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Alzheimer’s disease (AD) is a neurodegenerative disorder that accounts for nearly 70% of the more than 46 million dementia cases
estimated worldwide. Although there is no cure for AD, early diagnosis and an accurate characterization of the disease progression
can improve the quality of life of AD patients and their caregivers. Currently, AD diagnosis is carried out using standardized mental
status examinations, which are commonly assisted by expensive neuroimaging scans and invasive laboratory tests, thus rendering
the diagnosis time consuming and costly. Notwithstanding, over the last decade, electroencephalography (EEG) has emerged as a
noninvasive alternative technique for the study of AD, competing with more expensive neuroimaging tools, such as MRI and PET.
This paper reports on the results of a systematic review on the utilization of resting-state EEG signals for AD diagnosis and
progression assessment. Recent journal articles obtained from four major bibliographic databases were analyzed. A total of 112
journal articles published from January 2010 to February 2018 were meticulously reviewed, and relevant aspects of these papers
were compared across articles to provide a general overview of the research on this noninvasive AD diagnosis technique. Finally,
recommendations for future studies with resting-state EEG were presented to improve and facilitate the knowledge transfer
among research groups.

1. Introduction

The term dementia is used to characterize several neurode-
generative disorders caused by damage and death of neurons,
provoking a disturbance of cognitive and behavioral func-
tions. Among the different forms of dementia, Alzheimer’s
disease (AD) is the most common, accounting for nearly
70% of the dementia cases worldwide. It mostly affects people
over 65 years of age and the rate of incidence grows exponen-
tially with age [1–3]. Thus far, there is no cure for AD, only
palliative treatments that temporarily slow the worsening of
symptoms, aiming to improve the quality of life of patients
and caregivers [4].

In 2015, 46 million people were diagnosed with dementia
worldwide and this number is projected to grow to 66 million

by 2030, and to 115 million by 2050 [3]. Given the aging
population, much of the dementia cases (approximately
70%) will take place in low- and middle-income countries.
Furthermore, dementia has significant social and economic
impacts. For example, in 2015, the estimated worldwide cost
of dementia was approximately 818 billion US dollars. By
2030, the financial burden is expected to increase to 2 trillion
US dollars [3]. Due to evidences on the global prevalence and
incidence of dementia, associated mortality, and global eco-
nomic cost, the World Health Organization made an urgent
call to include dementia as a priority in health agendas
around the globe in order to raise awareness, improve early
diagnosis, and provide better care and support to patients,
families, and caregivers [1]. Moreover, unlike other health
problems which have reported declining incidence over
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recent years, the number of deaths caused by AD has
increased by 89% between 2000 and 2014 [3].

According to symptomatology, AD has been divided in
three stages: preclinical, mild cognitive impairment, and
dementia due to AD [5].

(1) Preclinical AD. Changes in the brain, blood, and
cerebrospinal fluid related to AD start to occur, but the
patient does not show any symptoms. This phase may start
up to years or decades before the first clinical symptoms of
dementia [6, 7]. The possibility of detecting AD in this pre-
clinical stage would offer a pivotal opportunity for therapeu-
tic interventions [8].

(2) Mild Cognitive Impairment (MCI). In this early stage,
the person still functions independently but may feel some
memory lapses and difficulties coming up with the right
word or remembering the location of familial places.
Friends and family may notice these small difficulties. This
stage is often referred as mild or early-stage AD disease.
The term MCI has been frequently used in research trials
with the objective of including as many individuals as pos-
sible with symptoms that were not severe enough to meet
current AD diagnostic criteria but might at some point in
time. However, it has been observed that 30% of subjects
diagnosed as MCI will not progress to AD dementia in a
near future [9–11].

(3) Dementia due to AD. The patient’s ability to function in
daily life is seen affected by impairments in memory, think-
ing, and behavior [12]. This stage is frequently subdivided
into the following:
(a) Moderate or Middle-Stage AD. In this phase, usually the
longest one, the person may experience greater difficulty to
execute daily tasks such as paying bills, recalling own address,
getting dressed, or controlling bladder and bowels. The
patient notices these symptoms, which leads to frustration
and anger. Also, in this stage, some psychological
symptoms start to appear, e.g., suspiciousness, delusions, or
compulsive behavior.
(b) Severe or Late-Stage AD. In this final stage, individuals
start losing their ability to interact with the environment
and their memory and cognitive skills are severely affected.
In this phase, the patient needs 24-hour personal care.

The pathophysiological process of AD is thought to
start up to 20 years before clinical symptoms can be detect-
able [6, 8]. In the last two decades, evidence has shown that
the correspondence between pathology and clinical symp-
toms is not always consistent [5]. Indeed, the pathology and
clinical symptoms in AD are best conceptualized as separated
continua, which may evolve in parallel but with a temporally
offset. [6]. As such, nowadays, AD is regarded as continuum
rather than discrete stages [7, 13].

Accurate diagnosis is a true challenge, as AD pathophysi-
ological processes may start up to 20 years before clinical
symptoms can be detectable [8, 10]. Also, AD symptoms are
commonly confused with normal aging processes, thus
frequently delaying diagnosis [9]. Being able to diagnose AD
in its early stage would give the patients and their families

time to prepare themselves emotionally and financially for
the years to come. An accurate early diagnosis would also help
patients to preserve their independence longer and prevent
psychiatric-related symptoms such as depression or psy-
chosis, thus reducing personal and societal costs associated
with AD [14]. Moreover, it is likely that the effectiveness
of novel drugs for AD symptom treatment will be higher
in early stages of the disease, before neurodegeneration is
irreversible or too extended [15].

Today, definite AD diagnosis is only possible postmor-
tem when analysis reveals the structural brain damage
characteristic of the disease. Typically, accuracies up to 90%
have been reported with current diagnosis methods, such as
neurological tests and medical records. The current clinical
diagnostic criteria for AD were developed by the National
Institute on Aging and the Alzheimer’s Association (NIA-
AA) [5, 6, 11, 12]. These criteria are an update of the previous
widely used guidelines established in 1984 by the National
Institute of Neurological and Communicative Disorders
and Stroke and the Alzheimer’s Disease and Related Disor-
ders Association (NINDS-ADRDA) [16]. These updated
guidelines include the use of neuroimaging and cerebrospinal
fluid (CSF) biomarkers to support a diagnosis of AD in
symptomatic individuals [5]. Additionally, the European
Federation of the Neurological Societies (EFNS) also
developed a guideline to diagnose and monitor AD [17].
The most used test to measure cognitive ability for AD
diagnosis is the Mini Mental State Examination (MMSE)
[18, 19]. The Montreal Cognitive Assessment (MoCA)
[20] and Addenbrooke’s Cognitive Examination revised
(ACE-R) [21] are also frequently used in clinical practice.
Other examples of neurological tests are the Severe Cognitive
Impairment Scale, the Alzheimer’s Disease Assessment Scale
Cognitive, the neuropsychological test battery, and the Severe
Impairment Battery [9]. Moreover, the Trail Making Test
(TMT) [22] and the clock drawing test [23] focus not only
on measuring cognitive abilities but also on attention and
executive functions. The Rey Auditory Verbal Learning Test
and the category fluency test, in turn, also measure patient
construction praxis ability [24]. Additionally, other disorders
that also lead to dementia as vascular brain injury, Lewy body
diseases, and Parkinson disease in some cases are also comor-
bid to AD [25]. The differential diagnosis between AD and
these disorders in their early stages is strengthened by the
usage of techniques that access specific biomarkers as some
early symptoms overlap [26].

Relying on neurological tests and the evaluation of
medical records require experienced clinicians and lengthy
sessions, rendering AD diagnosis irreproducible and time
consuming. In response to these drawbacks, in the last few
years, there has been an increase in the use, research, and
development of biomarkers [9]. These biomarkers play a
central role in the recent research diagnosis criteria for
AD [9, 13, 27]. Biomarkers can be divided in three main
categories: A, T, and N, where the first two categories
include biomarkers that measure the brain amyloidosis and
tauopathy, respectively, e.g., amyloid and tau tracer PET
(positron emission tomography) scans, and CSF concentra-
tions of Aβ142 and P-tau and category N encompasses

2 Disease Markers



biomarkers that measure neurodegeneration or neural injury
(e.g., CFS T-tau, FDG PET, and atrophy in MRI) [13]. It has
been found that Aβ42, the most common CSF biomarker,
presents lower values in AD patients compared to healthy
individuals [28]. However, to obtain a CSF sample, a lumbar
puncture is required, making this technique invasive, thus
hindering its use in daily clinical practice. As an alternative,
blood biomarkers such as plasma T-tau are also in the search,
as they can provide similar information as CSF but are a less
invasive and expensive technique [29]. Neuroimaging tools
such as magnetic resonance imaging (MRI), computed
tomography (CT), and PET allow clinicians the investigation
of brain damage extension due to AD in vivo. However, once
the disease-related structural damage is detectable by the
current spatial resolution of these neuroimaging techniques,
AD is already well advanced, i.e., the atrophy in the brain is
already extended [9]. Moreover, these neuroimaging tools
are expensive and time consuming and require intervention
by experts. Also, not all hospitals can afford MRI and PET
scanners, particularly in low- and middle-income countries
or remote regions, thus leading to displacements that are
neither comfortable nor practical for the patient. Unfortu-
nately, wide utilization of existing CSF-derived biomarkers
and neuroimaging techniques is not practical, as these
techniques are either invasive or costly. Therefore, an alter-
native or supporting technique that allows easier and more
convenient AD diagnoses is needed. This is where electroen-
cephalography- (EEG-) based biomarkers have come in.

EEG is a technique that consists of recording the changes
in time of the electrical activity in the cerebral cortex, pro-
duced by postsynaptic potentials from thousands of neurons
with similar spatial orientation. These electric potentials are
measured by electrodes placed on the scalp. The spatial
resolution of EEG is related to the number of electrodes used
and their placement, or layout, on the scalp. The most
utilized layout is the international 10-20 system, commonly
consisting of 21 electrodes; higher density variants of the
10-20 system such as 10-10 and 10-5 systems are utilized
as well, usually with 64 and 128 electrodes, respectively,
[30] as well as the alternative layouts Maudsley [31] and
Geodesics positioning systems [32]. In recent years, quantita-
tive EEG (qEEG, henceforth simply EEG) has been proven to
be a reliable clinical tool for the diagnosis and study of
illnesses and cortical disorders such as Huntington disease
[33], autism spectrum disorders [34], epilepsy and seizure
[35], cerebral ischemia [36], frontotemporal dementia [37],
and Parkinson’s disease dementia [38]. Furthermore, the
differential diagnosis between AD and other diseases that
lead to dementia as vascular brain injury [39, 40] and Lewy
body diseases [41, 42] was assessed with EEG. In the
analysis, EEG signals are commonly divided into 5 major
frequency bands, namely, delta (δ) 0.1–4Hz, theta (θ) 4–
8Hz, alpha (α) 8–12Hz, beta (β) 12–30Hz, and gamma
(γ) > 30Hz. Moreover, further divisions in these bands
are considered (low alpha, high alpha, low beta, etc); how-
ever, the frequency limits for the subbands are not stan-
dardized across studies. Each frequency band conveys
different information about brain functionality and syn-
chronization [43–45].

Since EEG signals reflect functional changes in the cere-
bral cortex, EEG-based biomarkers can be used to assess neu-
ronal degeneration caused by AD progression (biomarkers in
category N according to [13]), long before actual tissue loss
or behavioral symptoms appear. As such, EEG is a promising
technique with the potential of serving as support and/or
alternative to existing tools (e.g., CSF and MRI/PET), but
with the advantage of being noninvasive, portable, and less
expensive. Furthermore, EEG has better temporal resolution
than other neuroimaging techniques [45, 46]. EEG signals
have been studied in healthy elderly people, showing that
there are no substantial changes in EEG associated to healthy
aging, making EEG a suitable technique for AD and other
dementia assessment [47]. One of the major shortcomings
of the EEG signal lies in its sensitivity to signal artifacts, such
as eye blinks and movements, heartbeats, cranial muscle
activity, and power grid interference. These artifacts have
detrimental effects on EEG signal quality, reducing the AD
diagnosis performance.

1.1. EEG Recording Conditions and Reported AD Effects.Over
the last decades, many studies have investigated the effects of
AD and its progression on EEG signals. Studies have made
use of EEG signals under diverse recording conditions, which
can be divided into two major groups:

(1) Resting-State EEG Recordings. Spontaneous EEG activity
is recorded during the absence of any kind of stimulus, thus
measuring the brain background activity. As the participant
is not required to perform any specific task, EEG acquisition
becomes simpler, more comfortable, and less stressing for the
patient, especially for elderly individuals [48]. Resting-state
EEG recordings comprehend recordings in the resting-
awake state (either open or closed eyes) and recording during
sleep. Four typical effects of AD on resting-state EEG
signals have been repeatedly observed:
(a) Slowing. Power spectrum shifts from high-frequency
components (alpha, beta, and gamma) towards low-
frequency components (delta and theta) have been
commonly seen in AD patients [14, 49, 50]. This shift is
proportional to the progression of AD and is thought to
be the result of loss of cholinergic innervations in AD
patients. Features derived from the power spectrum, power
spectrogram, and wavelet analysis have been used to quan-
tify this slowing of the EEG.
(b) Reduced Complexity. A decrease in the complexity of the
brain electrical activity has been observed in AD patients
compared with healthy controls [14, 50–52]. This decrease
is likely caused by massive neuronal death and reduced con-
nections in cortical regions, leading to simpler EEG dynam-
ics. Some signal processing techniques employed to study
the complexity of EEG signals are entropy measures, auto-
mutual information, Lempel-Ziv complexity, fractal dimen-
sion, and Lyapunov exponent.
(c) Decrease in Synchronization.Manifested as a reduction in
connectivity between cortical regions, this has been seen in
many AD patients. The cause behind this phenomenon
is not well understood, although it is thought to be related
to the atrophy in the communication of neural networks
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[53–56]. The techniques used to study this effect are Pear-
son correlation coefficient, magnitude coherence, phase
coherence, Granger causality, phase synchrony, global field
synchrony, and cross-frequency coupling. It is interesting
to mention that some studies, contrary to the majority,
have shown an increase of synchrony in patients with
MCI and AD, which is thought to be caused by compen-
satory mechanisms in the brain [57].
(d) Neuromodulatory Deficits. Amplitude modulation
analysis has recently been proposed to quantify EEG rhythms
and the neuromodulatory activity of the brain via cross-
frequency interaction effects [58].

(2) Event-Related EEG Recordings. EEG signals are recorded
in relation to the occurrence of a specific event, i.e., signals
are time locked. Besides being time locked, EEG activity is
also phase locked and thus receives the name of event-
related potentials (ERP). When the EEG activity is not phase
locked, it is called induced activity [59, 60] and can be ana-
lyzed either by event-related (de) synchronization (ERD/
ERS) [44, 61] or by event-related oscillations (ERO) [62].
Events can be related to sensorial perceptive, motor, and cog-
nitive processes [43, 45, 62].

In the literature on AD, recent reviews have been pub-
lished covering the use of event-related EEG for AD diagno-
sis [62–64]. While event-related EEG recordings offer the
opportunity to examine the effect of AD on specific brain cir-
cuits, these recording conditions are not ideal for most AD
patients, since even from early AD stages, people experiment
an increase in anxiety and anger, as well as a decrease in the
desire in having new experiences. Therefore, even the perfor-
mance of a simple memory task might cause discomfort and
anxiety to the patient; they might feel disoriented or unable
to complete it [65–68]. On the other hand, resting-state pro-
tocols do not require external stimuli and thus they are sim-
pler and more comfortable for the patients. Moreover, such
protocols also have fewer artifacts.

Regarding resting-state analysis for AD diagnosis,
some recent reviews have also been written. However,
none of these have treated exclusively the specific topic
of EEG-based AD diagnosis. For instance, some reviews
do not study EEG as the main technique for diagnosis
[9, 47, 69–74], while others are exclusively focused on
the synchronization of EEG signals [55, 56]. Moreover,
other publications provide a broader review of the whole
dementia spectrum and not only AD [24, 46, 70, 71, 75].
Main feature categories for AD diagnosis are extensively
discussed in revisions [14, 50, 57]. As such, the present
study complements previous EEG-based AD diagnosis
reviews by systematically and exclusively reviewing articles
on resting-state EEG, to provide a systematic overview of
the current state of the art.

1.2. Aim of the Review. This systematic review will focus
on recent studies on resting-state EEG for AD diagnosis,
describing and comparing the crucial stages in EEG-
based AD diagnosis, such as EEG signal acquisition, pre-
processing, artifact handling, and feature extraction and
classification. Moreover, pointing out common practices,

differences and consensus in the utilization of resting-
state EEG reported limitations and recommendations for
several experimental stages ranging from population
characteristics to results reporting for future studies. We
hope that this review will boost the research on this
topic, leading to more reliable EEG resting-state AD
diagnosis techniques. The remainder of this article is
organized as follows. Section 2 describes the methods
and steps carried out in this systematic review. Section
3 presents and discusses the review results, with a list
of recommendations for future EEG-based AD diagnosis
studies. Finally, the conclusions are presented in Section 4.

2. Methods

A survey on English peer-reviewed journal articles pub-
lished between January 2010 and February 2018 was per-
formed for this review. Four major bibliographic databases
were queried, namely, PubMed, Web of Science, IEEE
Xplore, and Scopus, using the following search terms:

(1) ∗EEG

(2) Electroencephalogr∗

(3) Alzheimer∗

(4) Diagnos∗

These search terms were combined in the following rule:
(1 OR 2) AND 3 AND 4. Resulting journal articles were
selected or rejected based on the criteria presented in Table 1.

Along with the mentioned search terms, studies that used
other modalities besides EEG were further analyzed and
divided in two types: (i) those that used features from other
modalities combined with EEG features for AD diagnosis
and (ii) those that used other modalities to verify and
compare the results obtained with only EEG. The former
papers were excluded, as we want to focus only on EEG-
based diagnosis of AD; the latter were included.

Eligibility assessment was performed by at least two
independent researchers by reading the article title and,

Table 1: Eligibility criteria.

Inclusion

Studies using EEG to assess AD progression

Studies using EEG to AD diagnosis

Studies using EEG to perform differential diagnosis between AD
and other dementias

Exclusion

Studies on AD-related epilepsy

Studies without resting-state EEG recordings

Studies focused on dementias other than AD

Studies focused on the effects of AD treatment drugs

Studies on animals (nonhuman studies)

Studies not treating MCI as a prodromal stage for AD

Review articles
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when the article title did not provide enough information
to be selected or rejected, the abstract was also read. In
the cases where the assessors independently disagreed on
the inclusion or exclusion of a paper, the final decision
was made after a discussion between the two. Lastly, some
articles were rejected after careful reading of the papers
when it became clear that it did not meet the inclusion
criteria. In order to keep track of the relevant information
while reading the articles, a data extraction sheet was
developed. For each article selected, 21 data items were
extracted and grouped into five categories: study rationale,
study population, experiment setup, EEG processing, and
reported outcomes.

The category study rationale includes article elements
that are related to the study aim, studied groups, and combi-
nation of other types of dementia when it applies. The second
category, study population, focuses on elements related to
subjects, such as the number of participants and whether
the cohorts have been matched by sample size, age, gender,
and education level. In the category experiment setup, in turn,
items are associated to the reported experiment protocol,
number of electrodes used, and extra bioelectrical signals
acquired simultaneously, as well as recording conditions
and experiment duration. The EEG processing category
includes preprocessing techniques, bandwidth of EEG
signals, artifact rejection and/or correction methods, fre-
quency sampling used for feature extraction, EEG epoching,
source localization when used, and feature types. The last
category, reported outcomes, gathers the reported results

with different study goals/protocols and the reported limi-
tations. These five categories and their respective subitems
are described in Table 2.

This review was written following the PRISMA statement
scheme for reporting systematic reviews [76].

3. Results and Discussion

A total of 921 journal articles were found in the database
queries, with 714 unique records remaining after duplicates
were removed. Through title and abstract screening, 289
and 158 articles were rejected respectively, as they did not
meet the inclusion criteria. A total of 267 articles met all
the previously established inclusion criteria. After full-text
examination, only 112 articles were included in the system-
atic review. Figure 1 depicts the abovementioned selection
process. The geographic distribution of the papers, according
to first author institution, is detailed in Figure 2. The tempo-
ral distribution of articles published between 2010 and 2018
is shown in Figure 3. The items defined in Table 2 were
extracted from each article, and the following subsections
present a direct comparison on these items across the
reviewed articles.

3.1. Study Rationale

3.1.1. Study Goal. According to the reported aim of the arti-
cles, two major goals were identified: (1) discriminative (or
diagnosis), i.e., explore the difference in EEG-based features

Table 2: Extracted items from each article.

Category Data item Description

Study rationale
Study goal Application or aim of the article

Other dementias Differential diagnosis of different types of dementias with respect to AD

Study population

Sample size Size of the population in the study

Group matching Groups matched (or not) by sample size, age, gender, and education level

Following of MCI participants Follow-up of MCI participants, when required

Experiment setup

Other modalities Other modalities utilized beside EEG

Number of electrodes and layout Electrode number and positioning system

External channels Report the acquisition (or not) of EOG and ECG signals

Resting-state recording state EEG recorded only in resting state or with task performing too

Experiment duration Session duration of each experiment

EEG processing

Preprocessing Survey on preprocessing techniques

EEG bandwidth Bandpass filtering of EEG signal and type of filters used

Artifact handling Artifact rejection and/or correction methods

Effective sampling frequency Sampling frequency of EEG data for feature extraction

EEG epoching Epoching process, length, and quantity of epochs

Effective EEG signal duration Length of EEG signal used for feature extraction

Source localization Survey on source localization methods when required

EEG feature types Survey on the types of EEG features used

Reported outcomes

Discriminative studies Methods for discriminative task and reported results

Assessment studies Methods for assessment task and reported results

Reported limitations Limitations reported in the study
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among populations, MCI, mild AD, severe AD, other types of
dementias, and healthy normal elderly controls (Nold) and
(2) progression assessment, i.e., find correlates between
EEG-based features and clinical markers related to the
MCI-to-AD conversion and AD severity progression. The

majority (72) fell exclusively in the diagnosis category,
whereas 18 articles were included in the progression assess-
ment category and 22 studies were double aimed. The articles
belonging to each study goal and populations investigated are
presented in Table 3.

PubMed (n = 154)
IEEE Xplore (n = 10)
Web of Science (n = 407)
Scopus (n = 350)

Articles identified
through database

searching
(n = 921)

Records after duplicated
removed
(n = 714)

Screened by title
(n = 714)

Excluded
(n = 289)

Screened by abstract
(n = 425)

Excluded
(n = 158)

Studies included in the
analysis

(n = 112)

Excluded
(n = 155)

Screened by full-text
(n = 267)

Figure 1: Diagram showing the selection process of articles from PubMed, IEEE Xplore, Web of Science, and Scopus.

North America

South America
Africa/W. Asia

E. Asia/Pacific

Europe

20

4

62

15

11

Figure 2: Distribution of selected articles according to world regions.
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3.1.2. Combinations with Other Dementias. As mentioned
previously, dementia is a term that involves different dis-
orders and diseases, one of them is AD, which accounts
for the great majority of dementia cases. Having similar
symptoms, around 10% of dementia cases are difficult to
diagnose with reasonable confidence and it is not uncom-
mon in clinical practice to mix dementia diagnoses [130].
As such, from the reviewed studies, ten studied the poten-
tial of EEG-based features to perform a differential diagno-
sis among types of dementia. In Table 4, a list of other
dementia types explored by those studies is presented. In
those studies, distinctions in spectral slowing features
between AD and other dementias are identified for vascu-
lar dementia [26, 39, 130], frontotemporal dementia (FTD)
[37, 130, 175, 176], Lewy body dementia (DLB) [130, 176],
and Parkison’s disease dementia (PDD) [130]. Moreover,
disparity in synchronization measures is reported between
AD, PDD [38, 42], DLB and FTD [42]. Additionally, a
combined model of EEG and MRI improved discrimina-
tion between AD and DLB [41].

3.2. Population Characteristics

3.2.1. Number of Subjects. The number of participants
reported in each paper varied greatly, ranging from 12 to
654 subjects as shown in Figure 4. From the total 112 articles,
84 unique datasets were utilized, since 11 were used by more
than one study, as presented in Table 5. Dataset diversity is
desirable to avoid biases and overfitting in the models.
Unfortunately, there is also a great diversity in the dataset
acquisition variables such as electrode montage, number of
electrodes, sampling frequency, and EEG recording condi-
tions. These differences among datasets make it difficult
and sometimes even impossible to evaluate developed
methods across different datasets.

3.2.2. Group, Age, Education, and Gender Matching. In most
studies, the number of participants per group is well balanced
between healthy controls, AD patients and, in some cases,
MCI patients. Notwithstanding, 15 studies only included
one group and this was the case of most studies in the pro-
gression category (Table 3). As detailed in Table 6, 56 from
a total of 97 studies exploring the difference between two
populations or more are balanced in relation to the number
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Figure 3: Number of reviewed articles by publication year.

Table 3: Study goal description.

Study type Study goal Articles

Diagnosis (72)

AD vs Nold (48) [58, 77–123]

MCI vs AD (2) [124, 125]

MCI vs Nold (4) [126–129]

AD vs Nold vs others (6) [37–41, 130]

AD vs MCI vs Nold (12) [131–142]

Progression
assessment (18)

AD (3) [143–145]

AD vs Nold (1) [146]

MCI vs AD (3) [147–149]

MCI (11) [150–160]

Diagnosis and
progression
assessment (22)

AD vs Nold (11) [66, 161–170]

AD vs MCI vs Nold (4) [171–174]

AD vs Nold vs others (2) [26, 175, 176]

AD vs others (1) [42]

MCI vs AD (3) [177–179]

Table 4: Combination of AD diagnosis with other dementias.

Type of dementia Articles

VaD [26, 39, 40]

FtD/FTLD [37, 175]

DLB [41]

PDD [38]

PDD/DLB [176]

PDD/DLB/FtD [42]

PDD/DLB/FtD/VaD [130]

VaD: vascular dementia; FtD: frontotemporal dementia; FTLD:
frontotemporal lobar degeneration; DLB: Lewy body dementia; PDD:
Parkison’s disease dementia.
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Figure 4: Number of subject histogram.
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of subjects. Age, education, and gender are also possible con-
founding factors that influence AD diagnosis [145, 162].
From the 97 studies that included a healthy control group,
65 matched groups for age, 27 for gender, and 25 for years
of education. In total, only 8 studies [26, 37, 66, 81, 103,
115, 124, 176] paired groups for number of subjects, age,
education, and gender. Some studies did not inform group
matching for some of the variables; thus, they were con-
sidered as not paired for these variables.

3.2.3. Following of MCI. Forty studies included MCI partici-
pants, as detailed in Table 3. The aim of these studies was
to investigate EEG-based biomarkers to discriminate or char-
acterize early AD. Among these, only thirteen [124, 125, 127,
134, 135, 147–149, 151, 159, 177–179] reported follow-up
information on these patients. AD conversion rate in MCI
stands between 70 to 80%, whereas the rest of these patients
can continue stable or convert to other dementias [181]. In
this way, assuming MCI condition as a prodromal, AD stage
might introduce bias in reported results. On the other hand,
MCI patients who converted to AD can be considered as
early AD. Thus, longitudinal studies are recommended as
they can provide a more homogeneous group classification.

3.3. Experimental Setup

3.3.1. Combination with Other Modalities. When EEG
recordings were utilized along with other techniques such
as MRI, PET, and CSF analyses, only studies that reported
only-EEG-based diagnosis or assessment were considered.
A total of 92 articles used exclusively EEG for their studies.
Nevertheless, as other biomarkers have been explored and
validated by the clinical community (e.g., CSF and MRIs),
comparisons between these modalities and EEGs are very
useful. Table 7 shows other modalities combined with EEG
and the biomarkers derived from them.

3.3.2. Number of EEG Electrodes and Layout. The reported
number of electrodes used for EEG signal acquisition in the
reviewed studies varies greatly, from as low as one to as high

as 256 electrodes (Table 8), being 19 electrodes the most
common number (53 studies). The decision regarding the
number of electrodes is driven by the trade-off between spa-
tial resolution and participant comfort. EEG systems with 32
or more channels are cumbersome and its electrode place-
ment/adjustment can take around one hour or even longer.
Long pretest procedures may provoke drowsiness, fatigue,
stress, and/or alternate mental states that may alter EEG pat-
terns and, consequently, study outcomes [85]. Another point
to be considered, detailed in subsequent Section 3.4.7, is the
minimal density required in source location analysis, as
greater numbers of channels increase precision [182].
Regarding electrode layout, 107 studies used the 10-20 inter-
national positioning system (and its variations, 10-10 or 10-5
systems) or the Maudsley system; the remaining five studies
[77, 98, 99, 124, 128] acquired EEG signals with 110 or more
electrodes using the geodesic system.

3.3.3. Additional Channels. During EEG recordings, it is
common practice to acquire simultaneously electrooculo-
gram (EOG) and electrocardiogram (ECG) signals to moni-
tor eye movement and heart activity, respectively. EOG and
ECG are helpful as reference for cleaning the EEG signals
as ocular and heart activity artifacts will be easier to detect
and clean. Forty-one studies mention the registration of
EOG signals in their studies [42, 66, 81, 82, 89, 103, 115,
130, 131, 133, 136–139, 141, 143–147, 150, 152–160, 162,
164–166, 169, 170, 172, 174–177] and twelve mention the
use of ECG [38, 42, 131, 144–146, 161–163, 168, 172, 175].

3.3.4. Resting-State Recording Conditions. Resting-state EEG
can be recorded under two different conditions: sleeping
and resting awake (either open or closed eyes). From the

Table 5: Datasets used repeatedly in the selected studies.

Datasets used in more than one study Articles

22 subjects (11 AD, 11 Nold) 4 [80, 108–110]

24 subjects (10 mild AD, 14 Nold) 2 [91, 92]

27 subjects (20 probable AD, 7 Nold) 3 [104–106]

28 subjects (14 probable AD, 14 Nold) 3 [120–122]

34 subjects (22 probable AD, 12 Nold) 2 [112, 114]

34 subjects (17 AD, 17 Nold) 3 [77, 98, 111]

48 subjects (17 early AD, 16 MCI, 15 Nold) 4 [136–139]

62 subjects (3 databases: (a) 17 mAD, 24
Nold; (b) 5 mAD and 5 Nold; (c) 8 mAD
and 3 Nold)

3 [78, 93, 101]

74 subjects (74 MCI)
9 [147, 152, 154,
156–160, 180]

79 subjects (79 probable AD) 4 [144–146, 162]

220 subjects (120 AD, 100 Nold) 2 [81, 115]

Table 6: Group matching according to the number of subjects, age,
gender, and education.

Group matching Articles

One group only (15) [143–155, 158, 166]

Number, age, gender,
education (8)

[26, 37, 66, 81, 103, 115, 124, 176]

Number, age, gender (10)
[38–40, 86, 89, 90, 102,

118, 119, 173]

Number, age, education (7) [77, 95, 98, 99, 111, 164, 165]

Age, gender, education (4) [82, 128, 162, 168]

Number, age (18)
[42, 80, 94, 100, 108–110, 112,

120–122, 132, 134, 136–139, 172]

Number, gender (2) [88, 142]

Number, education (3) [58, 79, 167]

Age, gender (3) [78, 84, 123]

Age, education (3) [129, 169, 171]

Number (8) [83, 87, 97, 107, 117, 135, 140, 163]

Age (12)
[41, 91, 92, 96, 113, 114, 125–127,

141, 175, 178]

Not paired or no
information (19)

[85, 93, 101, 104–106, 116, 130, 131,
133, 156, 157, 159–161, 170, 174,

177, 179]
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reviewed articles, the most common recording condition was
resting awake eyes closed (EC), reported in 109 studies. None
of the reviewed articles acquired EEG during sleep, or solely
during resting awake eyes open (EO). Taking into account
that the vast majority of participants are elderly and around
half of them suffer from AD or MCI, resting-awake condi-
tions are the most comfortable recording condition for
participants, as they are not required to perform any mental
task, which could be confusing or frustrating for these indi-
viduals [56]. Moreover, resting-awake conditions reduce
artifacts due to head movement- and in the most common
case of EC also eye movement-related artifacts. Conversely,
there are some studies that hypothesize that recording EEG
under certain tasks may lead to higher discrimination power,
since those tasks can be designed to probe specific brain
regions and pathways affected by AD [14, 91]. In addition
to resting-state recordings, 11 studies also reported EEG
recorded during sensory stimulation or cognitive tasks.
Table 9 presents the EEG recording conditions utilized in
each reviewed article.

3.3.5. Experiment/Signal Duration. The total duration of the
EEG recording session was reported in 82 articles. This is
important as long sessions can have detrimental effects for
wet electrodes and cause alterations in participant mood
and compliance [183, 184]. The reported recording times
varied from two up to 33 minutes, with 10 minutes being
the average duration. Table 10 summarizes the EEG session
length when reported.

3.4. EEG Signal Processing

3.4.1. Preprocessing. In a broad sense, EEG signal preprocess-
ing stands for the manipulations performed on the raw
acquired data in order to prepare it for feature extraction in

the next processing phases [43–45]. Most of these techniques
are common to almost all neuroscience EEG studies, not only
to AD diagnosis. With preprocessing techniques, desired
spectral components of the acquired EEG signals are
enhanced and noise is removed; this is typically performed
with digital filters used in the time domain. The most com-
mon preprocessing techniques include band-stop or notch
filters to remove power grid interference (50 or 60Hz,
depending on the country), bandpass filtering to enhance
only EEG-related spectral components, resampling, EEG
rereferencing, and bad channel rejection or interpolation.
Table 11 shows the reported preprocessing techniques used
in the reviewed articles.

3.4.2. EEG Bandwidth. The most common approach is the
use of digital bandpass filters to enhance EEG-related spec-
tral components. As each study had specific interest in differ-
ent spectral components, diverse bandwidths have been
reported. Lower bound of the EEG bandwidth is usually in
the range of 0.1 to 4Hz; however, the upper bound varies
in a wider range, from 20 to 200Hz. The most common
upper limit was 70Hz (31 studies) and the most used lower
limit was 0.5Hz (36 studies). Tables 12 and 13 present,
respectively, the different upper- and lower-frequency
bounds used in the reviewed articles.

Moreover, filtering can be performed with finite impulse
response (FIR) or infinite impulse response (IIR) filters. The
types of filters used in the various studies are presented in
Table 14. This is important, as the use of IIR filters may dis-
tort the signal due to phase nonlinearity, therefore critical for
studies analyzing connectivity based on phase.

3.4.3. Artifact Handling. EEG signals are inherently noisy and
susceptible to blink, eye movements, heartbeats, cranial mus-
cle, and power line artifacts. As mentioned previously, the

Table 8: Number of electrodes used by each selected study.

Electrode N Articles

1–16 (14) [85, 86, 88, 91, 92, 96, 100, 102, 108, 120–122, 142, 165]

17–32 (89)
[26, 37–42, 58, 78–84, 87, 89, 90, 93–95, 97, 101, 103–107, 109, 110, 112–119, 123, 125–127,

129–141, 143–164, 166–170, 173–179]

33–64 (2) [66, 172]

65–128 (5) [77, 98, 99, 111, 171]

129–256 (2) [124, 128]

Table 7: Combination of EEG with other modalities.

Modality Biomarkers Articles

MRI (11) Cortical thickness, hippocampal atrophy, and other cortical density alterations
[41, 81, 147, 152–155,
166, 169, 171, 174]

MRI and SPECT (5) Regional blood perfusion and other cortical density alterations [156–160]

SPECT (1) Anomalous activities of cerebral neurons in NAT (neuronal activity topography) [179]

MRI and genetic (1) Comparison of Genetic (ApoE) and neuroimaging alterations [150]

Genetic data (1) ApoE genotype; PSEN1 E280A mutation [128]

PET (1) Disease processes revealed by cortical hypometabolism [82]

MRI: magnetic resonance imaging; SPECT: single-photon emission computed tomography; ApoE: apolipoprotein E; PET: positron emission tomography.
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process of cleaning EEG data from artifacts is pivotal in the
EEG signal preprocessing pipeline. Analyzing clean EEG sig-
nals is an important prerequisite to avoid errors in the feature
extraction step and to prevent misclassification of mental
activity [84]. To overcome the detrimental effect of artifacts,
the majority of the reviewed studies (65) reported the use of
artifact-free EEG segments manually selected by expert clini-
cians through meticulous visual inspection. This is a time-
consuming, expensive, and prone to human error process.
Nine papers reported the use of semiautomated methods
based on the ICA (independent component analysis)
method, which also require human intervention to label
components as artifactual. Lastly, 18 articles made use of
automated artifact removal (AAR) methods, such as FAS-
TER and wavelet-enhanced independent component analysis
(wICA), which are able to substitute the human intervention
in the artifactual component selection [85, 124], or of linear
regression on electromyographic electrodes or of a notch fil-
ter tuned to the blink frequency [138]. In [84], different AAR
algorithms were compared to evaluate their impact in the AD

classification performance compared to raw and manually
selected EEG signals and wICA was found to give the best
results. Table 15 shows the artifact handling approaches
reported in the reviewed articles.

3.4.4. Effective Sampling Frequency. While EEG devices can
digitize data at high sampling frequencies (in the order of
kHz), EEG signals are often downsampled as the processing
of signals with excessive temporal resolution results in extra
(and perhaps not as useful) computation load. As such,
Table 16 lists the sampling frequency at which the EEG sig-
nals were processed, i.e., the effective sampling frequency,
for the reviewed articles.

3.4.5. EEG Epoching. The EEG signal is not stationary;
however, it presents quasi-stationarity behavior for epochs
(segments) ranging approximately from 1 to 60 s [154].
From the reviewed articles, the most common epoch dura-
tion was 2 s, used in 26 studies. The reported epoch
lengths are presented in Table 17.

Table 11: Filters.

Filter/preprocessing Articles

Notch filter for power grid interference (35)
[38, 42, 58, 78, 84, 90, 92, 95, 100, 111–113, 119, 123, 127, 129, 136–141, 144–146, 148,

162, 164, 167, 170, 172, 174, 177]

Resampling (12) [39, 40, 78, 83, 93, 96, 101, 128, 131, 138, 146, 177]

Rereference to common average (28)
[56, 77, 81, 82, 98, 99, 103, 111, 115, 124, 130, 147, 151–154, 158–160, 166, 167, 171,

173, 176–178, 180]

Interpolation of bad channels (3) [77, 124, 128]

Table 10: Signal duration.

Description Articles

<5min (10) [41, 66, 77, 98, 99, 111, 130, 146, 170, 175]

5–9min (39)
[40, 80–82, 84, 85, 93, 101, 103, 115, 127, 134–136, 138, 141, 142, 145, 147–150, 152–160,

162, 163, 166, 169, 172, 176, 177, 179]

10–20min (17) [37, 86, 88, 89, 92, 109, 110, 120–124, 128, 131, 143, 164, 174]

>20min (16) [26, 38, 39, 91, 94, 107, 112–114, 119, 129, 137, 139, 144, 151, 178]

Not informed (30)
[42, 58, 78, 79, 83, 87, 90, 95–97, 100, 102, 104–106, 108, 116–118,

125, 126, 132, 133, 140, 161, 165, 167, 168, 171, 173]

Table 9: Recording conditions.

Condition Articles

Resting-awake EC (85)
[37, 38, 41, 42, 58, 66, 77–84, 86, 87, 90, 93–96, 98–115, 117–122, 124, 125, 127–130,

132, 134, 135, 140, 141, 146–149, 151–161, 164–169, 172–179]

Resting-awake EC+ EO (13) [39, 40, 85, 88, 89, 91, 92, 123, 126, 131, 133, 143, 163]

Resting-awake EC+ EO+ sensory stimulus (3) [170, 171] visual stimulus, [150] auditory stimulation

Resting-awake EC+ EO+ cognitive tasks (8)
[144, 145, 162] episodic memory tasks, [136–139] backwards counting while

finger tapping, [142] working memory task

Resting awake, eye condition not reported (3) [26, 97, 116]
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Table 15: Artifact removal techniques.

Category Method Articles

Manual (65) Epoch selection
[37, 58, 66, 77–80, 83, 86, 89–92, 94–96, 98, 99, 104–106,
108–111, 113, 114, 119–122, 125–127, 134, 135, 140, 141,

143, 147, 149, 151–161, 163–168, 170–175, 179]

Semiautomated (8)

ICA [40, 107, 131, 169]

ICA (IWASOBI) [101]

ICA (JADE) [178]

ICA in a sample and then ICA templates
used to automatic removal

[39]

ICA and wavelet denoising [100]

Automated (19)

FASTER [124, 128]

Notch filter on blink frequency [136–139]

LR to EMG electrodes [42, 81, 82, 103, 115, 144–146, 162, 176]

wICA [85, 132]

BSS-SOBI-CCA and wICA [84]

No filtering or no description (20) —
[26, 38, 41, 87, 88, 93, 97, 102, 112, 116–118, 123, 129, 130,

133, 137, 142, 148, 150, 177]

BSS-SOBI-CCA: blind source separation based on second-order blind identification and canonical correlation analysis; ICA: independent component analysis;
wICA: wavelet ICA; LR: linear regression; EMG: electromyographic.

Table 14: Filter type.

Filter Articles

FIR (26) [39, 40, 42, 77, 80, 85, 86, 95, 96, 102, 108–111, 118–122, 127, 131, 140, 141, 145, 169, 171]

HOLS (1) [124]

IIR (19) [58, 78, 84, 90, 101, 112–114, 123, 125, 134–139, 172]

Not reported (68)
[26, 37, 38, 41, 66, 79, 81–83, 87–89, 91–94, 97–100, 103–107, 115–117, 126, 128–130,

132, 133, 142–144, 146–168, 170, 173–179]

Table 13: Different lower limit bandwidths used by the selected EEG studies.

Lower limit (Hz) Articles

≤0.5 (32) [37, 42, 83, 84, 87, 103–106, 130, 131, 133, 141, 144–147, 149, 150, 153–160, 166, 169, 170, 173, 174]

0.5—<1 (36)
[26, 39, 40, 81, 82, 85, 86, 89, 94, 95, 100–102, 107–110, 115, 117–122, 124, 128, 129, 132, 135, 143,

148, 151, 163, 165, 167, 177]

≥1 (26) [66, 77–80, 91, 92, 96, 98, 99, 111–114, 123, 125–127, 134, 140, 152, 162, 164, 171, 176, 179]

Not reported (18) [38, 41, 58, 88, 90, 93, 97, 116, 136–139, 142, 161, 168, 172, 175, 178]

Table 12: Different upper limit bandwidths used by the selected EEG studies.

Upper limit (Hz) Articles

≤25 (4) [117, 125, 175, 179]

26–50 (57)
[37–40, 66, 77–83, 85–87, 89, 92, 94, 96, 98, 99, 101, 102, 104–106, 108–115, 120–123, 126, 127,

130–132, 134–136, 141, 143, 148, 149, 151, 163, 165, 167, 169, 171, 176]

51–75 (36)
[26, 42, 91, 103, 107, 118, 119, 124, 128, 133, 140, 142, 144–147, 150, 152–162, 164, 166, 168, 170,

173, 174, 177, 178]

≥76 (8) [58, 84, 90, 95, 100, 137–139]

Not reported (7) [41, 88, 93, 97, 116, 129, 172]
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The EEG epoch length is quite consistent across studies,
with 56 studies using 5-second epochs or less. On the other
hand, the number of epochs used in EEG analysis varies
greatly from study to study. The utilization of overlapping
epochs to extract EEG features and their averaging in the fea-
ture domain has been shown to improve the features of SNR
and, consequently, increasing the classification performance

[185]. Table 18 presents the number of epochs reported in
the reviewed articles.

3.4.6. Effective EEG Signal Length. Study used several EEG
epoching approaches (Section 3.4.5); thus, a direct compari-
son is not possible. For this reason, we proposed the effective
EEG signal length as a metric to allow comparison among

Table 16: Sample frequency.

Frequency (Hz) Articles

125 or 128 (22) [37, 78, 81–83, 85, 91–93, 96, 101, 104–106, 115, 118, 126, 134, 135, 139, 176, 177]

200 or 256 (60)
[26, 38–40, 42, 58, 79, 80, 84, 87, 89, 90, 94, 95, 103, 107–110, 112–114, 116, 117, 125, 127,
129, 131–133, 136, 137, 140, 141, 143–147, 151–160, 162, 164–167, 169, 170, 173–175, 179]

500 or 512 (12) [77, 98, 99, 111, 128, 138, 161, 163, 168, 171, 172, 178]

1000 or 1024 (11) [41, 66, 86, 100, 102, 120–124, 149]

Not informed (7) [88, 97, 119, 130, 142, 148, 150]

Table 18: Number of epochs.

Number of epochs Articles

1–3 (12) [78, 94–96, 107, 126, 127, 132, 134, 135, 164, 170]

4–10 (14) [42, 86, 102, 118–122, 142, 151, 161, 165, 168, 173]

11–50 (20) [37, 58, 66, 79, 80, 89, 90, 108–110, 113, 114, 124, 128, 140, 143, 146, 163, 167, 175]

51–150 (20) [82, 99, 103, 131, 133, 141, 147, 152–160, 162, 166, 172, 174]

151–500 (7) [39, 40, 98, 145, 171, 177, 179]

Not informed (39)
[26, 38, 41, 77, 81, 83–85, 87, 88, 91–93, 97, 100, 101, 104–106, 111, 112,

115–117, 123, 125, 129, 130, 136–139, 144, 148–150, 169, 176, 178]

Table 19: Effective EEG duration.

EEG duration (s) Articles

8–30 (12) [42, 66, 78, 126, 127, 132, 134, 135, 142, 170, 173, 175]

31–70 (20) [37, 79, 86, 89, 94–96, 102, 107, 121, 122, 124, 143, 151, 161, 163, 165, 167, 168, 177]

71–150 (9) [80, 99, 103, 108–110, 120, 137, 164]

151–300 (20) [82, 98, 128, 131, 140, 141, 146, 147, 152–160, 171, 174, 179]

301–600 (9) [40, 58, 90, 113, 114, 118, 119, 162, 166]

601–1500 (3) [39, 145, 172]

Not informed (39)
[26, 38, 41, 77, 81, 83–85, 87, 88, 91–93, 97, 100, 101, 104–106, 111, 112,

115–117, 123, 125, 129, 130, 133, 136, 138, 139, 144, 148–150, 169, 176, 178]

Table 17: Epoch duration.

Duration (s) Articles

0.3–1 (8) [77, 98, 99, 111, 129, 171, 177, 179]

1.1-2 (27) [37, 39, 40, 66, 79, 81–83, 103, 115, 131, 141, 147, 152–160, 163, 169, 173, 174, 176]

2.1–5 (22) [38, 42, 80, 89, 108–110, 124, 128, 140, 142–146, 148–150, 162, 166, 167, 175]

5.1–10 (21) [58, 84–86, 90, 102, 104–106, 112–114, 120–122, 126, 151, 161, 165, 168, 170]

10.1–20 (8) [78, 95, 101, 125, 127, 134, 135, 172]

21–70 (7) [94, 96, 107, 118, 119, 132, 164]

Not informed (19) [26, 41, 87, 88, 91–93, 97, 100, 116, 117, 123, 130, 133, 136–139, 178]
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studies. The effective EEG signal length is given by the epoch
length multiplied by the number of epochs used. This metric
indicates how much data from the originally acquired EEG is

kept for further processing. Table 19 presents the values of
this effective EEG signal length.

3.4.7. Source Localization. EEG source localization methods
estimate the location and distribution of active (electric) cur-
rent sources within the brain based on the potential recorded
through scalp electrodes. Going from activity recorded with
electrodes to the current sources is an ill-posed inverse prob-
lem, since the number of unknown parameters is greater than
the number of known parameters. In the last decades, this
has been proven useful as a noninvasive neuroimaging tech-
nique, with high temporal and low spatial resolution that
allows the characterization of “inside-the-brain” activity. A
review on EEG source localization can be found in [186].
Among the reviewed articles, 17 studies used source localiza-
tion methods for characterizing AD. Fifteen of these arti-
cles utilized the low-resolution electromagnetic
tomography (LORETA) method or its derivatives (eLOR-
ETA and sLORETA) [26, 37, 66, 77, 81, 82, 103, 115,
128, 131, 141, 150, 163, 169, 176]. The remaining two arti-
cles used the local autoregressive average (LAURA) source
localization method [99, 171]. Five papers using source
localization methods [66, 77, 99, 128, 171] used medium-
to high-density electrode montages ranging from 64 to 214
electrodes; the 12 remaining used 19 electrodes. A higher
number of electrodes improve source localization precision,
with a ceiling effect at 100 electrodes [182]. Nevertheless,
as mentioned in Section 3.3.2, the comfort of the patient
should be taken into account in the experiment design.

3.4.8. EEG Features.As already reported in Section 1.1, four
major effects of AD in resting-state EEG signals have been
reported in literature. Most of the studies reviewed herein

Table 20: Slowing features.

Category Description Articles

Current source density Source localization solutions [26, 37, 66, 77, 82, 103, 115, 141, 150, 163, 176]

Spectral

Barlow’s metrics [178]

Individual alpha peak (IAP) [81–83, 103, 129, 137, 140, 151, 171, 175, 176, 178]

Individual alpha3 alpha2 [147, 152, 153, 155–158, 160, 166]

Individual beta peak [178]

PSD (absolute and relative band power)
[41, 42, 66, 81, 82, 84, 85, 88, 89, 92, 94–96, 98, 100, 102, 103,
107, 117, 121–124, 128–130, 135, 137, 140, 142–144, 149, 151,

154, 159, 161, 162, 167, 173, 174, 176, 178]

PSD (band power ratios) [41, 42, 88, 107, 129, 130, 137, 147, 152]

PSD (central frequency) [178]

PSD (frequency peak in bands) [79, 112–114]

PSD (mean frequency in bads) [42, 123, 140, 167]

PSD (median frequency in bands) [96, 137]

PSD (modelling parameters) [39, 40, 118]

Wackermann’s metrics [178]

Spectrotemporal

Wavelet (continuous) parameters [92]

Wavelet (continuous) sparsification [125]

Wavelet (discrete) parameters [38, 91]

Wavelet maximum frequency [178]

Table 21: Complexity features.

Category Description Articles

Entropy

Auto mutual information
[42, 140, 144, 146,

162]

Epoch-based entropy [93]

Fuzzy entropy [110, 140]

Multiscale entropy [146, 170]

Multivariate multiscale entropy [80]

Quadratic sample entropy [108]

Sample entropy [92, 96, 137, 140]

Shannon entropy [93, 146, 162]

Spectral entropy [100, 140, 146]

Tsallis entropy [146, 162]

Wavelet entropy [92]

Other

Bispectrum analysis [122]

Central tendency measure [140]

Correlation dimension [93]

Distance-based LempelZiv
complexity (dLZC)

[109]

Hjorth activity, mobility, and
complexity

[137, 178]

Lempel-Ziv complexity [102, 137, 140]

Visibility graphs [126]

Wavelet compression coefficients [132]
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proposed and used one or more types of EEG features for
AD characterization. As such, reported EEG features were
grouped into five categories; the first four categories
encompass features which aim at measuring one major
effect of AD in the EEG signal (slowing, complexity reduc-
tion, synchronization decrement, and neuromodulatory
deficit) and the last category termed “other” includes
data-driven features which are not necessarily driven by
known biological processes. It was frequent to observe
the fusion of features from multiple categories in the same
article. The description of each EEG feature herein pre-
sented is beyond the scope of this review; the interested

reader is referred to the corresponding articles listed in
this section for the feature definitions.

(1) Slowing of the EEG Signals. The measurement of the
slowing effect on EEG signals due to AD typically relays
on spectral features derived either from each of the EEG
channels or from the average across channels. Alterna-
tively, the estimated current source densities (obtained
with source localization) can be analyzed for each fre-
quency band. The reported slowing features are subdivided
into three categories: current source density, spectral, and
spectrotemporal (Table 20).

Table 22: Synchronization features.

Group Description Articles

Directed model based

Direct transfer function [83, 127, 134, 135]

Direct directed transfer function [127, 134, 135]

Full frequency transfer function [83, 127, 134, 135]

Granger causality [42, 127, 134, 135, 145, 162]

Kullback–Leibler divergence [127]

Lateral asymmetry index (LAI) [66]

Phase slope index (PSI) [96]

Sugihara causality [139]

Directed model free
Relative wavelet entropy [172]

Peak interregional transfer entropy delays
(PITED)

[138]

Nondirected model
based

Coherence
[41, 42, 78, 79, 83–85, 89, 96, 104, 105, 112, 120, 121, 127, 130,

134–136, 143–145, 149, 157, 158, 162]

Coherence (wavelet) [38, 105, 106, 119]

Correlation [78, 111, 127, 135]

Correlation (amplitude envelopes) [178]

Detrended cross-correlation analysis (DCCA) [86]

Global field synchronization (GFS) [127, 165]

Global phase synchronization [98]

Global synchronization index [164]

Lagged linear connectivity (LLC) [81, 115, 131, 141, 163, 169, 171]

Multivariate phase synchronization (MPS) [98]

Omega complexity [127, 134, 135]

Phase lag index (PLI) [124, 168]

Phase synchrony [78, 127, 134]

S-estimator [99, 127]

Stochastic event synchrony [127]

Nondirected model free

Coherence entropy coefficient [127]

Correlation entropy coefficient [127]

Mutual information [42, 119, 127, 145]

Permutation disalignment index [148, 149]

Synchronization likelihood [97]

Wavelet entropy coefficient [127]

Others

Canonical correlation [145]

Global field power (GFP) [37, 124]

Graph theory metrics [97, 111, 120, 124, 131, 136, 141, 148, 168, 169, 172]

Static canonical correlation [162]
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(2) Reduction in Complexity in the EEG Signals. Complexity
of EEG signals is typically evaluated with entropy measures.
Techniques used for this evaluation vary greatly among the
reviewed articles, as detailed in Table 21.

(3) Decrease in Synchronization. The different metrics to
measure the synchronization of EEG signals can be divided
according two criteria: (1) the presence or absence of direc-
tionality (causation) information and (2) if the metric
assumes a linear relationship between the analyzed signals
(model based) or no assumption of linear relationship
(model free) [187]. As such, reported synchrony features
are divided into five categories: nondirected model based,
nondirected model free, directed model based, directed
model free, and others (Table 22).

(4) Neuromodulatory Deficits in EEG Rhythms. These
changes have been explored by analyzing the statistics or
the spectral content on the amplitude modulations for each
of the classical EEG frequency bands. The spectral analysis
of the amplitude modulations were proposed according to
AD treatment literature, which suggested that neuromodula-
tory deficits seen with AD could be treated via deep brain
stimulation, since according to the hemoneural hypothesis,
cerebral hemodynamics might play an important role in
information processing through the modulation of neural

activity [58]. Reported neuromodulatory features are pre-
sented in Table 23.

(5) Other Data-Driven Features. Some studies used data-
driven methods to derive features to differentiate dementia
patients. These features do not have a clear relationship with
known biological effects on EEG. These articles were classi-
fied in Table 24.

3.5. Reported Outcomes. As reported in the study goal
(Section 3.1.1), results herein are analyzed according to
their objective: discriminative or assessment/progressive.

3.5.1. Discriminative Studies. The reported findings for
discriminative studies fall into three categories: (1) studies
reporting statistical significance of used features, (2) studies
reporting classification performance among populations,
and (3) studies reporting both statistical significance and
classification performance. Table 25 presents the discrimi-
native studies according to these categories.

Papers where statistical significance was reported used
a variety of parametric and nonparametric methods for
statistical analysis. Table 26 presents the statistical tests
utilized in the reviewed articles. Normally a p value≤ 0.05
was considered statistically significant and in some cases

Table 24: Nonbiological features.

Description Articles

ANN extracting spatial content from EEG [133, 177]

Back-predictive model [116]

Linear predictive model [116]

Paraconsistent artificial neural network (PANN) using
morphological analysis of EEG

[87]

Symmetric predictive model [116]

Table 23: Neromodulatory features.

Description Articles

Amplitude envelope, spectral analysis [58, 84, 85, 90]

Amplitude envelope, statistics [178]

Table 25: Classification, statistical analysis, or both.

Description Articles

Statistical (35)

[26, 37, 39, 66, 78, 80, 82, 88, 90, 95, 99, 104,
106, 108, 111, 119, 120, 131,

132, 141, 142, 161–165, 167–170, 172–174,
179, 188]

Classification (36)
[40, 41, 58, 84, 85, 87, 91–94, 96, 97, 100,
101, 105, 112–117, 123–126, 129, 130, 133,

135–140, 171, 177]

Both (23)
[38, 42, 77, 79, 81, 83, 86, 89, 98, 102, 103,
107, 109, 110, 118, 121, 122, 127, 128, 134,

175, 176, 178]

Table 26: Statistical analysis strategy in the selected studies.

Description Articles

ANOVA
[66, 81, 82, 90, 95, 99, 102–104, 106, 121,
122, 124, 131, 141, 142, 168–170, 173–176]

Anterior hub ratio [172]

chi squared [66, 161, 168]

Correlation [107]

Correlation P [82, 90, 141, 176]

Correlation P split
half

[90]

Cost function [119]

Graph analysis [141]

Kruskal-Wallis [90, 109, 110]

LDA [38, 108]

Lilliefors test [110]

Log-F-ratio
(LORETA solutions)

[26, 37]

Mahalanobis D2 [167]

MANCOVA [39]

Mann–Whitney [42, 78, 80, 89, 127, 134, 164]

MANOVA [172]

Mean and standard
deviation

[120, 132]

PCA [83]

Quadratic univariate
regressions

[162]

SNK [142]

LDA: linear discriminant analysis; MANCOVA: multivariate analysis of
covariance; SNK: Student–Newman–Keuls.
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only when p ≤ 0 01. Analysis of variance (ANOVA) is also
commonly used to find differences in extracted features
between groups.

In studies where classification performance was reported,
three important aspects were taken into account: feature
selection, cross-validation, and classification algorithm.

(1) Feature Selection. The use of high-dimensionality fea-
ture vectors on limited data (few feature vectors per sub-
ject) often leads to bias and overfitting in classification.
Moreover, many features might be correlated and do not

provide new information to the classification algorithms
and thus need to be removed. For this purpose, several
feature selection methods have been proposed in the liter-
ature (Table 27). From the 59 articles where classification
is performed, 27 reported the use of a feature selection
method. In Table 27, a compilation of the reported feature
selection methods is presented, being the area under the
curve (AUC), p value, and support vector machine (SVM)
the most used methods.

(2) Cross-Validation. In the process of training and testing
classification algorithms, usually, the dataset is split in two
in order to perform each task, as a measure to avoid optimis-
tic bias and improve generalization. This data partitioning is
called cross-validation (CV) [189]. From the 59 articles per-
forming classification, leave-one-subject-out (LOSO) was
the most used CV paradigm, employed in 24 studies. Under
this paradigm, in a dataset with N participants, data from
N-1 subjects is used to train the classifier, while data from
the remaining subject is used for testing. This procedure is
repeated N times, such that all subjects have their data
become the test set once. Table 28 presents the reported
cross-validation paradigms.

Table 27: Feature selection.

Feature selection methods Articles

AUC maximization
[58, 83, 112,

122]

BFE [133]

Consistency-based filter (CBF),
correlation-based feature selection (CFS),
filtered subset evaluator (FSE),
Chi squared (CS), gain ratio (GR), relief-F,
symmetrical uncertainty (SU), and ensemble
feature selection (EFS)

[114]

Correlation-based pursuit [129]

FCBF [140]

Fit-curve model [40]

Genetic [41, 130]

Logistic regression [107, 178]

Manual [96]

OFR [135]

p value
[81, 109, 126,
127, 176]

PCA [139]

Ranking by Fisher ratio score [38]

Reverse sequential feature selection [42]

SVD [77]

SVM classifier (best performers) [85, 136–138]

BFE: best feature extraction; FCBF: fast correlation-based filter; OFR:
orthogonal forward regression; SVD: singular value decomposition.

Table 28: Cross validation methods.

Description Articles

5-fold CV [122]

10-fold CV [38, 40, 41, 84, 85, 94, 130]

100-fold CV [126]

500-fold CV [115]

Dataset split in train
and test set splits

[83, 94, 105, 112, 117, 123, 129, 133, 140,
177, 178]

LOSO
[42, 58, 77, 85, 91–94, 98, 100, 108, 109,

113, 114, 125, 127, 134–139, 171]

Leave one epoch out [109]

CV: cross-validation; LOSO: leave one subject out.

Table 29: Classifying Strategy.

Classifier Articles

ANN
[101, 115, 117, 123, 126, 133, 140,

177]

ANOVA [38]

Autoregressive models [116]

Back predictive model [116]

Decision tree [91, 92]

k-nearest neighbor [129, 133]

LDA
[40, 86, 93, 98, 125, 127, 133–135,

140, 171]

LR [107, 113, 124, 128, 133, 178]

LRA [41]

Nave Bayes [133]

PANN [87]

Parzen classifier [133]

PCA [139]

PDM-based model [96]

PNN [105]

QDA [127, 133, 140]

ROC [83, 109, 124, 130, 175, 176]

SMO [133]

SVM
[58, 77, 84, 85, 94, 97, 100, 102, 112–

114, 133, 136–139]

Takagi-Sugeno neurofuzzy
inference system

[129]

ANN: artificial neural network; LDA: linear discriminant analysis; LR:
logistic regression; LRA: logistic regression analyses; PANN: paraconsistent
artificial neural network; PDM: principal dynamic mode; PNN:
probabilistic neural network; QDA: quadratic discriminant analysis; SMO:
sequential minimal optimization.
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(3) Classification Algorithms. The classification process refers
to the assignment of discrete labels to a feature vector. Thus,
the role of a classifier algorithm is to learn from data the
transfer function between feature vectors and labels [189].
The reported classification algorithms are presented in
Table 29, being the support vector machine (SVM) algorithm
the most commonly used. Classification accuracy was widely
used as the performance metric. However, given the discrep-
ancies in experiment setup, EEG processing pipeline, and
cross-validation paradigms, there is no way to directly com-
pare the results.

3.5.2. Assessment/Progression Studies. A total of 39 studies
aimed to find correlates between EEG-based features and
AD progression. Table 30 presents a list of the methods uti-
lized to evaluate the usability of the proposed EEG features.
Pearson correlation was the most used method in order to
see relationships between the EEG features and either mental
examination scores (MMSE) or varying neuroimaging bio-
markers, such as cortical thinning, brain perfusion, and other
MRI/PET features.

3.5.3. Reported Limitations. By compiling the different limita-
tions reported in all the reviewed articles, it is possible to have
an idea of the issues that need to be addressed in the follow-
ing years to advance EEG-based research on AD. Firstly, the
most reported limitations are related to the population par-
ticipating in the studies, specifically, the small size of the

dataset and cohorts (Section 3.2.1); the difficulty in age, gen-
der, and/or education matching (Section 3.2.2); and AD par-
ticipants taking antidementia drugs. All these issues should
be taken into account as possible differentiation factors
besides AD and addressed as potential sources of bias in the
reported results. Moreover, small datasets and demographic
variables mismatching in the population under study might
lead to inconclusive results, since the model generalization
would be unrealistic. In limitations related to the EEG
experiment setup, [66] reported nonrecruitment of severe
AD participants as they would not be able to undergo the
experiment, consisting in resting-state EC during 3 minutes.
In studies performing source localization, the most frequent
limitation reported was the relatively low number of elec-
trodes, which has a negative impact on the spatial resolution
of the source localization results (Section 3.4.7).

Regarding the EEG processing, emphasis is often put
on the manual selection of clean EEG epochs, which intro-
duces human biases and cannot be reproduced. A limita-
tion reported in a very recent study [80] is related to the
resting-state EC condition: the dominance of alpha band
in the spectral power, which is more marked in parietal
and occipital electrodes. Indeed, a recent study has shown
that the use of EEG epochs with lower alpha activity
improves the discriminative power between AD patients
and healthy controls [95].

Lastly, limitations related to the reported outcomes
include the uncertainty of AD diagnosis using MMSE and
other neuropsychological tests. Several studies measure the
classification accuracy between AD or healthy controls using
the results from these tests. However, neuropsychological
tests do not provide 100% sure diagnosis; they do not work
well in all dementia stages, and as they have lower sensitivity,
it is difficult to detect early stages of AD [9]. Therefore,
fluctuations in diagnoses with MMSE or other neuropsy-
chological tests can occur and be detrimental for further
results based on those scores. Additionally, not all studies
performed longitudinal follow-ups nor corroborated the
data from healthy controls and MCI and AD participants,
as some AD participants could be suffering from a differ-
ent dementia [79] and some MCI participants will not
develop AD (Section 3.2.3). Table 31 presents the above-
mentioned limitations.

3.6. Recommendations. After the discussion in previous sub-
sections, various aspects worth to be addressed in future
resting-state EEG-based studies are presented in Table 32
in the form of simple recommendations.

Throughout this review, we found that several studies do
not present a detailed characterization of the cohorts partic-
ipating in the study. Variables such as age, gender, and edu-
cation level have been demonstrated to be confounding
factors in AD [145, 162]. As such, it is recommended to pro-
vide as much information as possible on the study partici-
pants, indicating whether or not there are statistically
significant differences in demographic variables between
groups. In the same sense, it is important to inquire and
report the pharmacological regime of the study participants
to discard it as a confounding factor. From articles reporting

Table 30: AD progression assessment.

Description Articles

ANOVA [26, 147, 153, 155–160]

ANCOVA [152, 154]

ANOVA 2 way [161]

Chi squared [151]

Correlation [144]

Correlation (Pearson)
[147, 148, 153, 155–160, 163,

165, 169, 172–176]

Correlation partial [143]

Correlation (Spearman) [66, 143, 164, 168]

Genetic search multiple markers [178]

K-means [165]

LDA [171]

Linear regression [42]

Mahalanobis D2 [167]

Mann–Whitney [151]

Quadratic ordinary least squares
regression models

[145]

R2 [42, 144–146, 162]

Scheffes test [26]

t-test [151]

Z-standardized statistic [167]

Wilcoxon rank-sum test [149]

ANCOVA: analysis of covariance.
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limitations, a common issue is the possible mislabeling of
participants (MCI, AD, and N) due to the methods used to
diagnose the participants. In order to address this issue, stud-
ies must provide a clear description of the criteria used for
participant inclusion and exclusion. Moreover, in the studies
where the MCI cohort is considered as prodromal AD, it
should be stated whether a follow-up was performed.

Regarding the study setup, a frequent issue that arises
from this systematic review is the huge amount of different
experimental setups that have been reported across the
reviewed articles. While all the databases utilized by the
studies included in this review used the same resting-awake
eyes-closed protocol, the recording duration was extremely
variable (Section 3.3.5), as well as the amount of EEG data
utilized (Section 3.4.6). Experiment duration is a very
important aspect to consider when designing the experimen-
tal setup, since MCI and AD participants are not always able
to comply with the experiments, as reported by [66]. Regard-
ing the EEG signal acquisition, most of the studies reported
the use of the 10-20 international system as electrode place-
ment guide. However, this information alone is not enough;
the studies should provide a complete list of the actually
used electrodes.

One direct consequence of this experimental variabil-
ity is that most of the reviewed studies performed their
analysis just on one dataset. While testing the efficiency
of the developed methods on other datasets is highly
advisable to verify if the results are realistic and can be
generalized, this variability makes that practically impossi-
ble. As such, it is recommended that a standardization
effort on EEG data collection and experimental protocol
be put in place to facilitate cross-site, cross-country, and
cross-database validation.

For EEG processing, in turn, the most used artifact-
handling approach was the meticulous visual inspection
by expert clinicians, which is inherently irreproducible

and prone to errors. Consequently, even when EEG data
is collected in the same conditions, the manual rejection
of artifacts hinders the comparisons among different
approaches of the same experimental setup. Studies could
make use of AAR methods to report their results with
manual selected EEG signals and contrast them to the
ones obtained with automatically cleaned signals, as was
done in [84].

Moreover, when recording EEG signals, less than half of
the studies use EOG and very few use ECG electrodes. Regis-
tering eye and heart movements can help with artifact
removal and thus should become standard during data
recording. In addition, a clear description of the EEG signal
epoching process should be provided and aspects like epoch
length, epoch overlap, and number of epochs used need to
be mentioned in the article. When source localization is
performed, higher-density montages are desirable (≥25 elec-
trodes) [182]. However, the participant comfort level needs
to be taken into account, as it can be a source of bias in the
study. Articles proposing innovative features should also test

Table 31: Reported limitations.

Category Description Articles

Population

Small number of subjects in the study
[37, 58, 80, 83, 86, 99, 101, 109–111, 121, 124, 128,

135, 139, 140, 153, 159, 163, 164]

Merged databases are different due to local implementations [81]

Lack of different stages in AD cohort [86, 121, 135]

AD cohort includes participants taking antidementia drugs [81, 83, 163, 164]

Lack of population matching, age, gender, and/or education [66, 90, 99, 135]

Possible preclinical AD in N cohort [81]

Prodromal AD was applied in aMCI with Aβ42 [150]

EEG experiment setup

No severe AD as hard to perform EEG recordings [66]

Presence of dominant alpha activity during EC condition [80]

Differences in datasets due manual artifact handling [58, 81, 163]

Low number of electrodes for source localization methods [37, 82, 163]

Low number of electrodes for connectivity analysis [83, 145]

Low number electrodes for advanced AAR methods [84]

Reported results
Lack of research for other dementia types [39, 109, 110, 139, 163]

Lack of longitudinal approach for N, MCI, AD populations [66, 128, 138, 155, 160, 170]

Table 32: Recommendations.

Recommendations for future EEG-based AD studies

Provide detailed population characteristics

Describe how the AD diagnosis was performed

Mention whether the MCI participants were followed-up

Detail EEG experiment in duration and phases

Use standard EEG layouts

Mention not only the quantity of channels but their location

Define EEG processing in more detail

Use standard features such as PSD features as baseline

Describe artifact handling strategies

18 Disease Markers



more well-established features that can be used as a baseline
to be benchmarked against. The PSD-based features are a
good candidate for baseline as they have been exhaustively
studied and are easy to implement. For discriminative
studies, articles should clearly detail the feature selection,
cross-validation, and classification methods, because shar-
ing data among these processes might lead to overfitting
and optimistic biases. In a similar fashion, when multiple
comparisons are reported, the statistical analysis subsection
should report the post hoc correction method used for
avoiding false positives.

Lastly, not every reviewed paper mentioned the limita-
tions found during the study, this could be enlightening for
the design of future studies. A solution for some of the
reported limitations (Section 3.5.3) could be joining efforts
to have free, publicly available EEG datasets. In this way,
attempts should be made to create open-access EEG data-
bases for the research community, where researchers can
verify and test signal enhancement methods, proposed fea-
tures, classification algorithms, and so on. An example of a
successful initiative in a related field was the case of EEG-
based brain-computer interfaces (BCI): having publicly
accessible datasets has given great impulse to BCI research
worldwide; such enterprise has been motivated by “The
Future of Brain/Neural Computer Interaction: Horizon
2020” (BNCI Horizon 2020) project [190].

4. Conclusions

In this systematic review, a total of 112 journal articles
published between January 2010 and February 2018 on
the utilization of EEG for AD diagnosis and progression
assessment were surveyed. In these papers, the most often
reported goal was to discriminate between healthy controls
and AD participants (59 articles). From these articles, crucial
aspects were grouped under five main categories: study ratio-
nale, study population, experiment setup, EEG processing,
and reported outcomes. Such aspects were reviewed, com-
pared, and discussed, with the final goal of providing an over-
view of the state of the art on resting EEG for AD diagnosis
and assessment.

In this review, limitations reported in the reviewed arti-
cles were also collected and discussed, with the aim of having
an idea of the issues that need more attention in order to
advance the use of EEG in AD research. Among these
reported limitations, the limited number of datasets available
to researchers appeared to be the most common one. Ulti-
mately, it is hoped that this review will boost the research
of EEG as a noninvasive, less-expensive, and potentially
portable technique for AD study, assessment, and diagnosis,
particularly for low- and middle-income countries which
lack access to costly neuroimaging equipment.
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