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Abstract

With the astonishing rate that genomic and metagenomic sequence data sets are accumulating, there are many reasons to
constrain the data analyses. One approach to such constrained analyses is to focus on select subsets of gene families that
are particularly well suited for the tasks at hand. Such gene families have generally been referred to as ‘‘marker’’ genes. We
are particularly interested in identifying and using such marker genes for phylogenetic and phylogeny-driven ecological
studies of microbes and their communities (e.g., construction of species trees, phylogenetic based assignment of
metagenomic sequence reads to taxonomic groups, phylogeny-based assessment of alpha- and beta-diversity of microbial
communities from metagenomic data). We therefore refer to these as PhyEco (for phylogenetic and phylogenetic ecology)
markers. The dual use of these PhyEco markers means that we needed to develop and apply a set of somewhat novel
criteria for identification of the best candidates for such markers. The criteria we focused on included universality across the
taxa of interest, ability to be used to produce robust phylogenetic trees that reflect as much as possible the evolution of the
species from which the genes come, and low variation in copy number across taxa. We describe here an automated
protocol for identifying potential PhyEco markers from a set of complete genome sequences. The protocol combines rapid
searching, clustering and phylogenetic tree building algorithms to generate protein families that meet the criteria listed
above. We report here the identification of PhyEco markers for different taxonomic levels including 40 for ‘‘all bacteria and
archaea’’, 114 for ‘‘all bacteria (greatly expanding on the ,30 commonly used), and 100 s to 1000 s for some of the
individual phyla of bacteria. This new list of PhyEco markers should allow much more detailed automated phylogenetic and
phylogenetic ecology analyses of these groups than possible previously.
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Received April 3, 2013; Accepted September 6, 2013; Published October 17, 2013

Copyright: � 2013 Wu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding for this work was provided by the Gordon and Betty Moore Foundation (grant #1660 and #3300, website: http://www.moore.org/). The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dygwu@ucdavis.edu

Introduction

In the 1970s, pioneering studies were carried out by Carl Woese

and colleagues to analyze the sequences of fragments of rRNA

genes [1,2,3]. They demonstrated that by analyzing the sequence

information found in the small subunit rRNA (ssu-rRNA), we can

place the diverse cellular organisms in a tree of life. The ssu-rRNA

also led Woese et. al. to propose the existence of the Archaea, the

so-called third domain of life in addition to the already known

Bacteria and Eukaryotes. Since then, ssu-rRNA has been widely

adopted as a ‘‘phylogenetic marker’’ for studies of diverse living

organisms. The ssu-rRNA gene has many advantages to play such

a role. It is present universally in all cellular organisms. The

sequences of ssu-rRNA have desirable patterns such as diverse

regions separated by highly conserved regions. The conservation

at the sequence and structure level facilitate the studies that

require sequence alignments, while sequence variations provide

valuable information for analysis of both recent and ancient

evolutionary events.

Since (and even before) the time of Woese’s work on rRNA,

other genes have been developed into widely used and robust

phylogenetic markers for various taxa. However for global studies

of microorganisms, ssu-rRNA genes are still the phylogenetic

marker of choice. A related topic to general studies of the

phylogeny of microbes is that for a long time, scientists only

studied cultured microbial organisms and left out the overwhelm-

ing majority that could not be cultured in the lab. A fundamental

shift occurred when researchers started examining rRNA genes

from organisms never grown in the lab. This work accelerated in

particular when the polymerase chain reaction (PCR) methodol-

ogy was adapted to ssu-rRNA studies. The highly conserved

regions of the ssu-rRNA allow one to design oligonucleotide

primers to amplify the ssu-rRNA genes by PCR for a diverse range

of species. Using ‘‘universal primers’’ in PCR, scientists can

amplify ssu-rRNA from a wide variety of taxa directly from the

environment in a single reaction. The culture-independent PCR

amplification and sequencing of ssu-rRNA from an unprecedented
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variety of communities is enriching ssu-rRNA sequence collections

exponentially. By the start of 2012, the SILVA ssu-rRNA database

has reached 2,492,653 sequences, while the RDP database has

included 2,110,258 ssu-rRNA sequences. With next generation

sequencing there are also billions if not trillions of available partial

ssu-rRNA sequences. Thus in addition to its use as a phylogenetic

marker, ssu-rRNA became a key ‘‘ecological marker’’ for studies of

microbes.

Despite the power and ongoing potential of ssu-rRNA based

studies of microbial diversity, using this gene – or just this gene –

has its limitations. For example, the extensive variation in copy

number of ssu-rRNA genes among different organisms poses

major challenges for using ssu-rRNA as an ecological marker

[12,13,14]. This is because researchers try to use counts of the

number of sequences retrieved from a particular group to estimate

relative abundance of such groups. Although methods have been

developed to try and correct for the variance in rRNA copy

number, but they are imperfect. Another limitation of ssu-rRNA

only studies is that all so-called ‘‘universal primers’’ for PCR

amplification of ssu-RNA genes have different degrees of bias —

they usually prefer certain taxonomic groups over others. In

addition, phylogenetic trees built from one gene do not always

reflect the true evolution history of species under study. Any gene,

including ssu-rRNA, is subject to horizontal gene transfer,

convergent evolution, or evolution rate variations between

different phylogenetic groups [16,17,18] and other forces that

can lead to the trees of that gene not accurately reflecting the

history of species.

Over the years researchers have attempted to identify, develop

and use other marker genes to for microbial diversity studies to

compensate for the limitations of ssu-RNA genes as markers. One

example is the recombinase A gene family that includes bacterial

RecA, archaea RadA and RadB, eukaryotic Rad51 and Rad57,

phage UvsX. The genes in the recA superfamily are crucial for

recombination and DNA repair, are nearly universally present,

and have (compared to ssu-rRNA) low variation in copy number

between taxa. Another example is RNA polymerase beta subunit

(RpoB) gene, which is responsible for transcription initiation and

elongation [24,25,26]. Both genes have been widely used in

phylogenetic studies of bacteria, archaea, and eukaryota. In terms

of use as phylogenetic markers, protein-coding genes have some

advantages over ssu-rRNA including that they may have less (or at

least different) nucleotide compositional bias than ssu-rRNAs.

There are two major challenges for using protein-coding genes

as phylogenetic markers for broad studies of microbial diversity.

First, PCR amplification technology, which is the driving force

behind using ssu-rRNA for microbial diversity studies, does not

work as easily for protein coding genes. This is because DNA level

variations can be observed even for highly conserved protein

domains at the amino acid level. On one hand, such DNA level

variations are valuable for the studies of closely related organisms;

on the other hand, the primers for PCR amplification of these

genes need to be degenerate, sometimes extremely so. Thus

phylogenetic analysis of protein-coding genes has largely focused

on cultured organisms because of the limited ability to sequence

such genes from unknown organisms using PCR-based methods.

Metagenomics, the direct sequencing of the organisms present in

the environmental samples without PCR, has made protein based

phylogenetic analysis and phylogeny-driven ecological analysis of

uncultured organisms feasible.

In general, metagenomics is opening up the possibility that any

gene can be used for studies of microbial diversity. However, one

challenge in this is the lack of knowledge about what genes are

suitable for such studies. For broad studies of microbial diversity

(e.g., studies of the diversity of all bacteria in metagenomic data or

whole-genome phylogenetics of all bacteria) the most widely used

sets of genes include about 30 genes (e.g., 31 in and).

Though the previously identified marker gene sets are useful, we

became interested in revisiting marker gene identification and in

developing and using a system that would be updated in multiple

areas. Some of the key limitations in the previously identified

marker sets included that they were selected when only a small

number of genomes were available, the methods behind their

identification were not fully automated, the sets were focused on

the highest level taxonomic groups and thus missed genes that

could be useful for more narrow focus on specific subgroups of

bacteria or archaea and the sets were focused largely on markers

for phylogenetic studies not for phylogeny-driven ecological

studies.

We report here the development of an automated approach to

identify phylogenetic and phylogenetic ecology markers (we refer

to these ‘‘PhyEco’’ markers). Our approach takes a set of complete

genome sequences and applies a variety of criteria for assessing the

gene families present in those genomes for their potential use as

PhyEco markers. The criteria we use includes universality across

the taxa of interest (which is important for multiple reasons), ability

to be used to produce robust phylogenetic trees that reflect as

much as possible the evolution of the species from which the genes

come (which helps control for issues like convergent evolution and

lateral gene transfer), and low variation in copy number across

taxa (which is advantageous when using markers for estimates of

relative abundance of taxa). The protocol takes all the proteins in

all the genomes under consideration and, using rapid searching

and clustering algorithms, generates protein families from that

complete protein set. Phylogenetic trees are then built for each

family, and subgroups in the trees (i.e., clades) are automatically

sampled and evaluated for the criteria listed above. Potential

PhyEco marker families are then further assessed using multiple

comparative and phylogenetic analyses.

Our systematic approach reveals 40 PhyEco marker candidates

spanning the domains of bacteria and archaea. Our analysis also

identified 74 bacterial specific PhyEco markers, which, with the 40

bacterial and archaeal markers, brings the total to 114 PhyEco

markers that can be used for analysis of bacteria. In addition, our

analysis revealed 100 s – 1000 s of phyla-specific PhyEco marker

genes. Recently, a paper was published from Wang and Wu

describing a similar approach to identify taxa specific phylogenetic

markers at the phylum level. Our methods are different than those

used by Wang and Wu and our results also have differences. We

discuss some of the similarities and differences in more detail in the

Results and Discussion section. Most importantly, we believe the

new list of PhyEco markers we have identified should allow much

more detailed automated phylogenetic and phylogenetic ecology

analyses of these groups than possible previously.

Results and Discussion

De novo identification of protein families from massive
and ever increasing genome data sets by a bottom up
approach

For our study here we decided that it was important to first

perform a de novo build of protein families from currently

available genome data sets (i.e., we did not want to rely on existing

protein family information). Largely we chose this approach

because of concerns about the possibility of bias in the existing

protein family data sets related to their being created and built

when the sampling of genomes was phylogenetically very limited.

To carry out a de novo identification of protein families we would
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first need to search all the proteins from all the genomes of interest

against each other (e.g., by using an all vs. all BLAST search).

Then we would need to group these proteins into families based on

the results of such searches. Given the large number of genomes

available for bacteria and archaea, such all vs. all searching and

then clustering would be computationally very intensive. Further-

more, we wanted to be able to do such a de novo build again and

again in some sort of automated manner as more genomes became

available. Such an accelerating and increasing costly approach was

not possible within the scope of this project. The computational

infrastructure we had available for this work could comfortably

handle de novo gene family building and analysis for ,200

bacterial and/or archaeal genomes at a time.

The limitation outlined above led us to develop a ‘‘bottom up’’

strategy for identifying PhyEco markers. This strategy worked in

the following general way: the total set of genomes was divided

into subgroups based on phylogeny and taxonomy of the species

from which the genomes came. In most cases subgroups

corresponded to phyla. However, there were too many genomes

for some phyla (e.g., proteobacteria) and thus we further

subdivided the group (in the case of the proteobacteria we divided

it into the five major classes – alpha, beta, gamma, delta and

epsilon). Then for each of these subgroups we carried out all vs. all

searches using BLASTP of the proteins encoded in the genomes.

Following this, for each subgroup we used the results of the all vs.

all search to create protein families using the MCL clustering

algorithm.

The use of MCL for gene family building has some advantages

and disadvantages. The main advantages relate to speed and

ability to control the granularity of the output clustering. However

this comes with a risk of splitting up what should be single families

into separate clusters. To compensate (at least somewhat) for this

risk of splitting, after the MCL clustering is run, the left over

sequences are clustered using a more aggressive single linkage

clustering method. This allows the recovery of some additional

protein families that were artificially split by the MCL method.

Identifying PhyEco markers from protein family sets
To identify PhyEco markers we screened through the complete

protein family data sets using four criteria: universality, evenness

(in copy number), monophyly and uniqueness. We selected these

specific metrics for multiple reasons. Universality (how widely

found the gene family is for a group in question) is important for

phylogenetic studies because the more universal (for a particular

group) a gene is, the less missing data one would have in a data set

for phylogenetic analysis. For ecological studies, universality is

important because it allows one to assume that if a representative

of that taxonomic group were present it would be likely to have

that particular gene. Evenness in copy number is important in

particular in the estimation of the relative abundance of taxa in

environments. Regarding ‘‘monophyly’’, what we wanted to do

was develop a metric that would allow us to identify those cases

where the genes from the taxonomic group in question were

monophyletic in the phylogenetic tree for the whole family. For

example consider a hypothetical protein family ‘‘A’’ being

screened PhyEco marker potential for the Cyanobacteria. We

wanted to know, in a phylogenetic tree including all homologs of

protein family A, if the proteins from Cyanobacteria all grouped

together as a single clade. In order to identify PhyEco markers that

captured our current understanding of phylogenetic/taxonomic

structure of bacteria and archaea, we examine phylogenetic trees

to make sure they are monophyletic for the phyla and classes that

are regarded as monophyletic based on previous phylogenetic

studies (e.g.,). Finally, we developed a ‘‘uniqueness’’ test as a way

to measure how well we were able to distinguish members of the

PhyEco marker family of interest from other families. This test is

based on how we currently search for members of a particular

family in a genomic or metagenomic data set. We do this by

creating a hidden markov model (HMM) representing a sequence

alignment of the family, and then we search the data sets of

interest for sequences in the family using the HMM. A family’s

HMM (and thus the family) is determined to be unique if a HMM

search against all families retrieves all the target family members as

top hits with a comfortable distance from sequences in other

families.

For identification of PhyEco markers for each of the subgroups

we used these metrics in a mostly qualitative manner. For a protein

family to be included in the list for a group, it had to be present in

all members of the group (universal) in a single copy (even). This

was a very strict set of criteria to use. In the future we will likely

have to relax this approach a bit as more and more genomes that

are incomplete become available but could be useful to include.

After PhyEco marker families have been identified for each

subgroup, we then coalesce them together to identify PhyEco

markers for the ‘‘higher’’ taxonomic levels. For example the

families in the different classes of proteobacteria were compared to

identify proteobacteria-wide PhyEco marker families. In addition,

the PhyEco markers for each of the bacterial phyla were compared

to identify bacterial-wide PhyEco markers. The comparison across

subgroups is done in the following way. Consensus sequences are

generated for each PhyEco marker family for each subgroup.

These are then all compared to each other and clustered using

single-linkage clustering to identify which subgroup specific

PhyEco marker families are related to each other (see Methods

for more detail). Once we coalesced together the families from the

lower levels we then scored candidate PhyEco families for the

‘‘higher’’ levels using measures of universality, evenness and

monophyly with quantitative metrics for each as described in the

Methods.

As mentioned in the Introduction, a recent paper from Wang

and Wu is similar to our work described here in a few ways. The

focus on their work is similar in that they also attempted to identify

taxa specific phylogenetic markers at the phylum level. One

similarity is that we both attempted to identify genes that were

universal and had low variance in copy number between taxa.

Specifically, Wang and Wu focused on identifying ‘‘ubiquitous,

single-copy genes.’’ One key difference is we have introduced

formal metrics for assessing marker genes in multiple parameters:

universality (analogous to their ubiquity but with a more formal

mathematical measurement), evenness in copy number (which is

similar to their search for single-copy genes in that any gene that is

single-copy in everything would have a high evenness score) and

monophyly. Our assessment of monophyly is a way to characterize

the evolutionary history of a gene family. Wang and Wu also

attempted to assess the evolutionary history of a gene family by

using the Prunier program [37] to search for cases of possible

lateral gene transfer. Our approaches in terms of evolutionary

history were very different here though the goals are similar in

ways. Another difference between our work and that of Wang and

Wu is that our metrics allow us to explicitly evaluate and rank

potential markers in the context of all currently available bacteria

and archaeal genome sequences (and we present the results of such

evaluation – see below). Other differences between our approach

and theirs include that we make use of a ‘‘uniqueness’’ metric to

determine how different one family is from other families. Thus,

we believe our study provides a clearer quantitative picture of the

characteristics of the PhyEco markers.

Phylogeny-Driven Ecological Markers
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We are experimenting with another strategy to avoid large-scale

de novo gene family building in the future. We have been involved

in creating a database of gene families for all the sequenced

genomes called SFAMs with an updating protocol that adds future

sequences into existing gene families and only builds novel gene

families if necessary [38]. In theory, this database could be used

directly and the families could be screened for criteria of interest

(such as universality, evenness, uniqueness, and monophyly) for

any taxonomic group of interest.

A diverse sampling of a taxonomic group is essential for
PhyEco marker identification

For the analyses reported here, we focused only on phylogenetic

groups for which a large number of complete genome sequences

were available. Specifically, we considered the following taxo-

nomic groups: ‘‘all bacteria and archaea’’, ‘‘all bacteria’’, ‘‘all

archaea’’, each phylum of bacteria for which there were more than

a few genomes (there were generally not enough genomes for

specific archaeal phyla to subdivide the archaea up), and the

classes within the proteobacteria phylum (there are many genomes

for each class due to biases in genome sequencing efforts).

We have identified taxonomic group-specific PhyEco marker

candidates systematically for 17 taxonomic groups (Table 1). The

number of candidate PhyEco markers varies for different

taxonomic groups: e.g., the Deinococcus-Thermus phylum has

974 PhyEco markers, while Firmicutes has only 87. Because of the

low number of genomes and low phylogenetic diversity at the

phyla level, Deinococcus-Thermus, Thermotogae and Chlamyd-

iae have exceptionally high number of PhyEco markers (the fewer

genomes the less likely there is to have something unusual in one of

the genomes that would remove a gene from our list – and the

lower the phylogenetic diversity the more genes there will be that

are shared). Taxonomic groups with more genomes and higher

phylogenetic diversity tend to have fewer PhyEco marker genes

using our criteria. The most diverse groups have about 100, they

can be regarded as ‘‘core’’ genes that are relatively resistant to

gene duplication, deletions and transfer [39,40,41]. We have

identified 560 PhyEco markers for Cyanobacteria, an extraordi-

nary large number for such a phylogenetic diverse group. The

presence of many photosynthesis related genes contributes to the

large number [41]. Certain lineages, such as Gammaproteobac-

teria, have such large numbers of genomes from a limited number

of species that we have to use phylogenetic trees to select and

effectively reduce the number of genomes to facilitate de novo

gene family building. But for most phyla of bacteria and archaea,

more genome sequences are in order to more accurately identify

good PhyEco markers. Efforts such as the phylogeny-driven

Genomic Encyclopedia of Bacteria and Archaea (GEBA) project

which focuses on cultured organisms and culture independent

genome sampling efforts [42,43] would be very beneficial to

continue in relation to PhyEco marker identification.

Properties of the ‘‘All Bacteria and Archaea’’ PhyEco
marker set

Our analysis identified 40 PhyEco markers for the group ‘‘all

bacteria and archaea’’ (Table 1). We have assessed these markers

in a few ways. First, examination of phylogenetic trees of each of

these PhyEco markers shows that for each, Archaea and Bacteria

form two distinctive clades (Figure 1). In addition, we examined

the properties of each of these markers within the lower taxonomic

groups in our data set. For example, one of the ‘‘all Bacteria and

Archaea’’ PhyEco markers corresponds to ribosomal protein S2.

For all 18 of the taxonomic groups examined in our analysis (e.g.,

all Bacteria, all Archaea, and the major bacterial subgroups) this

protein also showed up as PhyEco marker. All organisms have a

single copy of ribosomal protein S2 gene, and each of the 18

taxonomic group forms a monophyletic clade in the family

phylogenetic tree. All the other 39 ‘‘all bacteria and archaea’’

PhyEco markers were identified as PhyEco markers at a minimum

of seven taxonomic levels (Figure 1). These results are not overly

surprising since we inferred the ‘‘all bacteria and archaea’’ markers

by building up from the lower levels. But in theory it is possible

that something would not work in this approach. For our

‘‘building up’’ method might not work as we expected. In

addition, there might be more conflicts that we expect between

taxonomy (which is largely on ssu-rRNA phylogeny) and protein

family phylogeny. Another key feature of the ‘‘all bacteria and

archaea’’ PhyEco markers is their functional roles in organisms.

The vast majority of them are associated with the translation

processes (Table 1): 30 ribosomal protein subunit genes, 1

translation initial factor, 1 translation elongation factor, and 3

rRNA synthesis related genes. The rest of are involved in protein

metabolism including peptide degradation and exporting, RNA

degradation, heme biosynthesis and purine nucleotide synthesis.

Properties of the ‘‘All Bacteria’’ PhyEco marker set
Our analysis identified 74 PhyEco markers for the group ‘‘all

bacteria.’’ As with the ‘‘all bacteria and archaea’’ PhyEco markers

we assessed these in a variety of ways. As expected, all 74 have

very low variance in copy number between bacterial genomes and

almost all are present in only a single copy in all bacterial

genomes. Interestingly, many have no obvious counterpart in

archaea (Figure 2). In terms of lower taxonomic groups (in this

case – the subgroups within the bacteria), each of the 74 ‘‘all

bacteria’’ PhyEco markers was also identified as a PhyEco marker

for at least six taxonomic groups (Figure 2). Similar to the ‘‘all

archaea and bacteria’’ markers, translation related gene families

dominate the list of ‘‘all bacteria’’ markers (Table S1): fourteen are

ribosomal protein genes; ten are related to tRNA synthesis and

modification; three are involved in translation initiation, elonga-

tion and termination; others are for ribosome rescue and recycle,

and small subunit rRNA processing. DNA replication and repair

related gene families are abundant in the list: four families are

related to DNA synthesis and twelve are involved in DNA repair.

Others of these bacterial PhyEco marker gene families are

involved in transcription, RNA degradation, protein trafficking

and degradation, cell division and shaping and signal transduction.

Various biosynthesis related families are also included in the

PhyEco markers, including the synthesis of cofactors, peptidogly-

can, pyrimidine, fatty acid and heme. Interestingly, three of the

‘‘all bacteria’’ PhyEco marker candidates have no functional

annotation and apparently have not been studied functionally even

though their distribution patterns among the bacterial genomes

strongly suggest that they are potentially involved in essential

processes.

The automated pipeline for phylogenomic analysis AMPHORA

(co-developed by one of us) included 31 phylogenetic markers for

bacteria according to previous experiments. We are glad to see 30

of the original 31 AMPHORA markers are included in our list of

PhyEco markers: 18 are included in the ‘‘bacteria and archaea’’

PhyEco markers, while twelve are included the ‘‘all bacteria’’

PhyEco markers (Table 2, Table S1). The only AMPHORA

marker missing from our list is the phosphoglycerate kinase gene

(pgk). The phosphoglycerate kinase gene family is a good marker

candidate at only 5 taxonomic levels (Bacteria, Chlamydiae,

Cyanobacteria, Thermotogae, Gammaproteobacteria), thus is not

Phylogeny-Driven Ecological Markers
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qualified to be one of the 114 core PhyEco markers of bacteria in

this release.

Availability
The gene families of potential PhyEco markers listed in Table 1

and Table S1, as well as phyla-specific PhyEco markers, are

available for download. The package includes hidden markov

model profiles, amino acid sequences and alignments. The

phylogenetic trees, perl scripts for calculating gene family

universality, evenness and monophyletic values, as well as the

numeric values of the three measurements for Figure 2 and 3 are

also available and accessible from: http://edhar.genomecenter.

ucdavis.edu/,dwu/BAmarker/.

We have also uploaded the files to Figshare, which can be

accessed from: http://figshare.com/articles/Systematically_

identify_phylogenetic_markers_at_different_taxonomic_levels_for_

bacteria_and_archaea/722713

Conclusion

The approach we describe here can be used for any taxonomic

group and can also be automated for keeping up with the

explosion in genome sequences that are coming. A core set of

robust ‘‘PhyEco markers’’ has many uses and the metrics we

describe here can help in objectively selecting candidates for such

markers. We note that in the future it will likely be even better to

go beyond just PhyEco marker genes and to incorporate

information about additional gene families in analysis of genomes

and metagenomes. One promising approach is to identify families

for which the presence indicates a particular clade [44]. We have

taken an alternative approach, that is to build resources and tools

that will allow phylogenetic analysis of all families in genomes or

metagenomes. This is one of the reasons behind the

development of SFAMs database [38], and also the development

of PhyloSift – a computational tool which can make use of any

family in automated phylogenetic analyses of metagenomic data.

Methods

Genome selection and database setup
Bacterial and archaeal genomes from the IMG database were

selected for phylogenetic marker identification. Only genomes that

were complete were included. We started our marker identifica-

tion process at 15 different taxonomic levels: the domain Archaea;

the phyla Actinobacteria, Bacteroides, Chlamydiae, Chloroflexi,

Cyanobacteria, Firmicutes, Spirochetes, Deinococcus-Thermus

and Thermotogae; the classes Alphaproteobacteria, Betaproteo-

bacteria, Gammaproteobacteria, Deltaproteobacteria and Epsi-

lonproteobacteria. Genomes that have undergone major genome

reductions, such as those of Mycoplasma [45,46] and gammapro-

teobacteria endosymbionts [47,48], were not included in this

study. Only one strain of the same species within Gammaproteo-

bacteria was selected if other strains did not contribute to the

phylogenetic diversity (PD) in the phylogenetic tree of bacteria.

A ssu-rRNA phylogenetic tree was built for all the genomes in

the selection. Alignments of ssu-rRNAs were extracted from the

greengenes database[49]. Fasttree was used for ssu-rRNA tree

building[50].

Measurement of universality, evenness, monophyly and
uniqueness for gene families for identifying PhyEco
marker candidates

To determine if a family is a suitable candidate of a PhyEco

marker for a given taxonomic group, we developed four

measurements: universality, evenness, monophyly, and unique-

ness.

Universality. How widely distributed a family is across a

taxonomic group. Universality is defined by equation 1:

Table 1. Summary of taxonomic group-specific PhyEco marker candidates.

Taxonomic group
Genome
Number Gene Number PD Coverage Monophyletic Value PhyEco Marker Candidates

Bacteria and Archaea 666 2,271,359 82.70 NA 40

Archaea 62 145,415 12.15 100.00 106

Bacteria 604 2,125,944 69.23 100.00 114

Actinobacteria 63 267,783 6.84 100.00 136

Bacteroides 25 71,531 5.12 100.00 286

Chlamydiae 13 13,823 0.69 100.00 560

Chloroflexi 10 33,577 2.66 100.00 323

Cyanobacteria 36 124,080 2.88 100.00 590

Deinococcus-Thermus 5 14,160 0.98 100.00 974

Firmicutes 106 312,309 13.49 88.70 87

Spirochaetes 18 38,832 2.68 100.00 176

Thermotogae 9 17,037 1.60 100.00 684

Alphaproteobacteria 94 347,287 8.66 100.00 121

Betaproteobacteria 56 266,362 3.71 100.00 311

Gammaproteobacteria 126 483,632 10.63 79.67 118

Deltaproteobacteria 25 102,115 4.42 100.00 206

Epsilonproteobacteria 18 33,416 2.43 100.00 455

PD (phylogenetic distance) and monophyletic value is based on a PHYML tree of small subunit rRNA of all the 666 genomes in the study. The total PD of the ssu-rRNA
tree is 82.70.
doi:10.1371/journal.pone.0077033.t001
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U~100|u=t ð1Þ

U is the universality value of a family, t is the total number of

genomes in the taxonomic group of interest, and n is the number of

genomes in which the family can be found.

Evenness. How uniform the number of representatives per

genome is for a family for a taxonomic group. Evenness is defined

by equation 2:

E~100|e
{4|

X
jNi{Naj
u ð2Þ

E is evenness value of a family, Ni is the number of family

members from the genome i, Na is the average number of family

members per genome, n is the number of genomes in which the

family can be found.

Monophyly. For any family, how monophyletic are the

representatives from a particular taxonomic group in a phyloge-

netic tree of the family across all genomes. We developed a

‘‘monophyletic value’’, which is based on Shannon entropy [51],

to measure the topological distribution of a family member in a

tree. If a family member can be broken into a number of

monophyletic clades, the monophyletic value is defined by

equation 3:

M~100|"
0:75|

X
ci=nð Þ| ln ci=nð Þ½ � ð3Þ

M is the monophyletic value, n is the total number of family

members in the tree, ci is the number of family members in the

monophyletic clade i.

We note our monophyly metric was designed to identify cases

where the phylogenetic tree of a particular gene family is similar to

the expected phylogenetic tree for the species being analyzed.

However, the metric we used only reflects tree topology, and it is

only effective in capturing almost perfect monophyletic clades. We

are in the process of improving the monophyletic measurement to

be more robust and reflect both tree topologies and branch

lengths.

Uniqueness. How distinct is the family in question from

other families. For this test we used profile hidden Markov models

(profile HMMs) [52] of each family. Uniqueness was measured in

terms of the results of searches of the family HMM profile against

all the peptide sequences encoded in the genomes in the

taxonomic group. The HMM search bit-score of any non-

family-member sequence has to be lower than all the family

members for a gene family to be considered unique. The larger the

distances between the family-members and non-family-members,

the more ‘‘unique’’ the family is. For the analysis reported in this

paper we used the following approach:

Pmember is the worst hmmsearch P value of the family members,

Pnonmember is the best hmmsearch P value of non-family members,

we only consider a family distinct if Pmember and Pnonmember satisfy the

following condition:

lg EmemberƒlcEuoum"mb"r{16:24|e
{0:015|lcEuoum"mb"r ð4Þ

Identification of PhyEco markers for a taxonomic group
All vs. all BLASTP searches were performed for the peptide

sequences encoded in all the genomes in a taxonomic group of

interest using an expected value cutoff of 1e-10. Those pairs of

proteins for the BLASTP hits covered 80% of the query and hit

sequences were considered ‘‘linked’’. The BLASTP similarity

scores were retrieved for all links. The Markov Cluster Algorithm

(MCL clustering) was performed for the links using an inflation

value of two. The resulting MCL clusters were regarded as

families. The families with four to 2000 members were then used

for PhyEco marker identification.

Each family was analyzed separately for potential as a PhyEco

marker using the protocol illustrated in the flowchart in Figure 1.

First, the peptide sequences from the family are aligned by

MUSCLE [53] and then a phylogenetic tree is inferred from the

alignment using Fasttree [50]. The subfamilies defined by the

clades in the tree are then analyzed one at a time for universality

and evenness. Those subfamilies that met the following criteria

were considered for further analysis as PhyEco candidates: present

in all or all but one of the genomes (universal) and present only

once in all or all but one of the genomes (even). For each subfamily

that passed the universality and evenness screening, the sequences

were aligned by MUSCLE [53] and HMM models were built

from the alignments by HMMER3 [52]. The HMM for each

subfamily was then searched against the entire collection of

proteins for all the genomes in the phylogenetic group of interest

[52]. Subfamily uniqueness was measured as described above with

only those passing the selection criteria being identified as

‘‘unique.’’ The final list of PhyEco markers for any group were

thus those that passed the universality, evenness and uniqueness

tests of this protocol.

As discussed above, the MCL method has the potential to

mistakenly split up families that should be together. To attempt to

correct for this limitation, we carried out single linkage clustering

to build another round of gene families. First, BLASTP links that

Figure 1. Flow chart of the PhyEco marker identification
pipeline.
doi:10.1371/journal.pone.0077033.g001
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connected to members of PhyEco marker families were excluded.

Second, gene families were built by using the single-linkage

clustering algorithm on the remaining BLASTP links. Finally, the

gene families were subjected to the same protocol as outline above

to identify additional PhyEco marker candidates.

Identification of PhyEco markers for ‘‘higher groups’’ by
coalescing together markers from ‘‘lower’’ groups

In our bottom up approach, to identify PhyEco markers for the

‘‘higher’’ level taxonomic groups (e.g., all bacteria plus archaea) we

needed to coalesce together PhyEco markers identified for each

‘‘lower’’ level phylogenetic group. This coalescing was done in the

following way. First, one representative sequence was generated

from each of the PhyEco markers’ HMM models by hmmemit

from HMMER3[52]. Then, an ‘‘All vs. All’’ BLASTP was

performed for the representative sequences using an e-value cutoff

of 1e-3. This was followed by single linkage clustering of the

BLASTP results to generate clusters of lower level PhyEco markers

that were similar to each other. We focused subsequent analysis on

the 404 of these clusters that contained more than three of the

lower level PhyEco marker representative sequences. For each of

the 404 clusters, alignments were built with MUSCLE [53]

followed by phylogenetic tree inference using Fasttree [50].

All clades in the trees that contain single representative from

different taxonomic groups in the study were gathered, and the

uniqueness of was measured using the approach outlined above.

382 ‘‘unique’’ clades were identified that each covered more than

four taxonomic groups, and all the sequences they represented

were retrieved to form 382 superfamilies. For each of these 382

superfamilies, a HMM profile was built and hmmsearch was

performed against all complete bacterial and archaeal genomes

[52]. The hmmsearch results were manually examined, and

additional sequences identified by the search were retrieved and

included in the superfamily. Alignments were built for all the

superfamilies by MUSCLE [53] and phylogenetic trees were built

by PHYML using JTT models [54]. Then, for each of the 382

superfamilies, universality, evenness and monophyletic values were

calculated at each of the following 18 taxonomic levels: the

domain Archaea and Bacteria; the phyla Actinobacteria, Bacte-

roides, Chlamydiae, Chloroflexi, Cyanobacteria, Firmicutes,

Proteobacteria, Spirochaetes, Deinococcus-Thermus and Ther-

motogae; the super-class beta/gamma proteobacteria; the classes

Figure 2. The universality, evenness and monophyletic value of the 40 Bacterial/Archaeal PhyEco marker candidates in different
taxonomic groups. PhyEco marker genes for the taxonomic groups are highlighted with white boxes.
doi:10.1371/journal.pone.0077033.g002
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Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria,

Deltaproteobacteria and Epsilonproteobacteria.

We then used these results to select PhyEco markers for the different

‘‘higher’’ taxonomic groups. To select PhyEco markers for the group

‘‘all bacteria and archaea’’ we required the product of universality,

evenness and monophyletic values to be greater than 729,000 for at

least a subset of taxonomic levels. We picked this value because it

represents the value we would see with a score of 90 for each metric.

We required this value to be exceeded in a minimum of seven of the

taxonomic levels measured including the ‘‘all bacteria’’ and ‘‘all

archaeal’’ sets. 40 families meeting this criterion were identified. To

select PhyEco markers for the group ‘‘all bacteria’’ we again required

the product of universality, evenness and monophyletic values to

exceed 729,000 for a subset of the taxonomic levels included in this

group. In this case we required this value to be exceeded in a minimum

of six of the taxonomic levels measured (including the ‘‘all bacteria’’

one). 74 ‘‘all bacteria’’ PhyEco markers were identified with these

restrictions.

Table 2. Summary of the 40 PhyEco marker candidates identified for the group ‘‘Bacteria plus Archaea.’’

Marker ID Gene Family Descriptions Correspondent AMPHORA Marker

BA00001 ribosomal protein S2 rpsB

BA00002 ribosomal protein S10 rpsJ

BA00003 ribosomal protein L1 rplA

BA00004 translation elongation factor EF-2 -

BA00005 translation initiation factor IF-2 -

BA00006 metalloendopeptidase -

BA00007 ribosomal protein L22 -

BA00008 ffh signal recognition particle protein -

BA00009 ribosomal protein L4/L1e rplD

BA00010 ribosomal protein L2 rplB

BA00011 ribosomal protein S9 rpsI

BA00012 ribosomal protein L3 rplC

BA00013 phenylalanyl-tRNA synthetase beta subunit -

BA00014 ribosomal protein L14b/L23e rplN

BA00015 ribosomal protein S5 -

BA00016 ribosomal protein S19 rpsS

BA00017 ribosomal protein S7 -

BA00018 ribosomal protein L16/L10E rplP

BA00019 ribosomal protein S13 rpsM

BA00020 phenylalanyl-tRNA synthetase a subunit -

BA00021 ribosomal protein L15 -

BA00022 ribosomal protein L25/L23 -

BA00023 ribosomal protein L6 rplF

BA00024 ribosomal protein L11 rplK

BA00025 ribosomal protein L5 rplE

BA00026 ribosomal protein S12/S23 -

BA00027 ribosomal protein L29 -

BA00028 ribosomal protein S3 rpsC

BA00029 ribosomal protein S11 rpsK

BA00030 ribosomal protein L10 -

BA00031 ribosomal protein S8 -

BA00032 tRNA pseudouridine synthase B -

BA00033 ribosomal protein L18P/L5E -

BA00034 ribosomal protein S15P/S13e -

BA00035 Porphobilinogen deaminase -

BA00036 ribosomal protein S17 -

BA00037 ribosomal protein L13 rplM

BA00038 phosphoribosylformylglycinamidine cyclo-ligase rpsE

BA00039 ribonuclease HII -

BA00040 ribosomal protein L24 -

doi:10.1371/journal.pone.0077033.t002
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