Mb (CanFam2.0 assembly) (Figure 5B) and contained

altogether 33 genes (Figure 5C). Integrin subunit alpha 10

(ITAG10) was considered the best candidate for mutation

screening since it was known to be expressed on growth plate

chondrocytes [48], and had been shown to affect bone growth in

an Itga10-null mouse model [49].

All 30 ITGA10 exons were sequenced in two affected and two

control NEs. The controls comprised an obligate carrier parent

ITGA10 Mutation in Canine Chondrodysplasia
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and a half-sibling to a dwarf dog. The sequencing revealed

altogether four intronic and five exonic variants (Table 2). Four

exonic variants were synonymous changes but one was a non-

synonymous C to T substitution in exon 16 (c.2083C.T)

(Figure 6A and B), which introduces a premature stop codon

(p.Arg695*) to the encoded protein, integrin subunit alpha 10

(a10) (Figure 6B). The c.2083C.T change segregated with the

phenotype in the four sequenced NEs. The two affected dogs were

homozygous (T/T) for the change, the obligate carrier parent

heterozygous (C/T), and the half-sibling had a wild-type genotype

(C/C). The other eight identified variants did not segregate with

the phenotype but were homozygous in all four sequenced dogs.

The segregation of the c.2083C.T allele was followed further in

affected and healthy NEs (n = 58) (Table S1). In Finnish NEs, all

affected dogs (n = 13) were homozygous for the T allele and all

obligate carriers (n = 4) were heterozygous. Six full-siblings and 22

other relatives had either a heterozygous or a wild-type genotype

(Figure 3A). Similarly, in an additional NE family cohort from the

United States, all affected NEs (n = 4) were homozygous for the T

allele and two known obligate carrier parents were heterozygous.

Five out of seven unaffected family-members were heterozygous

and two were wild-type dogs (Figure 3B).

We then examined whether the c.2083C.T mutation is also

present in the affected KBDs. Genotyping of a cohort of 68 KBDs

revealed a full segregation between the nonsense mutation and the

chondrodysplasia phenotype also in this breed (Table S1). All

affected KBDs (n = 4) were homozygous for the T allele and all

parents of affected dogs (n = 4) were heterozygous. Six out of eight

full-siblings carried the mutated allele, whereas two had a wild-

type genotype (Figure 3C). Out of 52 unaffected relatives, ten

carried the T allele and 42 were homozygous for the wild-type

allele. Collectively, these results revealed a full segregation between

the c.2083C.T mutation and the chondrodysplasia phenotype in

both breeds (p = 2.5610223, n = 126). As an additional support,

the mutation was not found in 192 dogs from 12 other breeds

(Table S1).

Carrier frequency of the c.2083C.T mutation was 24% in a

cohort of 156 randomly selected Finnish NEs and 8% in a

population sample of 287 KBDs. Curiously, all except for one

heterozygous KBD (36 out of 37) could be traced back to the

popular sire that was allegedly a NE-KBD mix (Figure 3C). Out

of all wild-type KBDs, 66% (194 out of 295) could be traced back

to this same sire.

The Integrin Alpha 10 Protein is Absent in the Affected
Tissue

We next studied the potential effects of the c.2083C.T ITGA10

mutation at the mRNA and protein levels. Since the encoded

protein, integrin a10-subunit, is specifically expressed in cartilage-

containing tissues [48], we used cartilaginous bronchial and

tracheal tissue samples from one affected and one control dog.

Sequencing of the full length ITGA10 mRNA verified the presence

of mutation in the affected dog and confirmed the exon-intron

boundaries of the reference sequence (XM_845262.1). In addition,

we detected alternative splicing of exon 24 in the tissue samples of

Figure 2. Size differences between chondrodysplastic and normal Norwegian Elkhounds. Bar plots show the difference of means
concerning (A) height at withers, (B) forearm length and (C) wrist to paw length. Error bars represent the standard error of the mean. Measurements
were taken from 14 unaffected and 6 affected males, and from 11 unaffected and 3 affected females. The wrist to paw length was measured in two
affected females only. *p#0.01, **p#0.001.
doi:10.1371/journal.pone.0075621.g002

Table 1. Body length measurements in affected and healthy
Norwegian Elkhounds.

Sex Status N

Height at
withers
Mean±SD (cm)

Forearm
Mean±SD
(cm)

Wrist to paw
Mean±SD (cm)

Males Unaffected 14 52.361.3 29.161.3 9.460.9

Affected 6 41.664.2 19.864.9 8.261.6

Females Unaffected 11 48.761.4 27.161.8 8.160.9

Affected 3 42.861.0 22.362.1 7.56NA*

*Measured only in two affected females.
doi:10.1371/journal.pone.0075621.t001

ITGA10 Mutation in Canine Chondrodysplasia
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both the affected and control dog. This finding is in accordance

with a previous study that indicated differential splicing of human

and murine ITGA10 transcripts [50]. However, different exons

were reported to be involved in human and mouse; exon 25 was

alternatively spliced out in humans, and in mice, transcription of

exon 26 is extended to the following intron resulting in a truncated

transcript [50]. Unexpectedly, a semi-quantitative PCR analysis

did not reveal observable changes in ITGA10 transcript levels

between the affected and control samples (Figure 7A), which

suggested that the mutated transcript is not readily targeted for

nonsense-mediated mRNA decay (NMD) in the bronchial and

tracheal tissue samples. We examined this further by using real-

time quantitative PCR, which provides a more sensitive quanti-

fication method. The experiment was performed on five different

tissues collected from one affected and one wild-type dog. In the

lung and bronchial tissue, the results were suggestive of a reduced

Figure 3. Chondrodysplasia pedigrees are consistent with autosomal recessive inheritance. (A) A pedigree established around the
affected Norwegian Elkhounds from Finland. Samples and phenotype information were obtained from all siblings in one litter only, otherwise the
phenotypes of full siblings of affected dogs were not known. Denoted are the nine cases and controls that were genotyped using the canine SNP-
chip. (B) A pedigree drawn around four affected Norwegian Elkhounds from the United States. (C) A pedigree of the chondrodysplasia phenotype in
Karelian Bear Dogs. All affected Karelian Bear Dogs have a single popular sire as a common ancestor (arrow). In all three pedigrees, the recessive
c.2083C.T mutation shows full segregation with the chondrodysplasia phenotype. Genotypes are marked with red (T/T), blue (C/T) and black (C/C).
doi:10.1371/journal.pone.0075621.g003

ITGA10 Mutation in Canine Chondrodysplasia
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Figure 4. Radiographic findings in affected dogs. (A) The forearm of an unaffected 5-month-old male Karelian Bear Dog has narrow and even
growth plates (arrows). (B) The forearm of a severely affected 5-month-old male Karelian Bear Dog with markedly short and bowed radius and ulna.

ITGA10 Mutation in Canine Chondrodysplasia
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The growth plates are wide and irregular and metaphyseal flaring can be observed (arrows). (C) The forearm of a 3-year-old affected male Norwegian
Elkhound. The radius is slightly bowed cranially (arrow). (D) Normal hip joints of an unaffected 5-month-old Karelian Bear Dog. The femoral head sits
in its correct position (arrows). (E) Abnormal hip joints of a 5-month-old affected Karelian Bear Dog. The femoral heads are misshapen (white arrow),
femoral necks are abnormally short (arrowhead) and the joints are subluxated (red arrow). (F) Normal hip joints of a less severely affected 3-year-old
Norwegian Elkhound. (G) Normal metacarpal bones and digits of an unaffected 5-month-old Karelian Bear Dog. (H) Distal forelimb of an affected 5-
month-old Karelian Bear Dog with a very short fifth metacarpal bone (arrow). (I) Distal hind limbs of an affected 5-month-old Karelian Bear Dog. Wide
growth plates and metaphyseal flaring are apparent. The proximal phalanx of the third digit of the right hind limb (arrow) and the fifth metatarsal
bone of the left hind limb (arrowhead) are abnormally short. Dogs in images (A) and (B), (D) and (E) and (G)–(I) are littermates.
doi:10.1371/journal.pone.0075621.g004

Figure 5. Results of genome wide association analysis. (A) The chondrodysplasia locus maps to CFA17. The Manhattan plots show both
nominal and permutated p-values of the Fisher’s exact test across all chromosomes. A close-up of CFA17 shows two SNPs, BICF2S23329094 and
BICF2S23345973 that reach genome-wide significance after permutation testing. (B) Genotypes at the CFA17 associated locus reveal a shared 2-Mb
haplotype block in the affected dogs. (C) The critical region contains 33 genes, including ITGA10, which was selected as a primary candidate gene due
to its known expression in the growth plate chondrocytes and involvement in the endochondral ossification process.
doi:10.1371/journal.pone.0075621.g005

ITGA10 Mutation in Canine Chondrodysplasia
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ITGA10 expression in the affected dog but the other tested tissues,

trachea, small intestine and spleen, indicated an opposite effect

(Figure S1). This could be suggestive of tissue-specific NMD,

however, more samples would be needed to confirm this.

We then proceeded to study the effects of the nonsense mutation

at the protein level. The ITGA10 gene product, integrin a10-

subunit, assembles into a ab-heterodimeric cell surface receptor.

The identified p.Arg695* nonsense mutation is predicted to

shorten the 1165-amino-acid a10-subunit by 471 residues from the

carboxyl-terminal end, eliminating the cytosolic tail, the trans-

membrane domain and a significant proportion of the extracel-

lular protein bulk (Figure 6B). To assess the protein level effects,

we performed a western blot analysis using tracheal tissue lysates

and a polyclonal anti-ITGA10 antibody. A strong signal was

present in the control tissue whereas the protein was absent in the

affected dog, and no truncated protein product was detected

(Figure 7B). This indicates a complete loss of protein function in

the affected dog.

Discussion

We have performed a comprehensive genetic study to identify

the cause of the chondrodysplasia phenotype that was described in

the Norwegian Elkhound 30 years ago [30]. Our results indicate

that the disease is caused by a recessive nonsense mutation

(c.2083C.T, p.Arg695*) in the ITGA10 gene. The nonsense

mutation is predicted to eliminate nearly half of the encoded

integrin subunit a10 protein, and we show that the protein is

absent in the affected tissue. As an independent confirmation of

causality, we demonstrate that the same mutation shows full

segregation with a corresponding phenotype in a genetically

Figure 6. A homozygous nonsense mutation in ITGA10. (A) Chromatograms of the mutation position in a wild-type, a carrier and an affected
dog. (B) A schematic representation of ITGA10 gene structure and of a10 protein domains. The protein coding sequence of the canine ITGA10 gene is
composed of 30 exons, and the c.2083C.T change is positioned on exon 16. The a10-subunit is a single pass transmembrane protein with a small
cytosolic domain. The largest part of the protein is located in the extracellular space. The nonsense mutation p.Arg695* is positioned approximately
in the middle of the a10-subunit. SP = signal peptide, TM = transmembrane segment.
doi:10.1371/journal.pone.0075621.g006

Table 2. A summary of the variants found in the mutation
screening ITGA10 exons in two affected and two healthy
Norwegian Elkhounds.

Position Variant Amino acid change Segregation

Intron 2 c.164+47C.A – No

Intron 3 c.274+97T.C – No

Exon 6 c.519T.C p.Asp173Asp.silent No

Intron 8 c.909+8T.G – No

Exon 9 c.1044T.C p.Asp348Asp.silent No

Exon 14 c.1734T.C p.His578His.silent No

Exon 16 c.1938C.G p.Val646Val.silent No

Exon 16 c.2083C.T p.Arg695*.nonsense Yes

Intron 26 c.3108+69T.G – No

The following ITGA10 reference sequences were used in naming variants:
XM_845262.1 (mRNA), XP_850355.1 (protein) and NC_006599.2 (genomic).
doi:10.1371/journal.pone.0075621.t002

ITGA10 Mutation in Canine Chondrodysplasia
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different breed, the KBD. The canine chondrodysplasia pheno-

type implicates an essential role for ITGA10 in endochondral

ossification and reveals a candidate gene for similar conditions in

other species, including human.

ITGA10 represents an excellent candidate gene for chondro-

dysplasia. The encoded integrin subunit a10 belongs to the

integrin family of proteins [51], which constitute a group of

bidirectional cell surface receptors that mediate cells’ interactions

with the surrounding ECM and other cells [52–55]. Altogether

eight a- and 18 b-subunits have been described in vertebrates, and

these combine into 24 different ab-heterodimers that have distinct

ligand binding and signaling properties [52,53,56]. The integrin

a10-subunit assembles into an a10b1 heterodimer [51], which

belongs to the collagen receptor subgroup of integrins, together

with three other b1 integrins, a1b1, a2b1 and a11b1. All four

possess a specific collagen-binding I-domain in their a-subunit

[57–61]. The a10b1 heterodimer was originally identified as a

collagen type II-binding integrin in bovine chondrocytes [51]. In

addition to collagen type II, a10b1 has been shown to bind

laminin and other collagen types as well, and may show preference

to the non-fibrillar collagen types IV and VI [62]. Prior to this

study, no spontaneous disease-causing mutations have been

reported for either ITGA10 or for the b1-subunit gene ITGB1.

A previous study in mice indicated that the a10 protein is

primarily expressed in cartilage chondrocytes [48]. The prenatal

expression of a10 in the developing murine cartilage coincides

with chondrogenesis and collagen type II expression [48]. During

post-natal development, a10 is expressed by chondrocytes

throughout the growth plate cartilage [48]. The major collagen

constituent of the cartilage ECM is collagen type II, and other less

abundant collagen components include types IX, X and XI [63–

65]. Mutations in several different collagen genes are known to

cause various forms of chondrodysplasia and other skeletal

disorders [12,66]. Mutations in the type II procollagen gene

COL2A1 alone cause at least ten different forms of skeletal

dysplasia [3,67]. While many disease mutations are recognized in

collagen genes, they have been rare in collagen-binding receptors.

Chondrodysplasia-causing mutations has been reported only for a

discoidin domain receptor 2 (DDR2) [68–71], which is a receptor

tyrosine kinase that regulates chondrocyte differentiation and

proliferation during endochondral ossification [70,72,73]. Impor-

tantly, our study associates the second collagen-binding receptor

gene to a naturally-occurring inherited chondrodysplasia.

The precise signals that are mediated by the a10b1 receptor

during endochondral ossification are unclear but studies in

induced a10- and b1-deficient mouse models indicate roles in

matrix fibril assembly and chondrocyte proliferation [49,74]. Mice

that lack the integrin a10-subunit gene have been reported to

suffer from mild chondrodysplasia and to present with a slight

reduction in the length of the long bones [49]. The skeleton of the

a10-null mice appeared otherwise normal, apart from a reduction

in the length of tibia and femur to 93-90% when compared to

wild-type mice [49]. The skeletal phenotype of the affected dogs is

considerably more pronounced. The initial characterization of the

NE dwarf phenotype in the 1980’s revealed a generalized skeletal

disorder with significant metaphyseal changes in all growth

centers, especially at the distal metaphyses of the radii and ulnae

[30]. The affected NEs had significantly shorter long bones than

unaffected dogs, bowed front limbs and valgus deformity at the

carpi. Furthermore, ossification of carpal cuboid bones was

delayed, and the vertebral bodies were affected, which caused a

reduction in the length of the torso [30]. Our present clinical

findings are in accordance with the previous phenotypic charac-

terization. However, the radiographic examination of a severely

affected KBD revealed significantly misshapen femoral necks and

heads, which was not reported before.

Similar to the overall skeletal changes, the histological changes

are milder in the a10-null mice than in affected dogs but there are

some shared features [30,49]. The gross morphological appear-

ance of the a10-deficient murine growth plates was reported not to

differ from wild-type mice. However, a more detailed examination

revealed some slight changes, including a reduced number of cell

Figure 7. ITGA10 expression on the RNA and protein level. (A) Semi-quantitative analysis of ITGA10 mRNA expression in bronchial and tracheal
tissue samples of an affected NE and an unaffected Australian Kelpie dog. PCR reactions were performed using three cycle numbers, 27, 32 and 37.
Amplification of mRNA fragments was roughly equal in both dogs, which indicated that the mutated transcript is stable and not targeted for
nonsense mediated decay. (B) A western blot analysis of ITGA10 protein expression. A polyclonal anti-ITGA10 antibody was probed against the total
protein lysates from tracheal tissue samples of the affected NE and the unaffected Australian Kelpie. The full-length ITGA10 protein was detected in
the unaffected control dog but not in the affected dog. GAPDH was used as a loading control.
doi:10.1371/journal.pone.0075621.g007
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layers in zone of chondrocyte hypertrophy and some disorgani-

zation of chondrocyte columns in the zone of chondrocyte

proliferation [49]. More pronounced changes were described in

affected NEs [30]. In 10-week-old affected animals, the zone of

chondrocyte proliferation was decreased to half in width,

contained unusual wide bars of ECM and had a disorganized

column formation. Moreover, the disorganization continued to the

columnar structure of the hypertrophic and degenerating zones,

and also to the trabeculae of the metaphyseal spongiosa [30].

Interestingly, both mice and dogs developed misshapen, spherical

chondrocytes, when the normal appearance of the proliferating

chondrocytes is flattened [30,49]. Similar atypical chondrocyte

morphology has been described in b1-deficient growth plates as

well [74]. A targeted inactivation of the ITGB1 gene in murine

cartilage, and the subsequent loss of all b1-integrins, has been

shown to result in frequent perinatal lethality and severe

chondrodysplasia with markedly abnormal growth plate morphol-

ogy [74]. Both a10- and b1-deficient murine growth plates show

reduced collagen fibril density and a cell cycle defect [49,74]. In

accordance with this, an abnormal accentuation of ECM fibril

structure and a decreased width of the proliferative zone were

reported in the growth plates of dwarf NEs [30]. Taken together,

the skeletal defect and histological changes in the a10-deficient

mice offer strong support for the causality of the now identified

canine mutation. However, the severity of the canine phenotype

indicates a more critical role for the a10b1-receptor during

endochondral ossification in larger sized mammals.

We examined the effects of the identified nonsense mutation

both at mRNA and protein levels. Unexpectedly, we were unable

to detect evidence of reduced ITGA10 mRNA expression in all

tested tissues of the affected dog, which might be indicative of

tissue-specific NMD. The NMD is a mechanism that protects cells

from the possible detrimental effects of truncated polypeptides that

result from premature translation termination codons [75].

According to a proposed general mechanism, those premature

stop codons that are at least 50–55 nucleotides upstream from a

39-exon-exon junction are a target of NMD [76]. The p.Arg695*

nonsense change in exon 16 of canine ITGA10 should therefore

elicit the NMD response. However, the process of NMD is still not

completely understood and exceptions to the above mentioned

rule have been reported [77–80]. There is also evidence of tissue

and developmental stage specific regulation of NMD [81–84].

Unfortunately, we had very limited tissue material available (one

case and one control), to confirm the possible tissue-specific NMD.

Moreover, we were not able to collect growth plate cartilage tissue

from affected and unaffected adolescent dogs, which would have

been optimal to determine transcript levels relative to the

phenotype in question. It is a possibility that the mutated

transcript escapes mRNA surveillance, leading to the translation

of a truncated product. However, a truncated protein would likely

be unstable. Accordingly, our immunoblotting experiment re-

vealed an absence of the full length ITGA10 protein, which

indicates a loss of function, and is in accordance with the recessive

canine phenotype. Since heterozygous carrier dogs do not exhibit

a skeletal phenotype, a dominant negative mutation caused by an

aberrant truncated protein product would be unlikely. However,

there is a possibility that the polyclonal antibody we used in the

immunoblotting experiment did not recognize a truncated N-

terminal protein, and therefore further studies would be needed to

clarify the matter.

In strong support of pathogenicity, the nonsense mutation

identified in NEs, was found in another breed, the KBD, that had

the same clinical manifestation. Moreover, the mutation segregat-

ed with the chondrodysplasia phenotype in a separate NE family

cohort from the US. A high mutation carrier frequency of almost

one in every fourth dog was recorded within the Finnish NEs,

whereas the frequency was notably lower in the Finnish KBDs.

The results of our carrier screening suggested that a single popular

KBD sire, that was probably a part NE, if not introduced, at least

highly enriched the frequency of the mutation in KBDs. A simple

genetic test is now offered for NE and KBD breeds to help control

the carrier frequencies and to eradicate the condition from the

breeds.

Our results implicate the ITGA10 gene as a plausible candidate

gene for humans. Although the previously described a10-deficient

mouse model already revealed a mild skeletal phenotype, the more

pronounced chondrodysplastic changes in the larger spontaneous

canine model make ITGA10 a strong causative candidate in

human disproportionate chondrodysplasias. Since the dog is more

close to human in size and physiology, a phenotype of similar

severity would be likely. Currently, the molecular genetic

background is known for many human conditions but there are

those, in which the causative genes are yet to be identified [3]. The

radiographic and histological features of the affected NEs have

been suggested to correspond to the changes found in human

spondylometaphyseal dysplasias [30]. Given the lack of interme-

diate phenotypes in the heterozygous dogs and the likely loss of all

ITGA10 function in affected dogs, the corresponding human

conditions would likely be recessive chondrodysplasias.

In summary, we identify a novel canine chondrodysplasia gene,

ITGA10, which also represents a candidate gene for human

chondrodysplasias. The canine phenotype provides additional

evidence of the critical role of the a10b1 receptor in bone growth,

and offers a large animal model for further functional studies.

Finally, our findings have enabled the development of a genetic

test for the affected breeds.

Materials and Methods

Ethics Statement
All animals used in this study were privately owned pet dogs,

and the owners gave permission for their dogs to be used in the

study. The research was approved by the Animal Ethics

Committee at the State Provincial Office of Southern Finland

(permits: ESLH-2006-08207/Ym-23 and ESHL-2009-07827).

Animals and Samples
The entire study cohort comprised 214 Norwegian Elkhounds,

336 Karelian Bear Dogs and a control cohort of 192 dogs from 12

other breeds (Table S1). The Finnish NE cohort of 45 dogs

included altogether 13 affected NEs from 12 different litters

(Figure 3A). In one litter, samples were received from the affected

dog, both parents and from all six unaffected littermates. Other

samples included two obligate carrier parents and 22 more distant

relatives. An additional NE family cohort of 13 dogs was received

from the United States, comprising four affected dogs from two

litters, two obligate carrier parents, six unaffected littermates and

one other unaffected relative (Figure 3B). The KBD sample

cohort of 68 dogs comprised four affected dogs out of two different

litters, eight full siblings, four obligate carrier parents and 52

relatives. One KBD litter was covered fully, as both parents and all

affected and healthy littermates were sampled (Figure 3C).

Pedigrees were drawn around the affected dogs by using the

GenoPro genealogy software (http://www.genopro.com/) and the

Finnish Kennel Club’s pedigree registry KoiraNet (http://jalostus.

kennelliitto.fi/). Population cohorts were used to estimate

mutation carrier frequencies. In Finnish NEs, a population cohort

of 156 unaffected dogs was randomly selected among those NE
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samples that had been collected for other research projects. In

KBDs, a population cohort of 287 unaffected dogs comprised all

those KBD samples that had been collected before the

chondrodysplasia study was initiated.

Majority of research samples were collected as EDTA-blood.

Three KBD samples and the NE family cohort from the United

States were received as buccal swabs. DNA was extracted from the

whole blood samples by using a semi-automated Chemagen

extraction robot (Chemagen Biopolymer-Technologie AG) and

the buccal swap samples were extracted by using the QiaAmp

DNA Mini Kit (Qiagen). DNA concentrations were determined by

using a ND-1000 UV/Vis Spectrophotometer (NanoDrop Tech-

nologies) and the samples were stored at 220uC until further use.

Body Length Measurements
A set of three body measurements were collected from affected

and normal NEs. Owners were asked to measure the height at

withers, the length of the forearm from elbow to wrist and the

length from wrist to paw (carpal and metacarpal bones) according

to detailed instructions. Measurements were obtained from

altogether 34 dogs, comprising 14 control males, six affected

males, 11 control females and three affected females. The wrist to

paw length was measured in two affected females only. Statistical

analysis on length measurements were performed using PASW

Statistics 18 software (IBM). The Student’s t-test was used when

equality of variances was fulfilled (Levene’s test p was .0.05) and

if not, the Mann-Whitney U-test was applied.

Genome-wide Association Analysis
Nine affected and nine healthy NEs were genotyped using

Illumina’s CanineSNP20 BeadChip of 22,362 validated SNPs.

The nine affected dogs were from different litters. The potential

confounding effects of population stratification were accounted for

by using matched second-degree relatives (half-siblings) or more

distant relatives as genotyping controls (Figure 3A). Genotype

data was filtered using a minor allele frequency of .5%, SNP call

rate of .95% and a sample call rate of .95%. A total of

7679 SNPs were removed for low minor allele frequency and

238 SNPs failed the missingness test. Since the total genotyping

rate was 99.2%, no samples had to be removed for low sample call

rate. No significant deviations were detected from the Hardy-

Weinberg equilibrium with the threshold at p#0.0001. After all

filtering steps, 14,626 SNPs remained for analyses. The Fisher’s

exact test was performed to calculate allelic association between

cases and controls using software package PLINK [85]. Genome-

wide significance was ascertained through phenotype permutation

testing (n = 50,000).

Mutation Screening
Canine ITGA10 (XM_845262.1) sequencing primers (Table

S2) were designed using Primer 3 (http://frodo.wi.mit.edu/

primer3/). PCR reactions were performed in a 20 ml reaction

volume that contained 20 ng of genomic DNA, 16PCR buffer,

2 mM MgCl2, 0.2 mM dNTPs, 0.5 mM of forward- and reverse

primers, 1 M betaine (Sigma-Aldrich) and 1 unit of Biotools DNA

Polymerase. PCR products were run on a 1% agarose gel stained

with GelRed (Biotium, Inc). Sequencing reactions were carried out

using a 37306l DNA Analyzer (Applied Biosystems), and sequence

data was analyzed by using Variant Reporter v1.0 program

(Applied Biosystems). Applied Biosystems’ TaqMan chemistry and

7500 Fast Real-Time PCR instrumentation were used to genotype

the control cohorts. The probe sequence for the wild-type allele

was 59-CACTCACAGAATCGGCGAT-39 and 59-CACTCACA-

GAATCAGCGAT-39 for the mutated allele. Amplification

primers were 59-CTCCTGGCCGCTGGA-39 and 59-GGGCT-

GAGAGTTGCTTAGGA-39, forward and reverse, respectively.

The Taqman genotyping reactions were performed in a 10 ml

reaction volume with 10 ng of genomic DNA, 16TaqMan

genotyping assay and 16Genotyping Master Mix (Applied

Biosystems).

Tissue Samples
One 3-year-old affected male NE was euthanized on owner’s

decision due to aggressive behavior towards humans and other

dogs. Samples from various different tissues were collected

immediately after euthanasia and stabilized in RNAlater (Ambion,

Inc). The stabilized tissue samples were kept in 280uC until

subsequent use. Control tissue samples were obtained from a 2-

year-old male Australian Kelpie that was put down because of

severe epileptic seizures.

RNA Experiments
Total RNA was extracted from tracheal and bronchial tissue

samples of one affected NE and one unaffected Australian Kelpie.

RNA extraction was performed using the RNeasy Mini Kit

(Qiagen). Concentration of RNA samples was determined by using

a ND-1000 UV/Vis Spectrophotometer (NanoDrop Technolo-

gies), and equal amounts of RNA were reverse-transcribed into

cDNA by using the High Capacity RNA-to-cDNA Kit (Applied

Biosystems). The full-length ITGA10 mRNA was sequenced from

the cDNA samples by using primers that were designed to span

multiple exons in order to control for genomic DNA contamina-

tion (Table S2). The mRNA sequencing reactions and data

analysis was carried out as described in methods for mutation

screening.

Semi-quantitative PCR and real-time quantitative PCR (qPCR)

were used to study the levels of ITGA10 mRNA in affected and

control dog. In the semi-quantitative analysis, one of the mRNA

sequencing primer pairs, ITGA10_mRNA_7 (Table S2), was

amplified in equal amounts of the tracheal and bronchial cDNA

samples. Amplifications were performed using three different cycle

numbers (27, 32 and 37) to ensure that a logarithmic amplification

phase was detected. Expression levels were evaluated on 1.5%

agarose gel stained with GelRed (Biotium, Inc). The qPCR

experiment was performed by using two different ITGA10 primer

pairs (Table S2), and the obtained expression data was

normalized against two house-keeping genes, GAPDH and

YWHAZ. The PCR reactions were performed using Applied

Biosystems’ 7500 Fast Real-Time PCR instrumentation and

Roche’s FastStart Universal SYBR Green Master according to

the manufacturers’ instructions. Triplicate samples were used for

all reactions. The efficiencies of the qPCR reactions were

calculated from a seven-point dilutions series and the relative

expression differences were calculated using the comparative

DDCt-method [86].

Protein Expression Analysis
Total protein lysates were prepared for a western blot

experiment from tracheal tissue samples of one affected NE and

one unaffected Australian Kelpie dog. The RNAlater preserved

tissue samples were homogenized on ice using the Pierce T-PER

Tissue Protein Extraction Reagent (Thermo Fisher Scientific) with

Pierce Halt Protease Inhibitor Cocktail (Thermo Fisher Scientific)

added to the extraction buffer. Pierce BCA Protein Assay Kit

(Thermo Fisher Scientific) was used to determine protein

concentration in order to load equal amounts of protein lysates

for 9% SDS-PAGE and subsequent western blotting. A mouse

polyclonal anti-ITGA10 antibody (Sigma-Aldrich #SAB1411763)
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was used as primary antibody in immunoblotting, together with a

mouse monoclonal antibody for GAPDH (Invitrogen #39–8600).

The polyclonal anti-ITGA10 antibody was raised against the full

length ITGA10 and was therefore expected to recognize a possible

truncated protein. The immunoblotting signals were detected by

using a horseradish peroxidase-conjugated anti-mouse IgG anti-

body (GE Healthcare #NA931) and Pierce SuperSignal West

Femto Maximum Sensitivity Substrate (Thermo Fisher Scientific).

Supporting Information

Figure S1 Relative expression levels of ITGA10 mRNA.
The relative expression levels of ITGA10 mRNA were studied

in five different tissues using samples from one affected Norwegian

Elkhound and one unaffected wild-type dog from another breed.

Two primer pairs, (A) ITGA10_q1 and (B) ITGA10_q2, that were

positioned on opposite ends of the canine ITGA10 mRNA were

used to determine relative expression levels. Two tested tissues

(lung and bronchus) showed a clear decrease of ITGA10 expression

in the affected dog. The other tissues (trachea, small intestine and

spleen) showed an increase in the ITGA10 expression in the

affected dog. Error bars represent the standard error of Ct-values.

(TIF)

Table S1 Dogs genotyped for the ITGA10 mutation.
(XLSX)

Table S2 ITGA10 sequencing and qPCR primers.
(XLSX)
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