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ABSTRACT

Earlier we created a chemical hazard database via natural language processing of dossiers submitted to the European
Chemical Agency with approximately 10 000 chemicals. We identified repeat OECD guideline tests to establish reproducibility
of acute oral and dermal toxicity, eye and skin irritation, mutagenicity and skin sensitization. Based on 350–700þ chemicals
each, the probability that an OECD guideline animal test would output the same result in a repeat test was 78%–96%
(sensitivity 50%–87%). An expanded database with more than 866 000 chemical properties/hazards was used as training data
and to model health hazards and chemical properties. The constructed models automate and extend the read-across method
of chemical classification. The novel models called RASARs (read-across structure activity relationship) use binary fingerprints
and Jaccard distance to define chemical similarity. A large chemical similarity adjacency matrix is constructed from this
similarity metric and is used to derive feature vectors for supervised learning. We show results on 9 health hazards from 2
kinds of RASARs—“Simple” and “Data Fusion”. The “Simple” RASAR seeks to duplicate the traditional read-across method,
predicting hazard from chemical analogs with known hazard data. The “Data Fusion” RASAR extends this concept by creating
large feature vectors from all available property data rather than only the modeled hazard. Simple RASAR models tested in
cross-validation achieve 70%–80% balanced accuracies with constraints on tested compounds. Cross validation of data fusion
RASARs show balanced accuracies in the 80%–95% range across 9 health hazards with no constraints on tested compounds.

Chemical structure determines the biological properties of
substances, though the connection is typically too complex to
derive rules for larger parts of the chemical universe, whether
by computational means or human understanding (Hartung
and Hoffmann, 2009; Patlewicz and Fitzpatrick, 2016). Practical
use of structure activity relationships has therefore been
largely limited to so-called read-across, ie, the pragmatic com-
parison to 1 or few similar chemicals, with case-by-case rea-
soning about the validity of the approach (Patlewicz et al.,
2014). This subjective expert-driven approach cannot be
quickly applied to large numbers of chemicals. Read-across

dependence on human opinion makes evaluation of the tech-
nique difficult and prevents reliable estimates of method
reproducibility.

Read-across approaches have become the predominant
nonanimal-testing source of data (https://echa.europa.eu/
documents/10162/13639/alternatives_test_animals_2017_en.pdf/
075c690d-054c-693a-c921-f8cd8acbe9c3; last accessed June 30,
2018) in the European REACH (Registration, Evaluation,
Authorization and Restriction of Chemicals) registration process
(Aulmann and Pechacek, 2014; Hartung, 2010; Williams et al.,
2009), the largest investment into consumer safety ever,

VC The Author(s) 2018. Published by Oxford University Press on behalf of the Society of Toxicology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
For commercial re-use, please contact journals.permissions@oup.com

198

TOXICOLOGICAL SCIENCES, 165(1), 2018, 198–212

doi: 10.1093/toxsci/kfy152
Advance Access Publication Date: July 11, 2018
Research Article

https://echa.europa.eu/documents/10162/13639/alternatives_test_animals_2017_en.pdf/075c690d-054c-693a-c921-f8cd8acbe9c3
https://echa.europa.eu/documents/10162/13639/alternatives_test_animals_2017_en.pdf/075c690d-054c-693a-c921-f8cd8acbe9c3
https://echa.europa.eu/documents/10162/13639/alternatives_test_animals_2017_en.pdf/075c690d-054c-693a-c921-f8cd8acbe9c3
https://academic.oup.com/


requesting data equivalent to multibillion Euro of animal testing
for tens of thousands of chemicals (Hartung and Rovida, 2009;
Rovida and Hartung, 2009). Increasing experience with read-
across (Patlewicz et al., 2013) allowed the development of the
first read-across assessment framework by the European
Chemical’s Agency (https://echa.europa.eu/documents/10162/
13628/raaf_en.pdf; last accessed June 30, 2018) and the develop-
ment of Good Read-Across Practices (Ball et al., 2016), but the
utility of the approach is limited by data access and the un-
known uncertainty of these predictions.

A large machine-readable database of toxicological informa-
tion makes automation of read-across approaches viable by
allowing computational modeling of chemicals and chemical
analogs. Machine readable databases of chemical testing also
allow assessment of the quality of testing data by analysis of re-
peatedly tested substances (Hartung, 2016a). Knowledge of test-
ing data reliability also provides a baseline against which to
compare computational models.

A major advance of the European chemicals legislation is,
that key information of registrations on tens of thousands of
chemicals are made public, though not in a standardized man-
ner to allow computation. Previously, we used natural language
pattern matching to make the public information from the
REACH registration process machine-readable (Luechtefeld et al.,
2016a). Interestingly, many chemicals have been tested more
than once, some shockingly often: For example, one of the often-
challenged animal tests is the Draize rabbit eye test, where for
more than 70 years now, test chemicals are administered into
rabbit eyes. Two chemicals were tested more than 90 times, 69
chemicals were tested more than 45 times, shows the database
(Luechtefeld et al., 2016c). This excessive and redundant animal
testing facilitated an assessment of the reproducibility of OECD
guideline tests, based on hundreds of chemicals for each end-
point, presented here in a comprehensive manner for the first
time. Notably, the 9 most frequently done animal tests analyzed
here consumed 57% of all animals for toxicological safety testing
in Europe 2011 (http://ec.europa.eu/environment/chemicals/lab_
animals/reports_en.htm; last accessed June 30, 2018).

Chemical skin sensitization extracted from ECHA dossiers
enables assessment of chemical similarity-based hazard mod-
els. Using the simple 1-nearest neighbor approach, where a
chemical is classified by its closest analog (defined by a binary
vector—PubChem 2D and Jaccard distance) balanced accuracies
of 80%–92% have been previously demonstrated (Luechtefeld
et al., 2016d). These accuracies are made possible by requiring a
minimum threshold of similarity. This threshold states that a
chemical can be modeled when an analog of similarity greater
than or equal to the threshold is present in the available data. Low
minimum similarity thresholds allow simple similarity methods to
model more chemicals at the cost of lower accuracy. This paper
demonstrates that increasing similarity (PubChem 2D þ Jaccard
method) leads to increased model accuracy and supports the use
of chemical similarity methods in chemical modeling.

Success in modeling chemical hazards in earlier work
prompted 2 developments to support a Toxicology for the 21st
century (Hartung, 2009). First, the demonstration of the predic-
tive power of big data led us to focus on generating larger data-
bases. Our data integration pipeline pulls chemical property data
from PubChem, ECHA, and an NTP-curated acute oral toxicity
dataset. The combined data continues to grow but at present
contains 833 844 chemical property values used for modeling
across 80, 908 chemicals for an average of approximately 10
properties per chemical. Second, a simple method of automating
read-across was created to model chemical properties.

Tentatively named read-across structure activity relationships—
RASAR was created and presented here for the first time. RASAR
combines conventional chemical similarity with supervised
learning. Chemical similarity is done by generating a binary fin-
gerprint for each chemical and using Jaccard distance (similarity
¼ 1–distance) on fingerprints. Supervised learning methods then
provide a statistical model of the insights deliverable from
chemical similarity. Due to automation, the approach can be ap-
plied to large datasets and thus validated according to common
statistical methods such as cross-validation. Supervised learning
models built on chemical similarity also allow assignment of
confidence to individual predictions. Similar approaches using
the large datasets from robotized testing within ToxCast have
been recently reported (Shah et al., 2016; Zhu et al., 2016).

We demonstrate a “simple” RASAR which trains a logistic re-
gression model to predict chemical hazards from the similarity
to the closest chemical tested negative (maxNeg) and similarity
to the closest chemical which has tested positive (maxPos). The
approach has been applied to 9 of the most frequently used haz-
ard determinations in REACH and toxicology in general (Skin
Sensitization, Eye Irritation, Acute Oral Toxicity, Acute Dermal
Toxicity, Acute Inhalation Toxicity, Dermal Irritation, Acute/
Chronic Aquatic Toxicity and Mutagenicity). “Simple” RASARs
obtain cross-validated sensitivities above 80% with specificities
of 50%–70%. This is on par with the reproducibility of the re-
spective animal tests.

A further improvement to the simple RASAR trains random
forest models from diverse chemical information on analogs. A
broad variety of 19 categories of GHS classifications (74 in total)
of similar chemicals was considered to inform each endpoint.
This “Data Fusion” approach boosts cross-validated balanced
accuracies into the 80%–95% range.

The models presented here are part of the Underwriters
Laboratories Cheminformatics Suite.

MATERIALS AND METHODS

Pairwise Evaluation of OECD Guideline Test Reproducibility
The generation of the machine-readable REACH registration
database has been described earlier (Luechtefeld et al., 2016a)
using language pattern matching, database and web manipula-
tion packages (mongodb, htmlunit and beautifulsoup). It con-
tains data for 9801 unique substances, 3609 unique study
descriptions and 816 048 study documents.

To evaluate guideline study repeatability, results must be
assigned to each study. Every OECD guideline dossier reports a
“submitters_conclusions” field, from which a text result was
mapped to a controlled term for each related test. To evaluate
repeatability each test result was mapped to either “positive” or
“negative” and potencies were ignored.

The reproducibility evaluations used all chemicals with mul-
tiple results for each of the listed guidelines. A pairwise ap-
proach is used, ie, all chemicals that have been tested multiple
times for a given hazard are collected. The set of outcomes for a
given chemical are then mapped to the set of all pairs of out-
comes. The conditional probability of one outcome (T2 in below
equation) given another (T1 in below equation) is then calcu-
lated using the definition of conditional probability.

PðT2 ¼ 1jT1 ¼ 1Þ ¼ CountðT2 ¼ 1 \ T1 ¼ 1Þ=CountðAll PairsÞ

Sensitivity and specificity are estimated by the conditional
probability that a test is positive given that its paired test was

LUECHTEFELD ET AL. | 199

https://echa.europa.eu/documents/10162/13628/raaf_en.pdf
https://echa.europa.eu/documents/10162/13628/raaf_en.pdf
http://ec.europa.eu/environment/chemicals/lab_animals/reports_en.htm
http://ec.europa.eu/environment/chemicals/lab_animals/reports_en.htm


positive (sensitivity) or that a test is negative given that its
paired test is negative (specificity).

A no information (NOI) rate was calculated by combining
random tests with the same OECD guideline. This NOI rate helps
distinguish accuracy due to repeatability from accuracy due to
high imbalances in prevalence. For example, a guideline test that
always results in the same outcome is no more repeatable for a
specific chemical than it is for any random pair of tests.

Demonstration of Network Effects for Chemical Similarity
Analog-based coverage of a set of chemicals can be defined as
the proportion of chemicals in the set, for which a labeled ana-
log is defined. Large chemical sets can be covered by a relatively
small set of analogs when single labeled compounds can be-
have as analogs for many elements of the set. In practice this
“rapid coverage” of a large set by a small set occurs quite often,
primarily due to (1) the method of fingerprinting, (2) the similar-
ity metric, and (3) the physical constraints of possible chemical
structures.

A graphical illustration (Figure 7) of the coverage of a set of
approximately 33, 000 commercial compounds by a relatively
small number of chemicals with data was attempted. In this
experiment, 1387 chemicals from REACH Annex VI Table 3.1
(a table of hazard classifications[http://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri¼CELEX:02006R1907-20171010&from¼
EN:#page¼491; last accessed June 30, 2018]) were treated as a
labeled set of compounds and compared with 33 000 commer-
cial substances in the European INventory of Existing
Commercial chemical Substances (EINECS) (https://echa.eu-
ropa.eu/information-on-chemicals/ec-inventory; last accessed
June 30, 2018). Annex 3.1 compounds were considered analogs
of EINECS compounds when they were �70% similar as mea-
sured via the Tanimoto index on PubChem 2D fingerprints.
Connections are shown between unlabeled EINECS compounds
(blue) and highly similar Annex compounds (red). By using only
1387 labeled chemicals, we can cover 33 000 unknowns provid-
ing similar neighbors. This demonstrates that a relatively small
number of compounds are needed to find an analog for every
compound in a much larger (here >20� larger) set.

RASAR Database
A database was created combining the REACH database from
prior work with PubChem and an NTP-curated acute oral toxic-
ity dataset. The portion of the database used in this publication
contains 80 908 chemicals with sometimes missing information
on 74 properties resulting in 833 844 chemical labels.

• European Chemical Agency Classification and Labeling: UN GHS

hazards derived from submissions to the REACH chemical regu-

latory program. ECHA prohibits the re-publication of these data

but has made registration data available for download (https://

iuclid6.echa.europa.eu/reach-study-results; last accessed June

30, 2018). In agreement with ECHA, the database is available

from the authors for collaborative projects.
• PubChem: UN GHS hazards derived from HSDB, ECHA C&L, and

other sources. Noteworthy, at the time of this writing, PubChem

only reports positive hazard results, thus adding a skew towards

positive results to this data. Some balancing of the dataset for

training was therefore necessary and is described in the imple-

mentation section.
• NTP—Predictive Models for Acute Oral Systemic Toxicity: A set

of acute oral toxicity LD50 values derived from HSDB (https://tox-

net.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB; last accessed June

30, 2018) and other sources.

For the REACH database chemical hazard labels are derived
from the ECHA classification and labeling (C&L) data. ECHA C&L
are ultimately regulatory calls on chemical classifications.
These calls are made on the basis of OECD guideline studies,
read across studies, QSAR studies and other information avail-
able in chemical dossiers submitted in service of REACH legisla-
tion. Labels generated from PubChem are themselves derived
from ECHA, CAMEO chemicals, HSDB, and other sources. Labels
generate from the NTP curated acute oral toxicity dataset are
available and described at https://ntp.niehs.nih.gov/pubhealth/
evalatm/test-method-evaluations/acute-systemic-tox/models/
index.html, last accessed June 30, 2018.

All chemicals in the database are (1) entered as INCHI
Identifiers, (2) mapped to SMILES identifiers, and (3) mapped to
PubChem 2D vectors: The approach uses PubChem 2D chemical
fingerprints, ie, binary vectors with 881 features describing
atom counts, ring counts and other structural descriptors. A
description of each feature is available (ftp.ncbi.nlm.nih.gov/
pubchem/specifications/pubchem_fingerprints.txt; last accessed
June 30, 2018).

A Supplementary Material is available that describes each of
the hazard labels used in this work. The labels used include the
UN GHS health hazards H300-H399, the UN GHS chemical prop-
erties H200-H300, and an NTP label for acute oral toxicity. The
labels also include simple functions of the aforementioned
labels termed here “dependency labels”. Dependency labels
capture well-defined relationships between UN GHS hazards.
For example H300-H305 describes different potencies of acute
oral toxicity. The dependency label “acute_oral_binary” is true if
any H300-H305 is true and answers the question “is this chemi-
cal an acute oral hazard or not?”

Currently discordance in a chemical label is handled by
selecting the most hazardous value (aka the precautionary prin-
ciple). The most common known label with 49 609 known val-
ues is “eye_irritation_binary”, which is true if H319 (the UN GHS
hazard for serious eye damage) or H318 (eye irritation) is true
and false when both hazards are false.

Read-Across Structure Activity Relationship
RASARs are constructed in an unsupervised learning step and a
supervised learning step.

Unsupervised Step
In the unsupervised learning step distances between all chemi-
cals in the modeled database are built. Currently we do this ex-
haustively by comparing every chemical to every other chemical
(an O[n2] operation), but it can be improved using locality sensi-
tive hashing methods. After building chemical similarities a local
graph can be constructed for each modeled compound. This local
graph describes distances to each of the chemicals surrounding
the compound of interest. Finally, the unsupervised step applies
an aggregation function on the local graph to generate a feature
vector. K-nearest neighbors (KNNs) can be treated as an aggrega-
tion function on local networks. KNN creates an n-dimensional
vector with a count of the number of times each of n labels occurs
in the k closest neighbors. In this work the Simple RASAR aggre-
gation function generates 2D vectors describing similarity to the
closest positive and negative in the local graph (Figure 1).

Supervised Step
The supervised learning step applies a supervised learning
model to the vectors generated by the unsupervised learning
step. In this work we use logistic regression in the Simple
RASAR and a random forest in the Data Fusion RASAR.
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Simple RASAR
The simple RASAR combines an unsupervised aggregation func-
tion with logistic regression. The unsupervised aggregation
function generates a 2D vector for each chemical. The generat-
ing function FH is specific to the modeled hazard H. In an equa-
tion the generated vector for a chemical c can be described as:

FHðcÞ ¼ ½argmaxa2H að Þ¼1 S c; að Þð Þ; argmaxa2H að Þ¼�1 S c; að Þð Þ�

Sðc; aÞ is the similarity of the target compound c to an analog
a. The function H að Þ ¼ 1 if the chemical, a, is positive for the
hazard of interest and -1 if the chemical is negative for the haz-
ard of interest. The first element of the generated vector is the
similarity Sðc; aÞ to the analog a that maximizes Sðc; aÞ from all
analogs that are positive for the hazard of interest [ie, H að Þ ¼ 1].
The second element is the same but for chemicals a such that
H að Þ ¼ �1.

Data Fusion RASAR. The Data Fusion RASAR creates large feature
vectors from the local graph of each chemical and uses these
vectors to train a random forest. In the unsupervised step, the
data fusion RASAR extends the simple RASAR by building
similarity-based features for every catalogued chemical and
property. The Data Fusion RASAR also records feature data for
the target chemical of interest.

For n hazards Data Fusion RASAR’s generating function can
be mathematically described as the concatenation of 3 types of
vectors. DFp cð Þ describes similarities to closest analogs that are
positive for each catalogued hazard H1 �Hn. DFn cð Þ describes
similarities to analogs that are negative for each catalogd haz-
ard. DFTðcÞ describes the known hazard values for the com-
pound of interest:

DFp cð Þ ¼ argmaxa2H1 að Þ¼1 S c; að Þð Þ;argmaxa2Hn að Þ¼1 S c; að Þð Þ
� �

DFN cð Þ ¼ ½argmaxa2H1 að Þ¼�1 S c;að Þð Þ;argmaxa2Hn að Þ¼�1 S c; að Þð Þ�

DFT cð Þ ¼ H1 cð Þ;H2 cð Þ; . . . Hn cð Þ½ �

DF cð Þ ¼ DFp�DFn�DFTðConcatenation of
3 feature vectors defined aboveÞ

In the supervised step, DFðcÞ is used to train a random forest.
Unlike the Simple RASAR, the data fusion aggregation vector is
the same for all hazard models. Thus, the data fusion RASAR
consists of the creation of a large aggregation vector for each
compound and then the training of a random forest for each
hazard of interest. It should be noted that each label used to
build these feature vectors is a binary label.

Data fusion allows for strong predictions even in the absence
of data for a modeled hazard. For example, a prediction for eye
irritation may falter if there are no nearby chemicals with eye ir-
ritation data. If reliable skin irritation data is available for simi-
lar chemicals, then a prediction that uses skin irritation data
will outperform a prediction that does not.

Feature Hiding. An extra step is necessary for data fusion
RASARS to prevent fitting trivial models. Some values in the ag-
gregation vector must be hidden during model training. As an
example, one can see that DFT contains the hazard value being
modeled. This value must be hidden because the trained model
would simply become the identity model. Other values must be
hidden as well because of some well-defined dependencies be-
tween chemical properties/hazards, for instance when model-
ing binary acute oral hazard, we must hide all target features
pertaining to acute oral toxicity.

The final data fusion vector DFðcÞ is composed of DFT called
target features of DFP, called positive analog features and DFN

called negative analog features. We give a more detailed de-
scription of each below.

Target features. Target features are the known labels for the
chemical in question. There are 74 labels used as target features
in the data fusion approach. These include the UN GHS labels,
NTP acute oral toxicity labels and dependency labels, which are
simple functions of the former. These hazards fall under 19 dif-
ferent categories:

• Acute Toxicity—Dermal/Inhalation/Oral
• Hazardous to the aquatic environment - acute/chronic
• Skin or Respiratory Sensitization/Corrosion/Irritation
• Serious Eye Damage or Irritation
• Water contact flammable
• Substances and Mixtures corrosive to Metals
• Self-heating Substances and Mixtures
• Reproductive Toxicity
• Pyrophoric Solids/Liquids
• Oxidizing Solids/Gases
• Organic Peroxides
• Hazardous to the ozone layer
• Germ Cell Mutagenicity
• Gases Under Pressure
• Flammable Solids/Liquids/Gases
• Explosives
• Effects on or via Lactation
• Carcinogenicity
• Aspiration Hazard

A list of all these features is given in the appendix. Although
the Simple RASAR uses only distances to the closest analogs,

Figure 1. Illustration of aggregation functions on the local network of 1-decene. 1-decene is marked as target. Positive and small dots indicates analogs that are positive

for a modeled endpoint. Negative indicates analogs that are negative for the modeled endpoint. The table illustrates well known aggregation functions. Data Fusion ag-

gregation function not given.
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the Data Fusion Rasar uses both additional information about
the target as well as distances to all catalogued labels. When
target features are missing they are marked as missing in the
generated feature vector. The supervised learning algorithms
must be able to manage missing features.

Positive/negative analogs. After compiling target features, the
Data Fusion RASAR finds all the analogs for a target compound.
The distance—defined by Jaccard distance on PubChem 2D
descriptors—to the closest positive analog for each of the 74
labels (see appendix) makes up the 74D positive analog vector.
The same vector is made for negatives.

All together each chemical is given 74 target features (ie, val-
ues for the substance itself where available), 74 positive analog
features (Tanimoto similarity to the closest positive analog) and
74 negative analog features (Tanimoto similarity to the closest
negative analog) making a 74*3 ¼ 222D feature vector for each
compound. Table 1 gives a mock example of data fusion
features.

RASAR Implementation Details—Spark Pipeline
The RASAR algorithms are constructed with Apache Spark
(https://spark.apache.org/docs/latest/index.html), an open-
source cluster-computing framework, originally developed at
the University of California, Berkeley’s AMPLab, the Spark code-
base was later donated to the Apache Software Foundation. The
entire training process takes place on an Amazon EC2 cluster,
which is primarily necessary for the construction of the large
adjacency matrix in the unsupervised step of both RASAR
methods.

The endpoints evaluated here include 9 binary hazards:
acute oral binary, acute dermal binary, acute inhalation binary,

acute aquatic binary, skin sensitization binary, skin corrosion
binary, eye irritation binary and mutagenic binary, all of which
we consider “dependency labels”, because they are dependent
on simple functions of other labels (ie, acute oral binary is true
whenever any UN GHS hazard for acute oral toxicity is true).
The other trained models are enumerated in the
Supplementary Table 1.

In the unsupervised step, the Spark pipeline builds descrip-
tive feature vectors. This is the most computationally expensive
part of the process and is done across a computing cluster using
a custom built spark “User Defined Aggregation Function”.

In the final step of the RASAR algorithm, unsupervised fea-
tures are used to build supervised learning models for 51 of the
74 labels. This means that the RASAR algorithm is the composi-
tion of one unsupervised step and 51 supervised steps. The su-
pervised step consists of data sampling and model training.

Data Sampling
Both RASAR algorithms perform oversampling and undersam-
pling. Many of the tracked UN GHS hazards have an imbalanced
ratio of positives and negatives. The sampling method over-
samples the low-prevalence class up to 5� and undersamples
the high-prevalence class down to one-third. This means that a
hazard with 100 positives and 1000 negatives will have positives
resampled up to 500 and negatives randomly removed down to
500. Balanced datasets are important for many learning algo-
rithms, particularly in the absence of very large datasets. Care is
taken to perform resampling within the cross-validation circuit
to prevent model evaluation on chemicals used in model
training.

Model Training
The Simple RASAR (2 aggregation features) uses a different su-
pervised learning model than the Data Fusion RASAR (222 fea-
tures) due to differences in the feature vectors. The Simple
RASAR uses the spark.ml Logistic Regression model with a max-
imum of 300 000 iterations of training, a tolerance for conver-
gence of 1E-12 and a regularization parameter of 1E-4. The Data
Fusion RASAR uses the spark.ml.RandomForest model with 20
trees and 10 minimum instances per leaf node and otherwise
default features.

Model Evaluation
Unsupervised feature generation is done only once (outside of
cross-validation) for both RASAR algorithms due to its computa-
tional cost. Once the unsupervised features have been gener-
ated for all chemicals, the supervised learning algorithms are
trained and tested in 5-fold cross-validation to generate the
evaluation statistics (sensitivity, specificity, etc.) reported here
(Tables 3 and 4).

Visualization of Chemical Universe
The most demanding step of model training is the evaluation of
chemical similarity pairs. To visualize this process on large
datasets a proprietary force layout algorithm was built at
ToxTrack LLC. We applied this algorithm to an adjacency matrix
built from approximately 10 million compounds in PubChem
(50 trillion comparisons).

In this process, a “cross-join” is performed on a Spark com-
puting cluster to compare all chemicals with each other.
Currently this is an O(n2) operation (n ¼ number of compounds).
Similarities <70% are dropped. A similarity is calculated by the
number of PubChem 2D features shared by 2 chemicals divided
by the total number of PubChem 2D features in both com-
pounds (Tanimoto or Jaccard similarity).

The RASAR database contains 81 089 chemicals with label
data, which alone require 3.3E9 choose-2-comparisons. The mil-
lions of structures in PubChem require approximately 1014 com-
parisons. This was done on a large computing cluster on the
Amazon cloud. Specifically, the task of similarity calculation
was divided into many parts across 20þ spot instances running
Apache Spark with Yarn resource manager, the method for set-
ting up this cluster is described by Berkeley Amplab at https://
github.com/amplab/spark-ec2, last accessed June 30, 2018. Once
this large adjacency matrix has been calculated, visualization of
the chemical space remains a challenge. ToxTrack LLC’s propri-
etary graphical layout algorithm applies the force layout algo-
rithm on massive datasets and generates the visualizations
shown here (Figure 2).

Table 1. Example Data Fusion Features

SMILES H225þ H225� H225T . . . H410þ H410� H410T

C(#CCCCCC)CCCCC 0.35 0.63 0 0.34 0.56 0.82
C(#C[Pþ]

(C¼1C¼CC¼CC1)
0.01 0.46 1 0.67 0.32 0.50

C1CCC2CCCC2C1 0.12 0.03 1 0.80 0.38 0.53

This mock table illustrates how data fusion features are built during the unsu-

pervised step of model training. Each column represents the similarity to the

closest positive (eg, H225þ) or closest negative (eg. H225-) or binary target values

(eg. H225T).
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Variable Importance Analysis
Variable importance can be assessed for data fusion models by
using a feature subset evaluation algorithm. In short, each of
the 51 supervised learning models (random forests) is retrained
and reevaluated with one feature removed. The importance of
the removed feature is evaluated by its impact on the resulting
model accuracy. A feature whose removal results in a large re-
duction in accuracy is considered an “important feature”.

Packages
This work involves the use of dozens of software packages. The
packages of paramount importance in chemical and data manipula-
tion are:

org.openscience.cdk cdk-bundle: The chemical development kit is used

to manipulate chemical structure and build chemical fingerprints.

org.apache.spark spark-core, spark-mllib: Apache spark libraries

provide the means for cluster deployment and statistical model

building on this cluster.

RESULTS

Overview
Three main results are presented herein. Due to the number
and complexity of the workflow, Figure 3 provides an overview
of these 3 results presented in Tables 2–4. The first workflow “A.
OECD Reproducibility” is an evaluation of the reproducibility of
animal tests performed according to OECD guidelines. This
evaluation is done by evaluating how well 1 animal test can pre-
dict a repeated animal test. The second workflow “B. Simple
RASAR Evaluation” evaluates a simple RASAR. This RASAR is

built and evaluated on chemical classification and labeling data
detailed in the Database section. It is distinguished from a “Data
Fusion RASAR” by the simplicity of the aggregation features
generated prior to supervised learning. These features capture
the similarity to the closest negative and positive analog for the
endpoint of interest. The last workflow “C. Data Fusion Rasar”
evaluates a RASAR built from “data fusion” features which in-
clude descriptions of (1) off-target properties of the predicted
compound, (2) similarities to positive analogs for 74 properties,
and (3) similarities to negative analogs for 74 properties.

Animal OECD Test Reproducibility
The machine-readable REACH database includes many replicate
tests (Luechtefeld et al., 2016c). All available testing data must
be registered by the consortia called Substance Information
Exchange Forum, a mandatory requirement to register jointly
(“one substance, one registration” principle of REACH), which
leads for the first time to the compilation of essentially all avail-
able studies. The extent of repeated tests is often surprising. For
example, chemicals tested for acute eye irritation guideline 405
are tested on average 2.91 times. Chemicals tested for acute oral
toxicity guideline 401 have on average 3.56 tests. The medians
for both guidelines are 1 indicating a skew due to some chemi-
cals with many repeat tests. The average OECD guideline test is
repeated 2.21 times. This number is skewed upwards because
guidelines with many repeats will have more records (there are
7560 eye irritation TG 405 tests, which have mean repeats ¼ 2.9,
and only 108 skin irritant TG 431 tests, which have mean
repeats ¼ 1.01). There are 1.57 average test repeats balanced
across all OECD guidelines. This high repetition factor is owed
to the fact that before the introduction of the OECD mutual

Figure 2. Force layout graph of 10 million chemicals. A, where each dot represents a chemical and their distance reflects chemical similarity, calculated by the number

of PubChem 2D features shared by 2 chemicals divided by the total number of PubChem 2D features in both compounds (Jaccard similarity). B–D, Step-wise zooming

in, where the frame indicates the area shown in the next graph, until in D, individual chemicals are seen with their similarity connections as gray lines, whose length

represents % similarity.
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acceptance of data, a given substance had to be registered in
each country with data generated in this country and that com-
petitors registering the same substance were not aware and/or
had no access to data from earlier registrations.

The extracted REACH data allowed a systematic quality as-
sessment of the animal studies to derive a benchmark for the in
silico predictions presented here. As reproducibility is
substance-dependent (nontoxic and highly toxic substances are
more reproducible in their biological effect), modeling of a re-
peat test was calculated for each chemical, for which multiple
OECD guideline tests were available, and then averaged for the
study type. Table 2 shows the sensitivities, specificities and re-
spective overall accuracies, based on conditional probabilities if
the result is true and asking for the correspondence of the sec-
ond draw.

For each animal test several hundred retested chemicals
were available (361–718). Incidences of low sensitivity (eg, TG
402) indicate that a substance tested positive in the first test,
would often test negative in the second. The higher specificity
is owed to the fact that overall far more nontoxic than toxic sub-
stances were found among the retested ones in the ECHA data-
base. This reflects the general somewhat surprising finding that
toxic hazards are less frequent in the database than might be
expected, typically below 20% of chemicals for any given health
hazard label (Luechtefeld et al., 2016a). This is probably due to
the selection bias of nontoxic substances for use in products, ie,
the mostly high-production volume chemicals registered in

2010 and 2013. These results would be even worse if the repro-
ducibility of potency classes would be included, but as bench-
marks are needed here for a tool for hazard identification, all
weak, moderate, strong, etc. effects were combined simply as
positive outcomes. Noteworthy, the ECHA database includes

Figure 3. Workflow of the presented studies. A, OECD Reproducibility is evaluated via conditional probabilities generated from repeated test pairs found in ECHA dossi-

ers. B, A Simple RASAR built from ECHA C&L data is evaluated in cross-validation. C, A Data Fusion RASAR built from ECHA C&L data is evaluated in cross-validation.

Table 2. Reproducibility of OECD Animal Test Guideline Studies for
Acute and Topical Hazards

Hazard OECD TG Chemicals Se Sp Acc NOI BAC

Acute oral 401 707 87 97 94 72 92
Acute dermal 402 384 65 91 88 84 78
Skin irritation 404 709 68 83 78 59 75.5
Eye irritation 405 718 75 92 88 74 83.5
Skin sensitization 406 493 70 95 92 87 82.5

429 97 82 89 87 56 85.5
Mutagenicity 474 207 51 97 94 89 74

475 154 50 100 99 97.5 75

The database from Luechtefeld et al. (2016a) based on REACH registrations until

December 2014 was used to extract multiple guideline studies on the same

chemical. Conditional pairwise probabilities were calculated to derive sensitiv-

ity, specificity and accuracy of a repeat experiment. Please note that TG 401 has

been abandoned, but the newer tiered TG has not relevant numbers of repeated

studies. Mutagenicity includes only 8 positive compounds.

Abbreviations: Se, Sensitivity; Sp, Specificity; Acc, Accuracy; NOI, Accuracy on

random selected pairs of tests; BAC, balanced accuracy.
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potency information (Supplementary Figure 1), which has not
yet been exploited for analysis of reproducibility or prediction.

Simple RASAR Models Can Estimate Chemical Hazard
Visualize similarity. To demonstrate that chemicals tend to create
rich adjacency matrices due to complex relationships on the
possible structural combinations, we built a force layout dia-
gram from approximately 10 million compounds in PubChem
(50 trillion similarities). The visualized graph (built with a pro-
prietary graphical package from ToxTrack LLC) shows large
numbers of highly similar chemicals and clustering at multiple
zoom levels. The figure zooms into a part of the map, which
reflects shared functional groups (Jaccard similarity on
PubChem 2D vectors) of minimum 70% by connecting lines and
the exact similarity by distance of the substances.

Simple rasar feature evaluation. Following the vision toward a
read-across-based prediction of hazard and its validation
(Hartung, 2016a), an expanded database was curated. The
RASAR database contains 80 908 chemicals with hazard labeling
data. This database allowed now to establish a probability of
hazard based on the proximity (similarity) to toxic substances
and similarly a probability of nonhazard based on the proximity
to nontoxic ones.

The Simple RASAR generates feature vectors for each chemi-
cal by recording similarities to the closest positive analog and
closest negative analog. Figure 4 is a local graph for 1-DECENE
(“target”) and shows positive analogs (“positive” and small dots)

and negative analogs (in negative). The closest analogs (large
nodes) are used to build the Simple RASAR feature vector.

Figure 5 demonstrates the value of the similarity to the clos-
est positive (termed maxPos) and similarity to closest negative
(maxNeg). In this work maxPos and maxNeg are cubed, which
has the effect of emphasizing larger similarities. Figure 5A dem-
onstrates that negative compounds (in green) tend to have

Figure 4. Illustration of the closest positive and negative neighbor approach for

1-DECENE. The graph shows chemicals with similarity > 0.9 according to

PubChem 2D Tanimoto. The RASAR uses similarity to the closest Positive (large

positive node—1, 7-OCTADIENE) and closest Negative (large negative node—

MYRCENE) along with other features to characterize a local similarity space. All

small nodes here are positives.

Table 4. Data Fusion RASAR—5-Fold Cross-Validation Results for 9 Hazard Classifications

Hazard Chemicals Sensitivity Specificity BAC % ACC %

Acute aquatic binary 10 541 95 94 95 95
Acute dermal binary 11 252 89 94 92 90
Acute inhalation binary 11 369 90 91 91 90
Acute oral binary 32 411 94 86 90 93
Chronic aquatic binary 17 295 98 66 82 98
Eye irritation binary 48 767 99 70 84 98
Mutagenic binary 3703 76 92 84 88
Skin corrosion binary 46 331 98 75 86 97
Skin sensitization binary 7670 80 96 88 84

Five-fold cross-validation of the model based on all GHS classifications. In 5 iterations, 20% of randomly picked chemicals were predicted by a model trained on the

remaining 80% of chemicals. The resulting average accuracies compared with the actual test data are given. Please note, that all chemicals were predicted, ie, the appli-

cability domain is 100%.

Abbreviations: BAC balanced accuracy; ACC, accuracy.

Table 3. Simple RASAR Prediction Accuracy in a Leave-One-Out Cross-Validation

Hazard
Chemicals
With Data

Positive
(Toxic)

Negative
(Nontoxic)

Threshold
Negative %

Threshold
Positive %

Sensitivity
%

Specificity
%

Coverage
%

Accuracy

Skin sensitization 4783 2886 1897 43 50 80 50 85 68%
Eye damage 15 760 14 794 966 47 55 81 51 88 79%
Acute oral 12 157 10 225 1932 40 50 80 64 87 77%
Acute dermal 6427 4430 1997 40 60 80 69 73 77%
Skin irritation / corrosion 15 223 13 846 1377 37 52 80 51 75 77%
Mutagenicity 3395 600 2795 42 50 80 55 83 59%
Chronic aquatic 2844 2582 262 40 54 80 50 80 77%
Acute aquatic 2055 1129 926 40 50 80 52 82 67%
Acute inhalation 6184 4812 1372 41 59 74 75 83 74%

The table shows the number of toxic (positive) and nontoxic (negative) chemicals in the expanded database. The chosen negative (negT) and positive (posT) thresholds

of probability resulted in the sensitivities, specificities and coverage of chemicals indicated.
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greater similarity to the closest negative than the closest posi-
tive and the same is seen for positive compounds. One of the
benefits of providing these features to a supervised learner is
that activity cliffs can be identified when chemicals are very
similar to both positives and negatives (diagonal line from lower
left to upper right). The activity cliff region tends to be mixed
between positives and negatives. The supervised learner (logis-
tic regression for Simple RASAR) can fit these observations and
provides probabilities visualized in Figure 5B. Probabilities of
hazard can be seen to fall as one move from the lower right to
the upper left of the diagram. Figures 5C and 5D visualize counts
of negative and positive chemicals, respectively. Negatives are
largely in the upper left and positives largely in the lower right.

The efficacy of similarity metrics can be evaluated by mea-
suring the probability of chemical hazard as a function of simi-
larity to hazardous/nonhazardous compounds. Stronger
metrics identify chemicals as similar when they share the activ-
ities of interest. This means that similarity metrics should be
defined in the context of the activities of interest. It also means
that a similarity metric is flawed when it identifies a compound
as simultaneously similar to differently labeled chemicals (so
called “activity cliffs”).

The RASAR approach allows us to build a model to evaluate
similarity-based predictions on evidence. Rather than posing
that 2 chemicals are similar will tend to share properties, we
model this effect in a supervised model. No commonly used fin-
gerprint þmetrics are globally applicable. To identify chemicals
for which a similarity metric is likely to be less applicable, we
can measure similarity to analogs with diverging properties. We
would expect that chemicals that are both similar to negative
and positive chemicals would be less predictable from their
closest neighbor. This statement is visually supported by
Figure 5.

Simple RASAR evaluation. Figure 6 demonstrates how the Simple
RASAR logistic regression model (predictions visualized in
Figure 5B) separates sensitizers (green) and nonsensitizers (red).
On both ends of the graph, the judgement is easy as the

probability of hazard versus nonhazard is very distinct. In the
middle, such decisions are difficult, creating a gray zone, where
decisions are less trustworthy. By setting thresholds for nega-
tive and positive probabilities, this gray zone is defined, which
determines the applicability domain (coverage of the chemical
universe). Conservative choices lead to very good predictions
but for less chemicals. The manual setting of these thresholds
(Table 3, columns 5 and 6) aimed to optimize sensitivity, specif-
icity and coverage and in the current implementation the met-
rics give a sensitivity of 80þ % with specificities of 50þ % and
65þ % coverage.

The database includes between 5 and 15 thousand chemicals
with animal test-based classifications (Table 3, column 4). This
allowed now making predictions for each of them in a leave-
one-out cross-validation. The achieved accuracies are shown in
Table 3 (columns 7 and 8). This shows that while choosing 80þ
% sensitivity, and maintaining specificities between 51% and
69%, the approach worked for on average 82% of substances
(73%–88%). It should be noted that the Simple RASAR approach
achieves significantly lower specificities than animal reproduc-
ibility shows. This is improved via the more complex Data
Fusion RASAR.

Development of a data fusion RASAR

Data fusion integrates multiple data sources to achieve more
consistent, accurate, and useful information than the individual
datasets. Although the Simple RASAR makes only use of one
type of hazard information, the data fusion approach uses all
labels of the neighboring chemicals. There were 74 labels con-
sidered including the UN GHS labels, NTP acute oral toxicity
nontoxic label and dependency labels, which are simple func-
tions of the former. There were 23 features no longer considered
due to their extreme label imbalances. A feature vector combin-
ing 3 kinds of features (known labels for the chemical in ques-
tion, Jaccard similarities to the closest positive and negative
analog) for every label is created to combine different kinds of
hazard data.

Figure 5. Proximity to negative and positive neighbors and probability of skin sensitization. These graphs show how skin sensitizers and nonsensitizers distribute over

features describing the closest negative and positive chemicals. A, shows how proximity to closest negative (MaxNeg3) and positive neighbor (MaxPos3) distribute for

actually toxic (red) and non-toxic (green) chemicals. B, The associated probability for a positive classification (color gradient from green as low probability for a toxic to

red for high probability of toxic property). (C, D) 2D histograms for negative (C) and positive (D) chemicals. In (C), hexes to the upper left of the red line are correct classi-

fications. In (D), classifications to the lower right of the red line are correct classifications. Brighter hexes indicate more chemicals with the given feature values.
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The RASAR algorithm builds feature vectors for every com-
pound in the unsupervised step and then fits the resulting vec-
tors with Random Forest models for 51 chemical hazard/
property labels. Results are shown here for 9 binary (toxic vs.
nontoxic) hazards: acute oral toxicity, acute dermal toxicity,
acute inhalation toxicity, acute- and chronic-aquatic toxicity,
skin sensitization, skin corrosion, eye irritation and mutagenic-
ity. Model accuracy metrics have been assessed in 5-fold cross-
validation given in Table 4.

The evaluation metrics for modeling approaches in Tables 3
and 4 compares well with reproducibility metrics from Table 2.
This provides encouraging evidence for the ability of computa-
tional models to provide valuable predictions on untested
chemicals. There are 2 potential reasons for the strength dem-
onstrated in our Data Fusion RASAR. First, the data fusion ap-
proach can handle noise in the data and potential activity cliffs
via its integration of information on many analogs across many
chemical properties. Second, the use of supervised learning
methods on high-dimensional data allows for the capture of
complex relationships and the avoidance of pitfalls associated
heuristic or simplistic structure/activity-relationships (SAR)
and Quantitative SAR (QSAR) models. This latter novel approach
is based on analysis on how different hazards predict each
other. The algorithm incorporated this relationship.

Figure 7 demonstrates how similarity approaches benefit
from the quick generation of many analogs for each chemical in
a dataset. This “network” effect allows RASAR models to quickly
cover a large number of compounds with a relatively small
number of labeled compounds. In each graph, more labeled com-
pounds from REACH Annex VI Table 3.1 are added to 33 000 com-
pounds selected from the European INventory of Existing
Commercial chemical Substances (EINECS). Connections are
shown between unlabeled EINECS compounds (blue) and highly
similar Annex compounds (red). The figure helps to visualize how
the increasing number of neighbors makes the database cluster as
more and more chemicals find a neighbor from the 1 387-chemi-
cal list. The X/Y graph shows the coverage of the chemical space.
We can see a small number of ANNEX chemicals cover a very
large number of EINECs chemicals. By using only 1 387 labeled
chemicals we can cover 33 000 unknowns. The bottom right panel
of Figure 7 shows how the number of compounds without labeled

analogs (termed “lonely EINECS”) decreases as more labeled com-
pounds are added.

The coverage rate, ie, for how many chemicals sufficiently
close neighbors are available to make a call, depends mainly on
the number of chemicals with data in the database and is thus
improved with any addition of further data-points. Counter-in-
tuitively, the information gain of adding a single chemical
increases the more, the larger the database already is; this is
owed to the fact that the new data-point can be paired with all
already included, being one reason for the power of big data for
machine learning. The figure demonstrates that chemical simi-
larity networks appear to obey this also known as Metcalfe’s
law (Metcalfe’s law states the effect of a telecommunications
network is proportional to the square of the number of con-
nected users of the system (n2). Generalized, a network is more
valuable the more nodes it has.). Models that can integrate dif-
ferent kinds of data have a much larger benefit from this effect
due to the increase in labeled chemicals.

An unfortunate side effect of integrating more data is the
loss of a clear explanation for predictions. This can be amelio-
rated to some degree via analysis of feature importance.
Figure 8 shows the variable importance derived by a wrapper
approach wherein a model is built with and without a feature
and changes in accuracy are treated as importance. The entire

results are given as Supplementary Table 2. Notably the H200’s
are chemical physical properties and appear to consistently pro-
vide value across the 9 shown hazards. This observation is prob-
ably due to the intrinsic value of these features but also simply
to the high number of chemicals with H200-H299 labeling data.
It is satisfying that “skin corrosion binary” (true for a chemical
whenever any of the skin corrosion UN GHS hazards is true)
appears to be strongly predictive of “eye irritation binary”.

DISCUSSION

These results provide evidence that animal tests as described in
OECD test guidelines are not strongly reproducible. The repro-
ducibility of an animal test is an important consideration when
considering acceptance of associated computational models
and other alternative approaches. These results additionally
show that computational methods, both simple and complex,

Figure 6. Distribution of sensitizers/nonsensitizers over Simple RASAR hazard estimates. The upper figure (A) is a histogram counting the number of 6 chemicals re-

ceiving different probabilistic estimates (2.5% increments). The lower figure (B) shows the percentage of 6 chemicals at each hazard probability estimate.
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can provide predictive capacity similar to that of animal testing
models and potentially stronger in some domains.

The measurement of animal test reproducibility results
here has potential shortcomings. Test reproducibility is not in-
dependent of the chemical being tested. For example, a soluble
acid may be more reproducible than an insoluble allergen in
eye irritation tests. Thus, the results should not be taken as a
global predictor of reproducibility. Additionally, chemicals
that have been tested multiple times may be biased to those
that are more difficult to evaluate. Notwithstanding these
shortcomings, it seems that animal test results are highly vari-
able. Computational models such as those presented here now
obtain accuracies in line to the animal tests, on which they are
based. It is possible that these models obtain stronger results
than single animal tests in cases where they can leverage reli-
able data on analogs or off-target hazards of the predicted
compound. Shortcomings in animal testing have been dis-
cussed earlier (Basketter et al., 2012; Hartung, 2008, 2013); a re-
cent publication of ours (Smirnova et al., 2018) summarizes
this for the systemic endpoints though the balance between
opinion and evidence is difficult in the absence of systematic
reviews (Hartung, 2017a). For the acute and topical hazards
addressed here, some analyses available are in line with our
earlier findings (Luechtefeld et al., 2016c,d) and those reported
here: The variability of the LLNA was pointed out by Urbisch
et al. (2015): By retesting 22 LLNA performance standards in
the standard LLNA protocol, a reproducibility of only 77% was
found (Kolle et al., 2011). Recently, Hoffmann (2015) analyzed
the variability of the LLNA test, using the NICEATM database.
Repeat experiments for more than 60 substances were

analyzed in terms of skin sensitization potential, ie, discrimi-
nating sensitizer from nonsensitizers: The false positive rate
ranged from 14% to 20% (false negative rate 4%–5%). For eye ir-
ritation, Adriaens et al. (2014) showed by resampling Draize
eye test from more than 2000 studies, analyses an overall
probability of at least 11% that chemicals classified as category
1 could be equally identified as category 2 and of about 12% for
category 2 chemicals to be equally identified as no category.
Hoffmann et al. (2010) reported somewhat better reproducibil-
ity of the acute oral toxicity (LD50) in mice and rats, corre-
sponding to the 94% accuracy observed here and similar in
Luechtefeld et al. (2016b). Noteworthy, TG 401 for acute oral
toxicity has been replaced in the meantime by tiered test
guidelines, for which no such reproducibility data are
available.

Noteworthy, the animal test reproducibility should be higher
in toxicology than other areas of the life sciences as these highly
standardized tests are carried out under Good Laboratory
Practice by skilled professionals addressing high doses of sub-
stances (often so-called maximum tolerated doses) in healthy
animals, ie, without further modeling of a disease as in most
drug-related studies. Still mere reproducibility ranges only in
the 70s–80s percent as shown here for the first time in a com-
prehensive way for the most commonly used toxicity tests
based on a very robust sample of hundreds of studies used for
regulatory purposes. The benchmarks established here should
be of value for decisions on replacing any of these methods by
alternatives far beyond the RASAR tool presented here. This
sheds another light on the reproducibility crisis in science
(Baker, 2016).

Figure 7. Modeling of sufficiently close neighbor availability with increasing number of chemicals with data. Two substance lists of 33 383 substances (European

Inventory of Existing Commercial Chemical Substances [EINECS]), representing here chemicals with no data, and 1387 chemicals (Annex VI of the REACH legislation)

are used, representing chemicals with labels. Please note that these are used here only as random lists of chemicals with CAS numbers. EINECS compounds are repre-

sented in blue and ANNEX VI Table 3.1 compounds are in red. At start, none of the 33 383 has neighbors with data. Choosing randomly an increasing number from the

1387-chemcial list, more and more chemicals find neighbors indicated by the contraction of dots linked by Jaccard similarities. We use a minimum similarity of 70% in

these figures. The number of neighbors is symbolized by the size of red dots. Edges represent similarities between EINECS compounds and Annex compounds. These

visualizations are made with the aid of Gephi graph visualization software.
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Higher reproductions of such data are either due to better
reference datasets or over-fitting, ie, an optimization for the
given training set, which will then not hold for the later applica-
tion. The RASAR development described made use of classifica-
tions not the underlying raw animal data, ie, expert judgment
has already integrated the available knowledge. It can therefore
be somewhat better than the reproducibility of the animal test.
Relying on both positive and negative neighbors and other cova-
riates also reduces the impact of misclassified neighbors.
Noteworthy, preliminary work using more than 1 positive/nega-
tive chemical did not improve predictions to relevant extent,
probably reflecting the redundancy of this information.

Supervised models for hazard that output probabilities of
hazard allow for setting thresholds to achieve 80þ % sensitivity,
ie, to find most toxic substances and thus reflecting regulatory
needs. A balance between specificity and coverage was
attempted as neither a tool, which has too many false-positives,
nor one, which can make predictions only for a small portion of
chemicals, is of any use. It should be noted that most toxicologi-
cal tools are rendered rather unspecific in order to increase sen-
sitivity with specificities often below 10%–20% (Basketter et al.,
2012; Hoffmann and Hartung, 2005), ie, a true-positive rate of
1:5–1:10. The sensitivities achieved are thus remarkably high,
which is desirable from a company perspective as unnecessary
restrictions of use are avoided. Setting thresholds even more
conservatively, even higher sensitivities (but then lower cover-
age) could be obtained depending on the use scenario for these
results. Setting model thresholds based on animal reproducibil-
ity metrics makes sense in a regulatory context.

With sufficient data on the target compound and its analogs,
computational models presented here show accuracy commen-
surate to the repeat animal test. By data fusion, this predictivity

was considerably boosted, even exceeding animal test repro-
ducibility. For the 6 tests often referred to as “toxicological 6-
pack” a reproducibility sensitivity of on average 70% was found
(Table 2); the Simple RASAR matched this with on average the
same 70%; by data fusion, 89% average sensitivity was achieved
clearly outperforming the respective animal test. As cited
above, these 6 tests consume 55% of all animals for toxicological
safety testing in Europe 2011. These methods are constrained
by the availability of training data. Careful construction of train-
ing data should be considered to optimize future model training
and reduce the use of animals.

The data fusion model covers the standard tests for the
REACH 2018 registration. In 2009, we predicted the numbers of
chemicals to be registered under REACH (Hartung and Rovida,
2009; Rovida and Hartung, 2009). For phases 1–2, we predicted
a minimum of 12 007 and 13 328 were received (http://www.
cefic.org/Documents/IndustrySupport/REACH-Implementation/
Workshops/RIEF-IV-16-6-2015/12%20Reach%20and%20%20non-
animal%20testing%20-%20Katy%20Taylor.pdf; last accessed
June 30, 2018). For 2018, we predicted a minimum of 56 202
chemicals to be registered and ECHA now talks of expected 60
000 registrations in 2018: “We estimate to process around 60 000
dossiers and to assign them registration numbers so that com-
panies can continue to manufacture, import or sell their sub-
stances on the European market.” (https://www.echa.europa.eu/
documents/10162/13609/work_programme_2018_in_brief_en.pdf/
9412a2bd-64f1-13a8-9c49-177a9f853372; last accessed June 30,
2018).

So, if the estimates from 2009 stand, theoretically stopping
REACH after the 2013 deadline (the data we are using) and using
the data fusion RASAR, we would have saved 2, 8 million animals
and 490 million testing costs and received even more reliable

Figure 8. Select features contributing to the Data Fusion RASAR prediction. The most important information sources in the data fusion approach for 9 hazards are

shown. The length of each bar shows the relative importance of the feature (given on the left) towards prediction of the hazard (given at top). Row names take the form

<feature>_T for a feature describing the target compound, <feature>_PosAna for a feature describing distance to closest negative analog, and <feature>_NegAna for a

feature describing similarity to the closest negative analog. All relative contributions are given as Supplementary Table 1.
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data. This is a very theoretical calculation based on the assump-
tion that the ECHA test guidance to industry is actually being
enforced. The estimate takes already into consideration available
data, waiving, (Q)SAR and in vitro studies. However, as discussed
earlier (for reproductive toxicity, the main challenge in REACH
and not covered by the RASAR approach yet) industry did in
fact only propose a fraction of these studies (Rovida et al., 2011).
It will be crucial now to see how ECHA enforces its testing
guidelines and RASAR-like approaches might still help to fill
data-gaps.

The critical question is the validity of the approach. The in-
ternal validation of both approaches uses an unprecedented
number of (tens of) thousands of chemicals for the leave-one-
out cross-validation of the RASAR and 5-fold cross-validation of
the data fusion RASAR. What the RASAR models lose in mirror-
ing biological complexity, they gain by their automatable na-
ture. We will have to learn, where for each hazard the areas of
uncertainty or misclassification lie, to possibly flag or alert for
them. While the current approach already aligns with the OECD
validity criteria for (Q)SAR (http://www.oecd.org/officialdocu-
ments/publicdisplaydocumentpdf/?doclanguage¼en&cote¼env/
jm/mono(2004)24) agreed in 2004 (http://www.oecd.org/chemi-
calsafety/risk-assessment/37849783.pdf; last accessed June 30,
2018), a formal validation of the approach is under way with the
U.S. Inter-Agency Coordinating Committee for the Validation of
Alternative Methods, which shall identify such shortcomings.
The methods are made practically available in a collaboration
with Underwriters Laboratories (UL) (as REACHacross https://
www.ulreachacross.com; last accessed June 30, 2018; and the UL
Cheminformatics Suite, respectively).

The method is agnostic to the endpoint of interest—when-
ever there is a sufficiently large curated dataset of a given prop-
erty of substances it can predict and determine the confidence
of the prediction. For example, the addition of aquatic toxicity
endpoints and inhalation toxicity complemented the array of
prediction models. The critical dependence on availability and
quality of data is acknowledged, urging also those with access
to such data, ie, industry and regulatory agencies to make such
data in suitable formats publicly available. Questions of legiti-
mate access to these data for use registration purposes, if used
in aggregated manner for predicting other substances, have for-
tunately been clarified by ECHA: “A registrant would need per-
mission to use protected data to read-across from a single
substance to the target substance, . . . But they would not need
this to make a Qsar prediction.” ( Chemical Watch, July 5, 2017:
Echa gives clarity on IP issues for Qsar predictions)

The approach also allows addressing the backlog of other
untested substances, eg, the almost ten thousand flavors used
in e-cigarettes (Hartung, 2016b) or several thousand food
additives and contact materials (Hartung, 2018) or help with
emergency assessments or frontload toxicity testing in product
development. The latter is referred to as Green Toxicology
(Crawford et al., 2017; Maertens et al., 2014; Maertens and
Hartung, 2018), ie, synthesizing (“benign design”) likely nontoxic
substances or sort out toxic ones by earlier informing the prod-
uct development process. The tool might also be helpful to ad-
dress substances, for which simply not enough material is
available (up to 20 kg required for comprehensive testing in ani-
mal studies) such as impurities in drugs and food. Further uses
can be seen in the prioritization of testing or risk assessment or
the comparison of substances where alternative chemistry shall
replace a substance of concern, avoiding simply that the toxic
one is only replaced by a less tested but similarly toxic one.
RASAR, a QSAR based on read-across, combines the best of

these 2 worlds, the robustness of local chemical similarity driv-
ing similarity in biological properties and the objective and fast
execution of a QSAR, which can be validated and has estab-
lished reporting and acceptability criteria.

Future Directions
Every year, about 3 billion Euro are spent for animal tests in tox-
icology (Bottini and Hartung, 2009), mainly the tests addressed
here. These results indicate that large parts of this could be car-
ried out by in silico prediction at a fraction of time and costs. In
May 2018, several ten thousand additional substances have to
be registered for the European REACH legislation to continue
marketing them. The data fusion RASAR approach could satisfy
the information requirements for the most prominent end-
points for this deadline without using animals and at a fraction
of the costs. However, it is coming obviously too late for this
process. It might still help to overcome the shortage in labora-
tory capacities currently experienced in preparation of dossiers
for the deadline. Noteworthy, prices for tests have now often tri-
pled because of these shortages (Dr C. Rovida, personal commu-
nication). However, there is not only REACH in Europe. Similar
programs from new and emerging policies in the United States
(the Toxic Substance Control Act reauthorization, known as the
Lautenberg Chemical Safety for the 21st Century Act), Canada,
Turkey, Korea, Taiwan, China, India, and more are following.

Very important, the method is endpoint-agnostic. Any suffi-
ciently large dataset of organic chemicals with a given property
could be subjected to the RASAR, opening up for further hazards
such as endocrine disruption (Juberg et al., 2014), but even
chemicophysical properties could be predicted, perhaps also

forming an interesting dependency label for the prediction.
Future optimizations of the approach beside the expansion and
curation of the database should address the similarity metrics
employed (Luechtefeld and Hartung, 2017) and validate predic-
tion for more difficult chemistries such as inorganic molecules,
ions and polymers. Preliminary data show that especially com-
binations of different metrics are very promising. A key chal-
lenge is metabolism of substances. A combination with
software to predict metabolites and subjecting them to the
same assessment could be envisaged.

The RASAR represents an enabling technology with uses be-
yond regulatory toxicology (Luechtefeld et al., 2018): Green
Chemistry (or better here Green Toxicology), ie, the frontloading
of toxicological considerations in the chemical and product de-
velopment is one, the identification of problematic substances
in the supply chain and the search for alternative chemicals is
another one. Interestingly, these large databases also impact on
the derivation of thresholds of toxicological concern (TTC)
(Hartung, 2017b; van Ravenzwaay et al., 2017), which might syn-
ergize with the in silico approach of a RASAR: the RASAR would
prioritize substances from the hazard properties side, while
TTC bring in the relevant exposure for the respective toxicologi-
cal space. This could be an integral part for the strategic devel-
opment of a new safety sciences paradigm (Busquet and
Hartung, 2017).

SUPPLEMENTARY DATA

Supplementary data are available at Toxicological Sciences
online.
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