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ABSTRACT

The persistence of DNA over archaeological and
paleontological timescales in diverse environments
has led to a revolutionary body of paleogenomic re-
search, yet the dynamics of DNA degradation are
still poorly understood. We analyzed 185 paleoge-
nomic datasets and compared DNA survival with en-
vironmental variables and sample ages. We find cy-
tosine deamination follows a conventional thermal
age model, but we find no correlation between DNA
fragmentation and sample age over the timespans
analyzed, even when controlling for environmental
variables. We propose a model for ancient DNA de-
cay wherein fragmentation rapidly reaches a thresh-
old, then subsequently slows. The observed loss of
DNA over time may be due to a bulk diffusion pro-
cess in many cases, highlighting the importance of
tissues and environments creating effectively closed
systems for DNA preservation. This model of DNA
degradation is largely based on mammal bone sam-
ples due to published genomic dataset availability.
Continued refinement to the model to reflect diverse
biological systems and tissue types will further im-
prove our understanding of ancient DNA breakdown
dynamics.

INTRODUCTION

The genomic era of massively parallel DNA sequencing
has driven a revolutionary body of research using ancient
DNA-based genomics (1,2). Paleogenomics has led to the
re-writing of recent hominin evolutionary history (3), nu-
anced understandings of historical human movements and

interactions around the globe (4,5), breakthroughs in Qua-
ternary paleontology (6–8), evolutionary ecology, the bi-
ology of extinct species (9), impacts of humans on an-
cient ecosystems and biodiversity (10) and the evolution
and movements of domestic plants and animals (11–14).
The successful probing of ancient epigenomes, microbiomes
and metagenomes further illustrates the flexibility and in-
formation value of ancient DNA-based research in the ge-
nomic age (15–17). In sum, time-series genomic datasets
have proven extremely valuable in diverse research avenues.

In addition to the scale and sensitivity of analysis af-
forded by genomic methods in ancient DNA research, ge-
nomic datasets allow for a revised understanding of the
patterns and expectations of DNA survival over millennia.
This is beneficial in two key ways: (i) Criteria of ancient
DNA authenticity warrant updating for the genomic era
and formalized expectations of DNA degradation are nec-
essary for this process; and (ii) Better predictive models of
DNA degradation may help researchers target specimens
likely to yield high information value where destructive
analysis is unavoidable. Generally, ancient DNA is expected
to be highly fragmented (18–20) and to carry an abun-
dance of characteristic misincorporations––deaminated cy-
tosine residues appearing as C-to-T transitions in single-
stranded fragment overhangs (21). Further, DNA fragmen-
tation is biased by biomolecular context. For example, a
short-range (∼10 bp) periodicity observed in the distribu-
tion of fragment lengths is attributed to the period of a com-
plete turn of the DNA double-helix around a histone (22),
which is thought to offer some protection against breakage
at histone-adjacent sites. Finally, base compositional biases
have been observed in DNA preservation, especially enrich-
ment of GC-content in ancient DNA (23).

The relationships between these characteristic patterns of
DNA degradation and the preservational environment and
age of tissues are poorly understood. We carried out a meta-
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analysis of 185 ancient genomic datasets––dating from the
Middle Pleistocene to the nineteenth century from 21 pub-
lished studies (Figure 1)––to test for relationships between
sample age, environmental variables and DNA diagenesis.
We used mapDamage 2.0 (24) to quantify deamination and
we developed tests for assessing fragmentation, histone pe-
riodicity and energetic base-compositional biases in ancient
genomic data. We analyzed these damage statistics in re-
lation to sample age, annual mean temperature, tempera-
ture fluctuation and precipitation––treated as a proxy for
humidity––using simple multivariate linear models. Ulti-
mately, we aimed to establish the key determinants of DNA
survival and the specific patterns of DNA breakdown ex-
pected under variable conditions.

MATERIALS AND METHODS

Dataset compilation and initial processing

We obtained unmapped (fastq) or mapped (bam) sequence
reads from each of 185 publicly available ancient DNA
datasets generated by shotgun sequencing without uracil re-
moval, comprising anatomically modern humans (n = 156
(26–38)), herbarium plant samples (n = 15, aligned to the
host plant rather than the pathogen examined in ref (39),
with environment data estimated at the herbaria of long-
term storage rather than the site of collection), Colombian
and woolly mammoths (n = 4 (7,40)), neandertals (n = 3
(41)), horses (n = 5 (13,42–43)) and polar bear (n = 1 (44)).
We avoided data generated through target capture experi-
ments to avoid possible hybridization biases introduced by
misincorporated residues or read length variation. For un-
mapped samples, we used Flexbar (45) to trim adapter se-
quences in single-end read data, and PEAR (46) to perform
adapter trimming and read merging in paired-end datasets.
We used the bwa-backtrack algorithm within the Burrows–
Wheeler Aligner (47) to map read data to the correspond-
ing reference genome and collapsed duplicates using the
‘rmdup’ function in SAMtools (48). We filtered all bam files
for a minimum mapping quality of 20 using the SAMtools
‘view’ function and filtered for minimum read length of 20
using Unix tools. We separated nuclear and organellar reads
(mtDNA in mammals, plastid DNA in plants) into sepa-
rate bam files. For the mammoth samples mapped to the
African elephant genome (n = 4), we removed mitochon-
drial reads from the bam file and re-mapped the complete
raw datasets to a woolly mammoth mitochondrial sequence
(NC 007596.2). Sample latitude and longitude were used
to estimate annual mean, minimum and maximum temper-
ature estimates, plus annual precipitation for each of the
samples. These were taken from the WorldClim (49) cur-
rent condition database using the R ‘raster’ package (50)
at a resolution of 2.5 arc-min. In cases where specific site
location was not available at the longitude/latitude level,
Google Earth was used to estimate longitude and latitude
from details or site maps provided in the relevant publica-
tions. Location details and temperature estimates are given
in Supplemental Dataset S1. Climate estimates reflect mod-
ern climate conditions rather than a complete climate legacy
over the time span of each sample. We then estimated DNA
preservation and breakdown parameters as described be-
low.

Deamination

We used mapDamage 2.0 (24) to estimate cytosine deam-
ination in single-stranded overhangs, �s, invoking default
settings with the following exceptions: we subsampled large
bam files to correspond with 1 Gigabyte input file (∼10–20
million reads with typical dataset complexity and a human
genome) using the mapDamage ‘-n’ option. We analyzed
the mapDamage Markov chain Monte Carlo (MCMC) out-
put from each sample using the ‘coda’ R package (51) to
estimate an effective sample size (ESS) for each of the six
variables estimated by the mapDamage simulation. ESS val-
ues are reported in Supplemental Dataset S1. We enforced
a minimum ESS of 200 in all variables to ensure MCMC
simulation convergence, excluding nine datasets for deam-
ination analysis. For libraries with highly asymmetrical 3′
and 5′ C-to-T mismatch observed visually in misincorpora-
tion plots, indicating the likely use of a non-proofreading
DNA polymerase for library amplification––incapable of
recovering uracils in template DNA––we re-ran mapDam-
age with the ‘–reverse’ option to estimate damage from
the 3′ end only. We noted extremely high deamination and
overhang termination values in the output from Mammoth
M4 (7), which suggested a much higher rate of deami-
nation than even much older permafrost samples. How-
ever, that library is dominated by very short fragments (ref
(7); summarized in the fragment length plot on Dryad),
which we hypothesized could influence the mapDamage
MCMC to over-estimate both parameters. We re-analyzed
that sample considering only reads ≥40nt, yielding the dam-
age parameter values reported in Dataset S1. Data from
the Saqqaq Palaeo-Eskimo genome (32) were mostly gener-
ated using a non-proofreading enzyme, but a small propor-
tion of read files were reported to have been generated us-
ing a proofreading Platinum High Fidelity Taq polymerase
(22). We mapped all Saqqaq read files from the Sequence
Read Archive (n = 218) to a human mitochondrial genome
(EU256375.1), used PMDtools (52) to rapidly generate mis-
incorporation plots and visually inspected each for elevated
5′ C-to-T mismatch. This approach yielded two libraries
apparently produced using a proofreading enzyme, one of
which (SRR030983) was carried through for analysis. All
mapDamage output files (run logs, plots, MCMC trace files
and summary statistics) from the 185 final runs are available
in the Dryad Digital Repository (see Availability below). Fi-
nally, we summarized a deamination rate for each sample
according to the equation:

rate = ln
(

1
1 − δs

) (
1

age

)

Fragment length distribution

Fragment lengths are expected to form an exponential dis-
tribution under random breakdown. The distribution of
DNA fragment sizes can therefore be summarized as �
(53), the single parameter of the exponential distribution.
To estimate �, we first summarized a frequency distribu-
tion table of fragment lengths. If a frequency spike was ob-
served at the maximum fragment length––indicating frag-
ments greater than the read length and an artifactual peak
among reads with no adapter trimming––we re-estimated
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Figure 1. Locations of 185 samples (n = 94 unique sites) used in paleogenomic meta-analysis, global variation in mean temperature and temperature
fluctuation, and timeline of sample ages. Note the absence of sites with annual mean temperature >20◦C, reflecting known preservation bias toward cooler
climates (25).

the maximum reliable fragment length as follows: beginning
with the longest fragment, we pruned the table back to the
point at which the next shorter fragment was observed more
frequently, eliminating up to 6 length values (mean = 3). We
iterated over all ranges of at least 20 consecutive length val-
ues in the table, attempting to fit an exponential formula
using the R function: nls(y ∼ N*exp(−k*x)), with starting
values of k = 0.05, N = 0.1 and � represented by the inferred
value of k. We retained the top 5% of best fits on the basis
of P-values obtained by summarizing the formula output
in R and estimated the value of � from the table segment
producing the best overall fit. We visualized the results in
the top 5% of best fits to confirm a reasonable � estimate by
eye (e.g. Supplementary Figure S1). We observed fragment
length heterogeneity in some cases, likely created by map-

ping biases and occasional anomalous spikes in length fre-
quencies that disrupted automated estimation of �. There-
fore, during visual inspection, we sometimes opted to over-
ride the inferred � value by (i) manually defining a range
of fragment lengths over which to re-calculate � and/or (ii)
clipping artifactual frequency spikes by imposing a single
frequency threshold value (e.g. Supplementary Figure S1).
All summary statistics and plots for � estimation are avail-
able on Dryad, including run logs detailing manual override
decisions. Perl and R code for � estimation are available on
Dryad.

Histone periodicity estimation

To estimate the intensity of a preserved histone signal
(22), we analyze periodic deviations from a medium-range
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smoothing algorithm imposed on the fragment length fre-
quency tables (Supplementary Figure S2). Using a fragment
length frequency table, we again eliminated the artifactual
peak at the maximum length as above for � and trimmed the
distribution to the innermost length values each represent-
ing at least 0.002 of the total fragments. Additionally, for ar-
tifactual spikes within the frequency table, we adjusted any
single frequency greater than 1.5× the midpoint of its flank-
ing neighbors down to the midpoint. This approach affected
only artifacts and not the underlying distribution. We then
fit a locally weighted scatterplot smoothing (lowess) curve
with the R ‘lowess’ function, using a smoothing span of
20 to normalize over histone periods expected to be ∼10nt
(22). We then removed four additional length values from
each end of the distribution to eliminate increased terminal
deviations from the lowess curve.

We observed that in samples with a histone signal, the de-
viation of the observed values from the lowess curve is best
approximated by a series of local exponential functions with
the midpoint of a complete histone period set to x = 0 (Sup-
plementary Figure S2). That is, frequency values across a
single histone period form a parabolic curve when normal-
ized for overall fragmentation described by �. Therefore, we
tested for this pattern in all subranges of 8–12 consecutive
length values in the table, setting the midpoint of each sub-
range to x = 0 and using the observed value divided by the
lowess values for the y-axis. We used the R function nls(y
∼ k+|N|*x∧2)), with starting values of k = 1 and N = 0.1,
so that k should deviate minimally from 1 to absorb noise,
and positive values of N provide a metric of signal intensity.
That is, N increases linearly with the degree of observed fre-
quency deviation from the lowess curve at local maxima. We
retained the starting position, range lengths and N values of
all significant fits on the basis of P-value. We then used an
optimized one-dimensional k means clustering algorithm in
the R ‘Ckmeans.1d.dp’ package (54) to localize strongly sig-
nificant starting locations of histone periods. For all adja-
cent (i, j) pairs of cluster positions representing the putative
best locations for histone peaks, a periodicity coefficient was
calculated: If j − i ≥ 8 and j − i ≤ 12, the coefficient in-
creases by 1/(n clusters −1). Otherwise, if some value v in
2 through (range of values)/10 satisfies (j − i)/v ≥ 8 ∪ (j
− i)/v ≤ 12, coefficient increases by (1/v)/(n clusters −1).
Thus, given a minimum of three clusters and a minimum
periodicity coefficient of 0.3, cluster position values satis-
fying the requirement could include 10,20,40 (coefficient =
0.75); 10,20,50 (0.67), 10,30,50 (0.5) or 10,40,70 (0.33), but
not 10,50,80 (0.29).

To optimize histone signal estimation, we used the or-
ganellar datasets (which lack histones in vivo) to calibrate
model parameters against false positive results (Supplemen-
tary Figure S3). We permuted the minimum number of sig-
nificant clusters detected (2,3,4), a minimum observed pro-
portion of all plausible histone periods given the range of
values analyzed (0, 0.1, 0.2 and 0.4), the minimum peri-
odicity coefficient (0.2, 0.3, 0.4 and 0.5) and a minimum
P-value threshold for significant exponential fit (0.05, 0.01
and 0.001). We summarized the number of nuclear and or-
ganellar datasets satisfying the requirements of 144 sepa-
rate model permutations (n = 53 280 total iterations). P-
value, minimum cluster count and minimum periodicity co-

efficient proved the best predictors of false positive rates,
accounting for 79% of the variance in false positive rate
under a simple linear model (Supplementary Figure S3),
while proportional number of clusters did not add predic-
tive power. Under a range of parameter values, we were
able to estimate nuclear histone signal intensity with no or-
ganellar false positives in up to 112 of the 185 samples for a
given model. Given a 5% allowable false positive rate in the
single model with the highest ratio of nuclear to organel-
lar estimates, we were able to recover 138 nuclear estimates.
We recorded the median value of the N intensity parame-
ter for all samples under strict conditions with no organel-
lar false positives (n = 112) for analysis (Dataset S1 ‘His-
tone Intensity’ for estimates; see the Dryad repository for
pdf and run files). Notably, the Thistle Creek horse genome
(43) displays a clear short-range periodicity on visual in-
spection, but at about half the normal length (∼5 bp). The
reason for this behavior is unclear, but this distribution vio-
lates the model assumption of ∼10 bp period and therefore
this sample only ever presented as a likely false positive dur-
ing model calibration.

Base composition

To assess biases in base composition related to preserva-
tion, we first summarized 8-mer frequencies in each refer-
ence genome, excluding soft- and hard-masked repeat re-
gions. We then summarized 8-mer frequencies in the bam
files from sequence reads in mapped orientation to match
the reference. For each 8-mer, a simple enrichment factor
was calculated as (frequency in mapped reads)/(genomic
frequency). The enrichment and depletion of ancient DNA
motifs is affected by a complex range of conditions, as
suggested by clear multimodality in the distribution of 8-
mer enrichment factors (Supplementary Figure S4). Addi-
tionally, in vitro variables further bias the datasets through
penalizing GC-extreme reads, for example (55), and chro-
matin modeling and nucleosome occupancy is expected to
have differential effects on the protection and survival of
coding versus non-coding DNA. To isolate these effects,
we calculated a simple GC proportion for each 8-mer and
based on known systematic sequence complexity biases
among genomic element types (56), we calculated 8-mer
Shannon entropy (H) using the following formula after ref
(57):

H =
∑

i = A,C,G,T
−1 ∗

(
ni

nACGT

)
∗ log2

(
ni

nACGT

)

Finally, we calculated a simple kmer enthalpy as the sum
of all dimer base-stacking energy values (kcal/mol/dimer)
reported in table IX of ref (58), using the values from
the ‘corrected optimized potential’ method. We first visu-
alized kmer enrichment in relation to all three sequence
variables––GC content, entropy and enthalpy––and noted
extensive variation among samples as expected (e.g. Sup-
plementary Figure S4, kmer summary files for all datasets,
code for 3D scatterplots and code for enthalpy-biased kmer
frequency estimation are available on Dryad). For exam-
ple, GC content and entropy are parabolically related by
definition––equal base frequencies are required for maxi-
mum entropy. As such, disentangling enrichment of high-
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entropy kmers from in vitro penalization of GC-extreme
kmers is intractable, and kmer enrichment patterns varied
extensively in terms of entropy and GC-content. However,
we noted a strong relationship between enrichment and en-
thalpy in several samples (Supplementary Figure S4), and
therefore we opted to isolate enthalpy from GC content and
entropy for analysis as follows:

In total, there are 52 unique GC-content––Shannon en-
tropy combinations for DNA 8-mers. Each of the 52 con-
figurations of invariant GC and entropy values represents
between 2 and 6720 kmers (n = 65 536 total kmers) rep-
resenting a distribution of enthalpy values and enrichment
factors. From within each of the 52 GC–entropy configu-
ration bins, we reiteratively selected random pairs of kmers
up to the total number of kmers in the bin (i.e. given a bin
containing 32 kmers, 32 random pairs were selected and a
total of 65 536 pairs are drawn from the dataset). We then
compared enrichment factors and enthalpy values between
the two kmers. Given a ‘success’ if the higher-enthalpy kmer
was also the more enriched kmer, as hypothesized, we in-
cremented a counter and decremented the counter for fail-
ures. Following iterations, we recorded the value of the
counter divided by the number of trials and used this value
as the test statistic to compare with environmental variables,
where positive values indicate overall enrichment of higher-
enthalpy motifs (Dataset S1, ‘Enthalpy bias’).

Linear models

We carried out multiple linear regression analyzes to test for
relationships between preservation parameters (above) and
environmental variables. Specifically, we tested in turn for
significant predictors of each damage parameter using a lin-
ear model analysis with four independent variables: annual
mean temperature, annual temperature fluctuation, annual
mean precipitation and the natural log of sample age using
the R ‘lm’ function (59). Results presented are from analysis
of the nuclear datasets after excluding the organellar data.

Deamination prediction from temperature

We calculated a density distribution of deamination rates
using default parameters and bandwidth in the R ‘density’
function and creating a weighting vector where each point’s
weight value was calculated as 1-(local density/maximum
density). We then fit a weighted linear regression between
temperature and deamination rate using the R ‘lm’ function
with the ‘weight’ option invoked using the above weighting
vector. We used the R ‘predict’ function to predict a rate and
95% confidence intervals at temperature values of −20◦C,
0◦C and 20◦C. The R code to replicate the analysis and re-
create Figure 3 from Dataset S1 is available on Dryad in the
‘expedient code’ file.

Simulating DNA fragmentation and deamination

We hypothesize below (Results and Discussion) that a time-
dependent fragmentation process may be incongruent with
the observation of total cytosine deamination in single-
stranded overhangs (�s = 1). We therefore carried out a
set of simulations to test the effects of varying the frag-
mentation rate on the accumulation of deaminated residues.

Simulations were executed using a custom perl script. Be-
ginning with a � value of fragmentation (e.g. 0.013–0.157
range from our meta-analysis), we infer the number of ran-
dom fragmentation events necessary to yield the lambda
value as � x (total length of all fragments). We then ran-
domly select a simulated number of imposed total frag-
mentation events from a Poisson distribution, using the ex-
act number of fragmentation events as the Poisson lambda
parameter. We pre-allocate the selected number of break-
age events––without replacement, as breakage is impossi-
ble twice at the same location––to locations in a popula-
tion of starting molecules. Breakage occurs at zero-width
sites between simulated residues in our simulation, such that
molecules can be reduced to 1 nt but not lost completely. We
then allocate fragmentation events to timing bins by sam-
pling from the probability density function of a beta distri-
bution with the � parameter held at 1 and the � parameter
varying ≥1 to introduce a changing rate profile: � = 1 de-
scribes a constant rate of fragmentation and higher values
of � describe increasingly skewed scenarios where fragmen-
tation occurs in the early cycles of the simulation. For exam-
ple, when � = 1 and � = 10, roughly 90% of fragmentation
has occurred when 20% of time has passed. Alternatively,
� = 1 and � = 1 describes a uniform distribution of frag-
mentation where the rate parameter k = �/time, as per ref
(18). To complete setup, we impose a �s value and calculate
a deamination rate as described above in terms of proba-
bility of deamination per site per year, and impose a value
to describe fragment overhangs per mapDamage 2.0 (0.3 in
our simulation).

We then carry out a forward simulation through cycles of
drawing from the randomized predetermined breakage sites
according to the timing bin allocations and introduce new
single-stranded overhangs at newly broken sites by sam-
pling randomly from a Poisson distribution described by
the overhang � value. Following each breakage cycle, each
overhang is subjected to a round of deamination according
to the rate calculated from �s, where each site is given the
opportunity to undergo deamination if a pseudo-random
number (0 ≤ x ≤ 1) falls below the rate value. Finally, at
the end of each deamination cycle, we summarize the cur-
rent fragmentation � value as 1/(mean current fragment
length) and the current �s value as the (number of deamina-
tion sites)/(all overhang sites). When � = 1 and � = 1, � in-
creases linearly to approach the imposed � value, while with
higher � values, alternative patterns occur (Supplementary
Figure S5).

RESULTS AND DISCUSSION

We found that cytosine deamination is strongly influenced
by both sample age and site mean temperature (multiple
r2 = 0.264; age P = 1.9 × 10−9; temperature P = 1.52 ×
10−5, model P = 2.54 × 10−10; Figure 2). Previous studies
have identified age as the key critical predictor of deami-
nation (60), but our finding is in line with predictions of
a time-dependent hydrolytic process where activation en-
ergy is achieved more often at higher ambient tempera-
tures. A rate of deamination can be calculated for any sam-
ple with a known age and partial conversion of exposed
cytosines (Figure 3). The resulting rates vary widely and



Nucleic Acids Research, 2017, Vol. 45, No. 11 6315

Figure 2. Relationships between DNA degradation parameters and environmental variables. (A) DNA fragmentation is correlated with thermal fluctuation
and precipitation. (B) DNA fragmentation is correlated with thermal fluctuation but is not influenced by sample age. (C) Deamination is a thermal age
parameter, strongly associated with both age and temperature. Coloring in (A–C) is used to enhance the z-axis variation: red points are the nearest and
blue are the most distant. (D) DNA fragmentation is highly predictive of base compositional biases, with fragmented datasets depleted of motifs with low
base-stacking energy. (E) Histone periodicity in fragment length distribution is most pronounced in samples from cold environments. Blue circles represent
samples where a histone periodicity estimate was possible (n = 112; see ’Materials and Methods’ section for calibration against false positive results), red
diamonds are samples where no periodicity was observed, visualized at −7.5 on the y-axis to reflect the observation of no detectable bias.

show a strong correlation with temperature (r2 = 0.279; P
= 1.23 × 10−12). In sum, deamination is a time-dependent
process heavily modulated by temperature. When analyzing
DNA fragmentation, however, we found that precipitation
and thermal fluctuation were strongly significant predictors
(multiple r2 = 0.202; precipitation P = 0.0025; temperature
fluctuation P = 6.18 × 10−8) but that age was not signif-
icantly correlated with the degree of fragmentation (P =
0.77), even when controlling for environmental conditions.
We also find that in addition to the humidity and thermal
fluctuation pattern, the degree of DNA fragmentation cor-
relates strongly with base compositional biases. Specifically,
datasets dominated by short fragments are significantly de-
pleted of weakly-bonded nucleotide motifs (P = 6.79 ×
10−12, r2 = 0.253; Figure 2), indicating that DNA break-
down follows predictable patterns with regard to microen-

vironment and nucleic acid biochemistry. Relatedly, we de-
tected a histone-associated fragmentation bias (22) in the
majority of our samples (n = 112), and we find that annual
mean temperature is strongly associated with the intensity
of this pattern (P = 1.2 × 10−5, r2 = 0.16; Figure 2). Specif-
ically, DNA breakdown in colder environments appears to
more faithfully reflect cellular architecture and the in vivo
genome context, whereas breakdown in warmer conditions
is much less discriminant.

At present, the ancient DNA literature lacks clear con-
sensus on the fundamental predictors of DNA fragmenta-
tion: one recent study identified a strong age dependency in
DNA recovery through quantitative polymerase chain re-
action (qPCR) analysis of a regionally controlled time se-
ries of bone samples (18). The authors proposed, on the ba-
sis of this result, that DNA degradation in ancient bone is
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Figure 3. Expectations of deamination over time for variable temperatures. Left: density-weighted linear regression of temperature and log deamination
rate calculated using the formula rate = ln (1/(1−δs)) * (1/age). Right: using rate estimates from the weighted regression, we calculated the expected �s
values over a 100 000 year time span using the formula δs = 1−(1/erate*age) re-arranged from the above, as well as �s values for rates estimated from 95%
confidence intervals of the regression. We visualized the expected deamination levels for samples from −20, 0 and 20◦C contexts (solid lines), along with
upper (red) and lower (blue) confidence bounds. This predictive model is necessarily based primarily on mammalian bone tissue, and we expect refinements
to these expectations based on sample type, for example, as more datasets become available.

mainly driven by thermal age-dependent hydrolytic depuri-
nation driving rate-constant fragmentation over time. Un-
der this model, fragmentation is gradual and continues un-
der a rate described by a decay constant until the bonds be-
tween all DNA fragments are destroyed and DNA is com-
pletely lost. Alternatively, a separate analysis (60) found no
significant link between sample age and the degree of frag-
mentation. Consistent with this finding, early ancient DNA
research pointed to very rapid initial DNA decay followed
by subsequent stabilization (61), rather than fragmentation
as an exponential random decay process. Additionally, con-
trolled experiments using qPCR with recently deceased tis-
sues demonstrate a precipitous immediate decline of en-
dogenous DNA content and/or quality, followed by sta-
bilization hypothesized to be linked to the mineral envi-
ronment of bone (62). This model likewise contradicts the
idea that DNA decay can be thought of strictly in terms of
exponential breakdown under a decay constant. In total,
evidence has been presented for both a rate-constant de-
cay model and a more age-independent scenario. Here, our
meta-analysis points to the statistical decoupling of age and
fragmentation. We aimed to further test this finding with
three strategies:

First, we recognize that there are numerous sources of
variance that cannot be controlled in our meta-analysis
across several studies––including sample excavation and
storage, wet lab and computational methods, and species
and tissue types––and that these sources of variance have
the potential to obscure subtle relationships. If major
sources of inter-study confounding variance in DNA frag-
mentation were present, the result would be the dampen-
ing of any statistical relationship between natural variables
and fragmentation as the in situ signal for fragmentation

is lost. If age was a significant predictor of DNA decay
along with thermal fluctuation and humidity, it is difficult to
imagine that only the age relationship would be lost due to
post-excavation handling and inter-study variation. There-
fore, we suggest that confounding variance is not a parsimo-
nious explanation for the lack of a clear age-fragmentation
relationship in the presence of a robust environmental as-
sociation. However, to test this possibility more directly, we
restricted our analysis from 185 datasets across 21 studies
to 97 Bronze Age human genomes generated from a single
study (26). We thereby control for species, tissue type, and
biases in sample preparation and we consider a narrower
timeframe and more constrained set of preservational con-
ditions, eliminating several potential sources of confound-
ing variance. Additionally, we recognize that by using mod-
ern climate estimates, we might obscure some subtle varia-
tion driven by climate fluctuations over long time periods.
Restricting our analysis to just this Bronze Age dataset sub-
stantially constrains the temporal and geographic ranges, so
that the sample set is expected to have been exposed to a less
variable range of climate fluctuations compared with, for
example, much older samples exposed to Pleistocene shifts.
Under the same linear model as above (see ’Materials and
Methods’ section), we find that exactly as in the broader
dataset, thermal fluctuation and precipitation were signif-
icant predictors of fragmentation (respectively, P = 0.014
and P = 4.2 × 10−4; multiple r2 = 0.25), but age was still not
a significant predictor of overall fragmentation (P = 0.420).

Second, we tested the fundamental assumption that from
a single site, DNA from older samples is expected to be
more fragmented than from younger ones. While we initially
analyzed data from 94 different sites, the meta-dataset in-
cludes 114 pairs of samples from the same site separated by
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at least 100 years. Thus for these 114 pairs where we can
eliminate inter-site variation, the older sample is predicted
to be the more fragmented sample a significant majority of
the time under the fundamental assumption that fragmen-
tation increases with age in a single environment. Given 114
pairs of samples, only 55 (0.48) satisfy this assumption (‘suc-
cesses’). The null hypothesis of 47–67 successes (P = 0.05
calculated using the �-distribution) cannot be rejected and
indeed fewer than half of cases satisfy the basic assumption.
By increasing the minimum age difference to 1000 years,
we retain 55 valid pairwise comparisons and still observe
no relationship between age and fragmentation, with only
27 (0.49) satisfying the basic assumption (null hypothesis at
P = 0.05: 23–32 successes). We validated this approach by
replicating the procedure with deamination, a known age-
linked variable (26 and above). With deamination, we re-
ject the null hypothesis and find a significant age effect (131
comparisons possible, 80 successes (0.61); null hypothesis at
P = 0.05: 55–76 successes).

Finally, we routinely observe complete deamination of
all exposed cytosine residues. This saturation of measur-
able deamination has been described in several samples pre-
viously (24) and is observed in 14 out of the 185 (7.6%)
datasets analyzed here, spanning 2–500 kya (Figure 4).
However, complete deamination in single-stranded over-
hangs is incongruent with a rate-constant fragmentation
model: if fragmentation followed a simple rate-constant
process that would yield a robust association between ther-
mal age and fragmentation, new overhangs would contin-
ually be exposed with the expectation of intact cytosine,
suppressing the proportion of deaminated residues and pre-
empting complete deamination. Even by simulating deami-
nation rates 10 fold faster than the most extreme of those es-
timated in our meta-analysis, deamination fails to converge
to saturation under a rate-constant fragmentation model
(see ’Materials and Methods’ section; Supplementary Fig-
ure S5). In total, observing complete deamination under a
rate-constant fragmentation model would require that the
deamination rate outpaces the fragmentation rate so that
new overhangs are rapidly saturated with deamination––all
exposed cytosine residues are rapidly converted to uracil.
Under such extreme deamination rates, however, it is im-
plausible that deamination would show such a robust cor-
relation with age across samples as observed here and else-
where (60).

We find strong validation that age does not predict DNA
fragmentation in our meta-dataset. However, we recognize
that DNA breakdown by hydrolytic depurination is a well-
validated and immutable chemical mechanism by which
DNA decays exponentially according to first-order kinet-
ics, producing a measurable half-life signal of molecular de-
pletion (63). The mismatch between this predicted behavior
and our findings indicates that the preservation state of an-
cient DNA is determined by multiple processes and cannot
be attributed to a simple fragmentation rate as suggested in
a rate-constant fragmentation model. Instead, we propose
a multi-stage DNA fragmentation model: first, physical
and biotic stressors cause rapid breakdown of nucleic acids
shortly after organism death. While microbes and cellular
processes (e.g. autolysis and nuclease activity) rapidly de-
grade a large fraction of endogenous DNA––depending on

tissue type and depositional environment––fragmentation
appears to reach an initial threshold and then stabilize
somewhat in contexts where DNA has the potential for
long-term preservation.

The strong association of humidity and thermal fluctua-
tion with DNA fragmentation suggests that processes like
the loss of bioapatite surface area caused by diagenetic re-
crystallization and physical shearing effects of hydraulic
fluctuations in bone, for example, play a role in the initial
breakdown process. Further, DNA may reach a size in bony
contexts––the majority of our re-analyzed datasets––where
it can penetrate the protective internal porosity of bone and
gain some additional protection. The counterintuitive result
that DNA is sometimes better preserved in cooked than un-
cooked medieval bone may offer support for this scenario
((64), although see (65) for for further analysis of cremated
bone). In our analysis, 15 plant samples from herbaria (39)
fit with the overall fragmentation model––comparing lin-
ear model residuals reveals no significant difference between
plant samples and non-plant samples (Welch’s t-test, P =
0.44). However, they make up a very small fraction of the
variation here and because of the possible role of the min-
eral makeup of bone in DNA preservation across samples
(62), we suggest that re-analysis of plant data across a much
greater age range will be important in understanding any
possible differences in preservation between plant and ani-
mal tissues. Over a short time span, age-dependency in frag-
mentation has been suggested in plant tissues (66), but a
paucity of paleogenomic plant data currently precludes a
comprehensive analysis spanning thousands of years. In to-
tal, our meta-analysis and model are necessarily focused on
mammalian hard tissue (n = 169 out of 185 datasets) given
dataset availability. As more datasets are generated from di-
verse systems and tissue types, we expect further refinement
of these general findings to reflect a more nuanced under-
standing behind the specific drivers of DNA diagenesis and
factors underlying preservation. For example, DNA is in-
tegrated into hair during programmed cell death and kera-
tinization leading to some amount of immediate shearing
which might affect downstream processes (67). Thus an-
cient DNA in hair might warrant a modified set of expecta-
tions for preservation relative to bony tissue given a certain
background environment. Recent experimentation compar-
ing tooth cementum and petrous bone DNA characteristics
reinforces the necessity of integrating sample type informa-
tion in assessing DNA degradation in the future (65). Fi-
nally, the relationships between biomolecule preservation
and the microenvironment of sample deposition (e.g. soil
pH, mineral content, sample depth and aerobic activity)
bear significant further investigation as more datasets be-
come available.

Previous research identified a strong age dependency in
DNA recovery––assayed by qPCR––in a controlled time-
series of bone samples from a regional set of depositional
sequences and interpreted the result as evidence for an ex-
ponential decay process due to time-dependent DNA frag-
mentation (18). However, bulk diffusion of DNA––rather
than rate-constant fragmentation––provides an equally
parsimonious scenario for the observed signal. Specifically,
the previous study estimated a 521-year half-life for a target
fragment of 242 bp under the conditions of the site (18).
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Figure 4. Fourteen samples included in the meta-analysis with saturated cytosine-to-uracil deamination in single-stranded overhangs.

In the example from that study (18), researchers inferred
a nucleotide fragmentation rate (k) of 5.5 × 10−6 damage
events per nucleotide per year on the basis of a strong re-
lationship between age and 242 bp target molarity across a
large set of mass-standardized bone samples. Under a rate-
constant fragmentation model where k = 5.5 × 10−6, the
probability of retaining any fragment of length L per year
is the probability that no random breakage event occurs at
any of its sites, or (1−k)L and the probability of fragment
loss (kL) is 1−(1−k)L. For a 242 bp target, therefore, k242
= 1.33 × 10−3––each year 0.0013 of remaining 242 bp tem-
plates are severed on average. However, this model assumes
no time-dependent loss in DNA by mechanisms other than
fragmentation; if fragmentation stabilizes and bulk deple-
tion of endogenous DNA continues, a similar pattern would
result. Specifically, if each fragment has a 0.0013 probability
of being lost to bulk DNA movement rather than fragmen-
tation, the same qPCR signal of decreasing target molarity
over time would result.

Our results do not conflict with the previous experi-
ment identifying a time-dependent decay behavior in rela-
tive copy number of a given fragment size, but decay behav-
ior in the molarity of a target DNA fragment over time in a
qPCR assay could be attributed to either rate-constant frag-
mentation (18) or bulk loss of endogenous DNA. We pro-
pose that bulk DNA loss is congruent with both the previ-
ous qPCR signal (18) and our meta-analysis, whereas expo-
nential decay by fragmentation is not supported as the pri-
mary mechanism of DNA loss in our study. Therefore, we
propose that much of the time-dependent nature of ancient
DNA recovery may be due to bulk loss of DNA from tissue.
Recent research focusing on the dense, non-vascularized
petrous part of the temporal bone as a source of high en-
dogenous DNA content (27,65) demonstrates that target-
ing ‘semi-closed’ systems with little opportunity for chem-
ical exchange may be the best strategy to continue pushing
the boundaries of DNA preservation by combating this dif-
fusion process. This idea has also been illustrated in studies
dealing with DNA preserved in hair, which is thought to
confer a protective microenvironment that impedes biolog-
ical degradation, leaching and possibly hydrolytic damage,
and therefore often constitutes a good source of relatively
high-quality endogenous DNA (32,67).

We suggest that rate-constant fragmentation through
hydrolytic depurination is seldom the limiting factor to
long-term DNA preservation, but we offer some caveats:
fragmentation through depurination is a well-characterized
process (63) and we do not propose that it is irrelevant for
long-term DNA degradation. We suggest, rather, that the
rate of this process is significantly slower than previously
estimated in many ancient tissues (18) and the signal over
the time span re-analyzed here is overprinted by other fac-
tors in a multi-faceted breakdown process. Thus when esti-
mating the value of ‘lambda’ for a dataset––the parameter
describing fragment length distribution––we are analyzing
the outcome of multiple processes rather than inferring a
simple decay rate. Further, importantly, any paleogenomic
meta-analysis is fundamentally limited to those scenarios in
which DNA actually survives over Quaternary timescales
and so hydrolytic fragmentation as previously described
might be a central mechanism for the total postmortem de-
pletion of DNA in many tissues and conditions. That is to
say, we can only analyze DNA that has survived, which may
represent an abnormal mode of diagenesis. Our model for
ancient DNA decay therefore necessarily speaks only to the
special case in which conditions exist for long-term DNA
survival. The immutable depurination process likely still im-
poses practical limits on DNA recovery in deep time and
recovering Mesozoic DNA, for example, remains extremely
unlikely. However, semi-closed chemical exchange systems
like the petrous bone, though rare, offer excellent potential
for the long-term retention of DNA in tissues and extraor-
dinary preservational microenvironments created by chem-
ical interactions have proven valuable for deep-time protein
preservation (68). Breaching the current Middle Pleistocene
age boundary of genomics seems entirely plausible.
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et al. (2016) Early farmers from across Europe directly descended
from Neolithic Aegeans. Proc. Natl. Acad. Sci. U.S.A., 113,
6886–6891.

38. Jeong,C., Ozga,A.T., Witonsky,D.B., Malmström,H., Edlund,H.,
Hofman,C.A., Hagan,R.W., Jakobsson,M., Lewis,C.M.,
Aldenderfer,M.S. et al. (2016) Long-term genetic stability and a
high-altitude East Asian origin for the peoples of the high valleys of
the Himalayan arc. Proc. Natl. Acad. Sci. U.S.A., 113, 7485–7490.

39. Yoshida,K., Schuenemann,V.J., Cano,L.M., Pais,M., Mishra,B.,
Sharma,R., Lanz,C., Martin,F.N., Kamoun,S., Krause,J. et al. (2013)
The rise and fall of the Phytophthora infestans lineage that triggered
the Irish potato famine. Elife, 2, e00731.

40. Enk,J., Devault,A., Debruyne,R., King,C.E., Treangen,T.,
O’Rourke,D., Salzberg,S.L., Fisher,D., MacPhee,R. and Poinar,H.
(2011) Complete Columbian mammoth mitogenome suggests
interbreeding with woolly mammoths. Genome Biol., 12, R51.

41. Green,R.E., Krause,J., Briggs,A.W., Maricic,T., Stenzel,U.,
Kircher,M., Patterson,N., Li,H., Zhai,W., Fritz,M.H.-Y. et al. (2010)
A draft sequence of the Neandertal genome. Science, 328, 710–22.

42. Librado,P., Der Sarkissian,C., Ermini,L., Schubert,M., Jónsson,H.,
Albrechtsen,A., Fumagalli,M., Yang,M.A., Gamba,C.,
Seguin-Orlando,A. et al. (2015) Tracking the origins of Yakutian
horses and the genetic basis for their fast adaptation to subarctic
environments. Proc. Natl. Acad. Sci. U.S.A., 112, E6889–E6897.

43. Orlando,L., Ginolhac,A., Zhang,G., Froese,D., Albrechtsen,A.,
Stiller,M., Schubert,M., Cappellini,E., Petersen,B., Moltke,I. et al.
(2013) Recalibrating Equus evolution using the genome sequence of
an early middle Pleistocene horse. Nature, 499, 74–78.

44. Miller,W., Schuster,S.C., Welch,A.J., Ratan,A., Bedoya-Reina,O.C.,
Zhao,F., Kim,H.L., Burhans,R.C., Drautz,D.I., Wittekindt,N.E.
et al. (2012) Polar and brown bear genomes reveal ancient admixture
and demographic footprints of past climate change. Proc. Natl. Acad.
Sci. U.S.A., 109, E2382–E2390.

45. Dodt,M., Roehr,J.T., Ahmed,R. and Dieterich,C. (2012)
FLEXBAR-flexible barcode and adapter processing for
next-generation sequencing platforms. Biology (Basel), 1, 895–905.

46. Zhang,J., Kobert,K., Flouri,T. and Stamatakis,A. (2014) PEAR: a
fast and accurate Illumina paired-end read mergeR. Bioinformatics,
30, 614–620.

47. Li,H. and Durbin,R. (2009) Fast and accurate short read alignment
with Burrows–Wheeler transform. Bioinformatics, 25, 1754–1760.

48. Li,H., Handsaker,B., Wysoker,A., Fennell,T., Ruan,J., Homer,N.,
Marth,G., Abecasis,G. and Durbin,R. (2009) The sequence
alignment/map format and SAMtools. Bioinformatics, 25,
2078–2079.

49. Hijmans,R.J., Cameron,S.E., Parra,J.L., Jones,P.G. and Jarvis,A.
(2005) Very high resolution interpolated climate surfaces for global
land areas. Int. J. Climatol., 25, 1965–1978.

50. Hijmans,R.R. (2015) raster: geographic data analysis and modeling.
R Packag. version 2.4-18.

51. Plummer,M., Best,N., Cowles,K. and Vines,K. (2006) CODA:
convergence diagnosis and output analysis for MCMC. R. News, 6,
7–11.

52. Skoglund,P., Northoff,B.H., Shunkov,M. V, Derevianko,A.P.,
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