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Abstract Groundwater is an increasingly important water supply source globally. Understanding the
amount of groundwater used versus the volume available is crucial to evaluate future water availability. We
present a groundwater stress assessment to quantify the relationship between groundwater use and avail-
ability in the world’s 37 largest aquifer systems. We quantify stress according to a ratio of groundwater use
to availability, which we call the Renewable Groundwater Stress ratio. The impact of quantifying ground-
water use based on nationally reported groundwater withdrawal statistics is compared to a novel approach
to quantify use based on remote sensing observations from the Gravity Recovery and Climate Experiment
(GRACE) satellite mission. Four characteristic stress regimes are defined: Overstressed, Variable Stress,
Human-dominated Stress, and Unstressed. The regimes are a function of the sign of use (positive or nega-
tive) and the sign of groundwater availability, defined as mean annual recharge. The ability to mitigate and
adapt to stressed conditions, where use exceeds sustainable water availability, is a function of economic
capacity and land use patterns. Therefore, we qualitatively explore the relationship between stress and
anthropogenic biomes. We find that estimates of groundwater stress based on withdrawal statistics are
unable to capture the range of characteristic stress regimes, especially in regions dominated by sparsely
populated biome types with limited cropland. GRACE-based estimates of use and stress can holistically
quantify the impact of groundwater use on stress, resulting in both greater magnitudes of stress and more
variability of stress between regions.

1. Introduction

Freshwater is a fundamental resource for natural ecosystems and human livelihoods, and access to it is con-
sidered a universal human right [United Nations Committee on Economic, Social and Cultural Rights, 2003].
Water resources are under pressure to meet future demands due to population growth and climate change,
both of which may alter the spatial and temporal distribution of freshwater availability globally [D€oll, 2009;
Kundzewicz et al., 2008; Kundzewicz and D€oll, 2009; Famiglietti, 2014]. As the distribution of freshwater
changes, the global population without access to potable water will likely increase [Alcamo et al., 2007;
Kundzewicz et al., 2008]. It is critical to understand how human and natural dynamics are impacting available
water resources to determine levels of sustainable use and to ensure adequate access to freshwater.

Surface water is the principal freshwater supply appropriated to meet human water demand globally, but the
importance of groundwater is increasing as surface supplies become less reliable and predictable [Kundzewicz
and D€oll, 2009] and groundwater is increasingly relied upon during times of drought as a resilient water sup-
ply source [Famiglietti, 2014]. Groundwater is currently the primary source of freshwater for approximately
two billion people [Alley, 2006; Kundzewicz and D€oll, 2009]. Despite its importance, knowledge on the state of
large groundwater systems is limited as compared to surface water [Foster and Chilton, 2003; Famiglietti,
2014], largely because the cost and complexity of monitoring large aquifer systems is often prohibitive.

The United States government has identified water stress as a potential driver of regional insecurity that
can contribute to regional unrest [Intelligence Community Assessment (ICA), 2012]. Water stress analyses pro-
vide a framework to understand the dynamics between human and natural systems by directly comparing
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water availability to human water use. There are three main approaches to quantify physical water stress
[Rijsberman, 2006]: (1) a per-capita water availability ratio [Falkenmark, 1989], (2) a comparison between use
and availability either as the difference between the two [Wada et al., 2010, 2011; van Beek et al., 2011] or as
the ratio [Alcamo et al., 1997; V€or€osmarty et al., 2000; Oki and Kanae, 2006; D€oll, 2009], and (3) the evaluation
of the socio-economic and physical factors that impact stress [Sullivan et al., 2003]. This study defines
renewable groundwater stress (RGS) following the second approach as the ratio of groundwater use to
groundwater availability in equation (1) [Alcamo et al., 1997].

RGS5
use

availability
(1)

The simplicity of equation (1) provides a proverbial ‘‘two edge sword.’’ On one hand, renewable ground-
water stress can be calculated with estimates of two variables. On the other, inconsistent assumptions and
differing estimates and definitions of use and availability result in variable calculations of renewable stress.
Previous studies defined water use as water withdrawals and quantified use with national withdrawal statis-
tics in which a single value represents per-capita water use for an entire country [e.g., V€or€osmarty et al.,
2000], thus assuming water is used homogenously within a country. The statistics represent groundwater
withdrawals but do not account for the impact of withdrawals on the state of the system. Additionally, the
definition of availability has focused on the renewable fluxes of the dynamic water cycle [UN World Water
Assessment Program (WWAP), 2003], including river runoff and groundwater recharge [Lvovich, 1979; Falken-
mark et al., 1989; Postel et al., 1996; Shiklomanov, 2000; WWAP, 2003; Zekster and Everett, 2004]. Only recently
have stress studies evolved from implicitly including groundwater as base flow in modeled runoff [Alcamo
et al., 1997; V€or€osmarty et al., 2000; Oki and Kanae, 2006], to explicitly quantifying stress with groundwater
withdrawal statistics, modeled recharge [D€oll, 2009; Wada et al., 2010], and nonrenewable groundwater use
from compiled withdrawal statistics [Wada et al., 2011; van Beek et al., 2011].

These recent advances in groundwater stress analysis have improved our global understanding of ground-
water availability to meet current water demands. However, groundwater withdrawal statistics are often
outdated and measured by inconsistent methods between geopolitical boundaries [Shiklomanov and Pen-
kova, 2003; Alley, 2006]. Thus, the acquisition of accurate water use data represents a major challenge and
an impediment to accurate estimates of water stress and associated security threats. Remote sensing has
been shown to greatly improve estimates of groundwater depletion [Colesanti et al., 2003; Schmidt and
B€urgmann, 2003; Lanari et al., 2004; Rodell et al., 2009; Famiglietti et al., 2011; Voss et al., 2013; Castle et al.,
2014], specifically, with the Gravity Recovery and Climate Experiment (GRACE) satellite mission from the
National Aeronautics Space Administration (NASA) [Tapley et al., 2004].

This study estimates groundwater stress from equation (1) and assesses the variability in stress that results
from different definitions of groundwater use. In this study, groundwater availability is defined as ground-
water recharge. We assess groundwater use with groundwater withdrawal statistics, Q in equation (2), and
then redefine use as the trend in subsurface storage anomalies using remote sensing approaches, dGW/dt in
equation (2). Equation (2) represents the water balance in a system with groundwater withdrawals, Q,
as introduced by Bredehoeft and Young [1970]. The equation shows that when pumping occurs, there is an
increase in recharge (DR0) from its natural state (R0) and/or a decrease in discharge (DD0) from its natural
state (D0) [Theis, 1940]. Lohman [1972] defined (DR0 - DD0) as capture. If equilibrium has been reached such
that capture balances Q then dGW/dt, the change in groundwater storage, is zero. However, storage loss will
occur while Q exceeds capture and an increase in storage will occur where capture exceeds Q. The time
scales required to reach equilibrium, especially for large aquifer systems, can be up to hundreds of years [Bre-
dehoeft and Young, 1970] and well beyond our study period of January 2003 to December 2013.

R01DR0ð Þ2 D01DD0ð Þ2Q5
dGW

dt
(2)

Groundwater sustainability, defined as the continued development of groundwater resources such that
negative environmental, societal, or economic impacts do not occur, requires a balance of withdrawals and
replenishment over time [Alley et al., 1999]. Therefore, a stress study is inherently a sustainability study to
understand the balance between supply and demand. Simply defining Q as a measure of use independent
from the remaining components of equation (2) cannot fully characterize the impact of Q on the state of
the system and therefore, its sustainability. Instead, we use the trend in subsurface storage anomalies over
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our study period to quantify dGW/dt in equation (2) to holistically account for withdrawals, capture, and changes
in R0 and D0 due to natural factors such as drought. For example, a negative trend in dGW/dt indicates the rate
of withdrawals, represented as a negative value of Q, is greater than the rate of capture, (DR0 - DD0). A negative
trend in dGW/dt can also indicate that D0 exceeds R0 during the study period due to natural variability (i.e.,
drought).

By categorizing characteristic stress regimes (Section 2.1) we can holistically assess the impact of ground-
water use on the state of an aquifer system. Understanding the impact of depletion on groundwater stor-
age is crucial for quantifying groundwater stress in a way that accounts for an aquifer’s response to
withdrawals and natural climate variability. Our results illustrate that stress will not occur in every region
where withdrawals exceed recharge, as is implied when groundwater withdrawal statistics are used to
define use. Instead, we find that stress occurs in the systems where withdrawals exceed capture such that
storage loss occurs.

2. Data and Methods

Renewable groundwater stress (RGS) is computed for the 37 largest global aquifer systems in the World-
wide Hydrogeological Mapping and Assessment Program (WHYMAP) [WHYMAP and Margat, 2008] (Figure 1
and Table 1) for a study period of January 2003 to December 2013. WHYMAP was created in 2000 as a joint
project between the United Nations Educational, Scientific, and Cultural Organization (UNESCO), the Com-
mission for the Geological Map of the World (CGMW), the International Association of Hydro-geologists
(IAH), the International Atomic Energy Agency (IAEA) and the German Federal Institute for Geosciences and
Natural Resources (BGR). The WHYMAP network serves as a central repository and hub for global ground-
water data, information, and mapping with a goal of assisting regional, national, and international efforts
toward sustainable groundwater management. As such, the WHYMAP network contains the best available
global aquifer information. We define our study area as the 37 ‘‘Large Aquifer Systems of the World’’ [WHY-
MAP and Margat, 2008]. These systems represent the international consensus on the boundaries of the
world’s most productive groundwater systems that contain the majority of the world’s accessible ground-
water supply [Margat, 2007; Margat and van der Gun, 2013]. Additionally, the area of each of these aquifer
systems is consistent with the spatial resolution required by GRACE observations (Section 2.2.2).

First, we introduce characteristic stress regimes that define four types of stress that can occur based on the
sign of water use and availability (Section 2.1). Two methods to quantify use, the numerator presented in
equation (1), are introduced based on spatially distributed withdrawal statistics (Section 2.2.1) and the trend
in GRACE-based subsurface storage anomalies (Section 2.2.2). Modeled groundwater recharge is introduced

Figure 1. Study aquifers by continent based on the WHYMAP delineations of the world’s Large Aquifer Systems [WHYMAP and Margat,
2008]. The number represents the aquifer identification number for each aquifer system. The world’s largest lakes and reservoirs are based
on the Global Lake and Wetland Database Level-1 lakes and reservoirs [Lehner and D€oll, 2004].
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as the definition of groundwater availability
(Section 2.3), the denominator in equation (1).
The RGS ratio is computed based on equation
(1) (Section 2.4). Finally, anthropogenic biomes
are introduced (Section 2.5) to analyze the land-
use patterns that influence different stress
regimes and severity levels. Simplifications and
assumptions are made in our approach that
allow for a consistent method of assessment
across 37 diverse aquifer systems. We utilize
remote sensing observations, described in Sec-
tion 2.2.2, and model output since the quantity
and quality of available in situ observations in
the study aquifers is highly variable.

2.1. Characteristic Stress Regimes
The Renewable Groundwater Stress (RGS) ratio
of groundwater use to groundwater availability
is used to define groundwater stress, according
to equation (1) [Alcamo et al., 1997]. Water
stress indicators following the U.N. water stress
scale (Table 2) [UN/WMO/SEI, 1997] are based
on traditional approaches where use in equa-
tion (1) is negative and availability estimates as
annual recharge in equation (1) are positive.
Stress regimes, however, can theoretically
exhibit four end-member behaviors similar to
those of Weiskel et al. [2007] (Figure 2):
Unstressed, Variable Stress, Human-dominated
Variable Stress and Overstressed. These end
members encompass the spectrum of out-
comes given positive (gaining) or negative
(depleting) estimates of use and positive

(recharging) or negative (discharging) estimates of annual recharge. Thus, quite simply, the ratio in equation
(1) represents the percent of recharge that is used to meet water demands.

In the Overstressed case, the RGS ratio is positive since both recharge and use are negative. This case, result-
ing from a combination of large withdrawals and negative recharge, implies groundwater mining or active
depletion. In shallow aquifers, negative or negligible recharge is largely driven by groundwater supported
evapotranspiration, especially in summer months and during dry periods [Yeh and Eltahir, 2005a,b; Yeh and
Famiglietti, 2009; Szilagyi et al., 2013; Koirala et al., 2014]. Scanlon et al. [2003] found that in semiarid to arid
regions, the vadose zone is only influenced by surface climate forcings to a depth of about 3 m. Capillary
rise, which we term negative recharge, beneath this depth is the dominant subsurface moisture flux
[Coudrain-Ribstein et al., 1998; Walvoord et al., 2002; De Vries and Simmers, 2002; Scanlon et al., 2003;
Walvoord and Scanlon, 2004]. Aquifer systems undergoing Overstressed conditions may trigger or exacer-
bate land subsidence [Galloway and Riley, 1999; Bawden et al., 2001; Konikow and Kendy, 2005], ecosystem

habitat destruction [Stromberg et al., 1996;
Gleeson et al., 2012] and aquifer compaction
[Galloway et al., 1998; Konikow and Kendy, 2005]
that limit future aquifer productivity and
recharge potential.

The Variable Stress case follows the criticality
ratio of previous stress studies [Alcamo et al.,
1997; V€or€osmarty et al., 2000], where use is neg-
ative (withdrawals) and recharge is entering the

Table 1. Study Aquifers With the Aquifer Identification Number

Aquifer ID Aquifer Name

1 Nubian Aquifer System (NAS)
2 Northwestern Sahara Aquifer System (NWSAS)
3 Murzuk-Djado Basin
4 Taoudeni-Tanezrouft Basin
5 Senegalo-Mauritanian Basin
6 Iullemeden-Irhazer Aquifer System
7 Lake Chad Basin
8 Sudd Basin (Umm Ruwaba Aquifer)
9 Ogaden-Juba Basin
10 Congo Basin
11 Upper Kalahari-Cuvelai-Upper Zambezi Basin
12 Lower Kalahari-Stampriet Basin
13 Karoo Basin
14 Northern Great Plains Aquifer
15 Cambro-Ordovician Aquifer System
16 Californian Central Valley Aquifer System
17 Ogallala Aquifer (High Plains)
18 Atlantic and Gulf Coastal Plains Aquifer
19 Amazon Basin
20 Maranhao Basin
21 Guarani Aquifer System
22 Arabian Aquifer System
23 Indus Basin
24 Ganges-Brahmaputra Basin
25 West Siberian Basin
26 Tunguss Basin
27 Angara-Lena Basin
28 Yakut Basin
29 North China Aquifer System
30 Song-Liao Basin
31 Tarim Basin
32 Paris Basin
33 Russian Platform Basins
34 North Caucasus Basin
35 Pechora Basin
36 Great Artesian Basin
37 Canning Basin

Table 2. United Nations Renewable Stress Scalea

Stress Ratio Stress Level

0–0.1 Low
0.1–0.2 Moderate
0.2–0.4 High
> 0.4 Extreme

aThe stress ratio represents the dimensionless Renewable
Groundwater Stress Ratio used in this study.
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system, resulting in a negative RGS ratio. There are four levels of Variable Stress according to the United
Nations (Table 2). Consider a ratio less than one. The rate of use is less than the natural recharge rate; how-
ever, small perturbations to the system can result in negative environmental impacts, for example, by
decreasing base flow and ultimately drying streams, marshes, and springs [Sophocleous, 1997; Bredehoeft,
1997; Faunt, 2009]. A ratio with an absolute value greater than one represents use rates that exceed natural
recharge rates and increases the rate of capture. This condition can create the potential for water quality
impacts if recharge is induced from contaminated sources [Theis, 1940].

Both the statistics-based method and the GRACE-based method to estimate use can result in the Over-
stressed and Variable Stress cases. Only the GRACE-based estimate can quantify the remaining Human-
dominated Variable Stress and Unstressed cases. In these cases, the study aquifers have positive trends in
subsurface storage anomalies and are therefore ‘‘gaining.’’ We consider the Human-Dominated case to be
the result of a positive trend from GRACE and negative recharge. Natural behavior of these systems would
be a loss of groundwater through capillary flux to the root zone [Coudrain-Ribstein et al., 1998; Walvoord
et al., 2002; De Vries and Simmers, 2002; Scanlon et al., 2003; Walvoord and Scanlon, 2004; Lo et al., 2008] or

Figure 2. Characteristic stress regimes that encompass the possible behavior of stress given positive (gaining) or negative (extracting/depleting) use behavior and positive (recharging)
or negative (capillary fluxes) groundwater availability. The schematics represent integrated behavior across an aquifer system.
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by direct evapotranspiration [Yeh and Eltahir, 2005a,b; Yeh and Famiglietti, 2009; Szilagyi et al., 2013; Koirala
et al., 2014]. A combination of induced capture and human practices may be contributing to the gaining
trend in groundwater storage, for example, from artificial recharge using surface water diversions in irri-
gated areas. The Unstressed case has a positive trend in groundwater storage anomalies and positive
recharge. This case is only considered unstressed from a water quantity perspective. Induced capture may
draw additional recharge from sources that could negatively impact water quality.

2.2. Water Use
2.2.1. Compiled Withdrawal Statistics
We follow methods similar to V€or€osmarty et al. [2000] and Wada et al. [2010] to spatially distribute available
groundwater withdrawal statistics into the study aquifers, representing Q (equation (2)). First, we compile
national groundwater withdrawal statistics from multiple sources in cubic kilometers per year [FAO, 2003;
IGRAC, 2004; Margat and van der Gun, 2013]. The statistics represent groundwater withdrawals across all sec-
tors of water use (agriculture, domestic, industrial) and provide percentages of groundwater use for each
sector. We use these percentages to determine the rate of agricultural, domestic, and industrial withdrawals
as a function of the national withdrawal rate. The majority of these percentages are based solely on sectoral
withdrawals as a function of total groundwater withdrawals, although percentages based on total with-
drawals are used when groundwater percentages are unavailable.

National level agricultural statistics are distributed spatially based on the 0.58 3 0.58 gridded ‘‘Water With-
drawals for Irrigation’’ data set [GWSP Digital Water Atlas, 2008a], which provides the theoretical water
demand for irrigated crops as a function of climate. The single national agricultural statistic is distributed
based on the percent of national irrigation demand in each grid cell by assuming groundwater withdrawals
occurs in close proximity to where it is needed to meet demand [Wada et al., 2010]. Similarly, the sum of
national domestic and industrial withdrawal statistics is distributed by gridded population density, following
V€or€osmarty et al. [2000], based on the 0.58 x 0.58 gridded ‘‘Population (Total)’’ [GWSP Digital Water Atlas,
2008b] data set. The resulting spatially distributed agricultural, domestic, and industrial withdrawal rates are
summed within each grid cell and scaled up to 18 x 18 spatial resolution, to match the resolution of the
remote sensing observations. Basin-averaged groundwater withdrawals are computed for the 37 study
aquifers as the statistics-based estimate of use.

2.2.2. GRACE Observations
Remote sensing observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission
[Tapley et al., 2004] are used to quantify a novel estimate of groundwater use, dGW/dt in equation (2). The
GRACE satellites, a joint mission between the National Aeronautics and Space Administration (NASA) in the
United States and the Deutsche Forschungsanstalt f€ur Luft und Raumfahrt (DLR) in Germany, measure
monthly changes in total terrestrial water storage by converting observed gravity anomalies into changes
of equivalent water height [Rodell and Famiglietti, 1999; Syed et al., 2008; Ramillien et al., 2008].

The Center for Space Research at the University of Texas at Austin provided the 132 months of GRACE grav-
ity coefficients from Release-05 data used in this study. Gravity anomalies for this time period (January 2003
to December 2013) underwent processing to obtain an estimate of the average terrestrial water storage
anomalies for each of the 37 study aquifers [Swenson and Wahr, 2002; Wahr et al., 2006; Swenson and Wahr,
2006]. Aquifer-specific scaling factors were used to account for the lost signal power from truncating the
gravity coefficients (at degree and order 60) and filtering for unbiased estimates of mass change in each
aquifer system [Velicogna and Wahr, 2006].

DSN1A5DðSW1SWE1SM1GWÞN1A (3)

DSUBN1A5DSN1A2DðSW1SWEÞN (4)

The total water storage changes can be partitioned into components resulting from natural change (N) or
anthropogenic change (A) according to equation (3) where S is the total terrestrial water storage anomalies
from GRACE, SW is surface water, SWE is snow water equivalent, SM is soil moisture, and GW is groundwater.
Individual storage components can be isolated from the total GRACE signal with supplemental data sets to
represent the remaining storage terms [Rodell and Famiglietti, 2002; Swenson et al., 2006; Yeh et al., 2006;
Strassberg et al., 2007, 2009; Rodell et al., 2004b, 2007, 2009; Swenson et al., 2008; Famiglietti et al., 2011;
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Scanlon et al., 2012; Castle et al., 2014]. We isolate subsurface anomalies (SUB) as combined anomalies in soil
moisture (SM) and groundwater (GW) in equation (4).

Model output or in situ observations are required to isolate changes in a storage component from the total
GRACE terrestrial water storage anomalies. We use monthly output from three models within the NASA
Global Land Data Assimilation System (GLDAS) modeling system including Noah [Chen et al., 1996; Koren
et al., 1999], Variable Infiltration Capacity (VIC) [Liang et al., 1994], and Community Land Model 2.0 (CLM 2.0)
[Dai et al., 2003] to compute monthly mean gridded output at 18 x 18 spatial resolution for canopy surface
water (CAN) and SWE. Surface water storage in lakes, reservoirs, and river channels is not included in the
GLDAS modeling system [Rodell et al., 2004a]. We estimate SW as the sum of CAN from the three-model
GLDAS ensemble and routed surface water discharges (RIV) from offline output from CLM 4.0 [Oleson et al.,
2010]. The CLM 4.0 model run is described in Section 2.3. The model-based storage anomalies of SWE and
SW are subtracted from the GRACE storage anomalies to estimate monthly GRACE-derived subsurface
anomalies for each aquifer.

Error in the subsurface anomalies is computed according to equation (5) for each month (i), assuming inde-
pendence between component errors. Aquifer specific satellite measurement and leakage error from proc-
essing the gravity anomalies is computed following Wahr et al. [2006] to estimate error in the total GRACE
signal. Variance of SWE and CAN was determined using the three-model ensemble, which we assume repre-
sents the uncertainty induced by the estimate error and model structural error. The U.S. Geological Survey
errors for hydrologic measurements range from excellent (5% error) to fair (15% error) [U.S. Geological Geo-
logical Survey (USGS), 2014]; therefore, for our evaluation, we assume measurement error of 50% in routed
discharge to represent a conservative uncertainty in GRACE subsurface variability. It is the assumed the
errors in equation (5) are independent. Area-weighted basin averages of SWE and SW are computed for
each of the study aquifers to account for latitudinal differences in gridded area. The temporal mean is
removed from the basin averages to compute anomalies in SWE and SW.

rDSUB;i5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

S;i1r2
SWE;i1r2

CAN;i1r2
RIV ;i

q
(5)

We argue that the anthropogenic impacts on total water storage anomalies in the study aquifers are domi-
nated by subsurface variations, particularly from groundwater, as these aquifers contain the majority of pro-
ductive and available supply for groundwater use [Margat and van der Gun, 2013]. Therefore,
anthropogenic changes in surface water and snow water are negligible at the study’s spatial scale. Natural
water stocks or built infrastructure are necessary to capture water supplies for human use [V€or€osmarty et al.,
2000], for example, lakes or reservoirs, particularly for surface water and snow meltwater. However, only
0.5% of the study aquifers’ land area is overlain with lakes and reservoirs larger than 50 km2 [Richey and
Famiglietti, 2012], which is significantly smaller than the 18 spatial resolution of this study. We therefore
assume negligible anthropogenic influences of surface water and snow in the study aquifers as compared
to groundwater.

Yi5b01b1wi xi1Ei where wi5
1

r2
DSUB;i

(6)

The majority of soil water storage trends are not significant globally [Sheffield and Wood, 2008; Dorigo et al.,
2012]. Therefore, we use a conservative estimate of groundwater trends by attributing observed subsurface
trends solely to groundwater storage. We consider the groundwater trend to be representative of the net
flux of water storage resulting from groundwater use (DGWN1A), including the aquifer response to pumping
as predicted by Theis [1940], and natural climatic variability. Annual trend magnitudes, DGWtrend, were esti-
mated using the weighted regression in equation (6) to quantify the change in groundwater storage from
equation (2). The weights, wi, are a function of the variance in the monthly estimates of subsurface storage
anomalies. Aquifers with a negative coefficient were considered to be depleting in aquifer storage while
positive coefficients were considered to be recharging systems. Here we evaluate only the magnitude of
trends without regard to trend significance.

2.3. Water Availability: Groundwater Recharge
Renewable groundwater availability is defined as mean annual groundwater recharge, following D€oll [2009]
and Wada et al. [2010]. The majority of land surface parameterizations do not have an explicit representation
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of groundwater and are therefore unable to capture both positive and negative recharge fluxes [Yeh and
Famiglietti, 2009]. Instead, groundwater recharge is frequently estimated as model drainage from the bottom
of a soil column [e.g., Rodell et al., 2004a] or as the residual of precipitation and evapotranspiration [e.g., Weis-
kel et al., 2007]. These approaches assume the flux is always positive (downward) and that average recharge is
approximately equal to base flow. These assumptions are not always true, particularly in semiarid and arid
regions where capillary fluxes can be the dominant subsurface flux as opposed to downward recharge
[De Vries and Simmers, 2002]. Assuming recharge is always positive may falsely represent the level of stress in
a region.

Direct model output from the Community Land Model version 4.0 [Oleson et al., 2010] is used to estimate
natural recharge, R0, in equation (2). CLM 4.0 is the land surface model used within the Community Earth
System Model (CESM) [Oleson et al., 2010]. CLM 4.0 is one of the few land surface models that includes an
unconfined aquifer layer coupled to the bottom soil layer and is therefore able to capture both positive and
negative recharge. Recharge is computed as the vertical flux between the aquifer and bottom soil layer,
such that positive recharge flows downward as gravity drainage and negative recharge flows upward by
capillary fluxes [Oleson et al., 2008; Lo et al., 2008].

CLM 4.0 was run in an offline simulation driven by atmospheric forcing data including precipitation, near
surface air temperature, solar radiation, specific humidity, wind speed, and air pressure. Three hourly forcing
data from GLDAS Version-1 [Rodell et al., 2004a] were used to drive the model at a 1 h time step, which is
then interpolated to monthly model output. The model was run at 0.98 x 1.258 spatial resolution and linearly
interpolated to 18 x 18. Basin averaged recharge is computed for each study aquifer as an area-weighted
average across all grid cells. The mean annual recharge is computed from the monthly values for each study
aquifer for our study period of January 2003 to December 2013. The spatial distribution of modeled CLM 4.0
recharge results are comparable to previous modeled recharge estimates using the PCR-GLOBWB global
hydrological model [D€oll, 2009; Wada et al., 2010].

2.4. Groundwater Stress
2.4.1. Renewable Stress: Criticality Ratio
Following the traditional water stress approach [Alcamo et al., 1997; UN/WMO/SEI, 1997; V€or€osmarty et al.,
2000; Oki and Kanae, 2006; D€oll, 2009], we define Renewable Groundwater Stress (RGS) as the ratio of
groundwater use to renewable groundwater availability in equation (1). This dimensionless ratio represents
the percent of renewable water being used to meet human water demand.

Mean annual recharge, R0, from Section 2.3 is used to calculate renewable groundwater availability. It has
been repeatedly cited that recharge cannot be used to define renewable available groundwater and that
only a percent of recharge (less than or equal to the rate of capture) can be considered available for sustain-
able use [Bredehoeft, 1997; Sophocleous, 1997; Bredehoeft, 2002; Zhou, 2009]. Thus, this study uses simulated
recharge to represent the maximum available natural renewable groundwater and is therefore the most
optimistic estimate of available supplies and resulting stress. Additionally, systems with negative modeled
mean annual recharge are considered to lack renewable supplies. In this case, there is no recharge available
to replenish the system and the level of stress is determined by the magnitude of use alone.

Groundwater use is quantified by groundwater withdrawal statistics, Qstat, in equation (7), as described in
Section 2.2.1 and the trend in GRACE-derived subsurface anomalies in equation (8), DGWtrend, as described
in Section 2.2.2, to assess the difference in stress between the estimation schemes.

RGSstat5
Qstat

R0
(7)

RGSGRACE5
DGWtrend

R0
(8)

2.5. Approximating Anthropogenic Influences
We introduce an additional data set to better understand the driving factors behind differing levels of use
and stress. The world map of anthropogenic biomes [Ellis and Ramankutty, 2008], is used to determine the
dominant land use type by accounting for both land use/land cover types and the degree to which a region
is inhabited. There are six broad characteristic biome types including Dense Settlements, Villages,
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Croplands, Rangeland, Forested, and Wildlands, with a total of 21 subcategories within these types. The sub-
categories break down the anthropogenic biome types into different levels of remote and populated areas
that are dominated by rain or irrigated area (Figure 3). The six most dominant anthropogenic biome
types are assigned for each study aquifer based on the percent of aquifer area covered by each biome type
(Table A1 in Appendix A).

3. Results

3.1. Groundwater Use: Statistics and GRACE
A comparison between GRACE-depletion methods (Figure 4) and statistics-based methods (Figure 5) show how
the GRACE-based approach incorporates temporal variations in use over the study period whereas the statistics
approach quantifies use as a static value in time. Figure 4 illustrates the GRACE-depletion method that uses
model output to isolate groundwater storage changes from the GRACE observations of total terrestrial water
storage anomalies. The figure presents the time series components of the water budget for the Ganges-
Brahmaputra Basin (Aquifer #24, ‘‘Ganges’’). By comparing the modeled storage anomalies to the GRACE-
derived groundwater anomalies, it is clear that changes in groundwater storage are dominating the GRACE
observations of declining terrestrial water storage. Figure 5 presents the statistics-based method to estimate use
as groundwater withdrawal statistics that are spatially distributed by population density and theoretical water
withdrawals for irrigation. The influence of geopolitical boundaries on the method is clear as national level
groundwater withdrawals can differ between neighboring countries. In the United States, the national with-
drawal rate is 111.7 cubic kilometers per year (km3/yr) versus Canada’s withdrawal rate of 1.87 km3/yr [Margat
and van der Gun, 2013]. Table 3 summarizes the rates of use based on GRACE and the statistics.

Figure 6 illustrates the basin-averages of groundwater use as determined by the groundwater withdrawal
statistics (Figure 6a) and the GRACE-derived trend in groundwater storage anomalies (Figure 6b) within
each study aquifer. The differences between Figure 6a and Figure 6b result solely from the definition of use
in equation (1). In Figure 6a, use statistics are consistently negative and thus do not represent the full vari-
ability in stress regimes as illustrated in Figure 2. The GRACE-derived trend captures the dynamics of
groundwater use by integrating the human and natural impacts of use on groundwater storage, including
changes in recharge and discharge regimes and water management practices. As a result of the integrated
storage changes, aquifers can have either a positive or negative trend in groundwater storage anomalies as
observed from GRACE. There are 16 study aquifers that have positive subsurface trends from GRACE-
derived use and 21 that are negative.

There are five aquifers with negative rates of use where the statistics-based withdrawal rate exceeds the
GRACE-based estimates. These include the Ganges, the Indus Basin (Aquifer #23, ‘‘Indus’’), the Californian

Figure 3. Anthropogenic biome types within the study aquifers. Biome types are gridded at 0.08338 spatial resolution from Ellis and
Ramankutty [2008].
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Central Valley Aquifer System (Aquifer #16, ‘‘Central Valley’’), the North China Aquifer System (Aquifer #29,
‘‘North China), and the Tarim Basin (Aquifer #31, ‘‘Tarim’’). The assumption used to spatially distribute the
statistics based on irrigation demand and population density (Figure 5) influences the magnitude of use
from the statistics exceeding GRACE depletion, by multiple factors in some cases. Four of these five aquifers
also have the four highest levels of irrigation demand and among the highest levels of population density.
For example, the Ganges has the highest rate of use from both GRACE and the statistics. However, the high
population and irrigation demand results in a rate of use from the statistics of 263.1 millimeters per year
(mm/yr) as compared to the estimate by GRACE of 219.6 6 1.2 mm/yr.

The aquifers with the highest rates of depletion from GRACE cover a wide range of dominant biome types
globally, including villages, cropland, wildland, forests, and rangeland. The high rate of depletion in the
Ganges is largely driven by population and irrigation demand across populated biomes. Conversely, the
Arabian Aquifer System (Aquifer #22, ‘‘Arabian’’) has a depletion rate of 29.13 6 0.9 mm/yr with 67% of the
system covered by rangeland (Table A1). Irrigation for agriculture is a common groundwater use practice in
the Arabian [Siebert et al., 2010], and is likely a main contributor to the GRACE-derived estimate of use. The
Canning Basin (Aquifer #37, ‘‘Canning’’) is a unique case, where less than 1% of the aquifer is covered by

Figure 4. Water storage components in the Ganges-Brahmaputra Basin in millimeters per year. (a) Total GRACE-derived terrestrial water storage anomalies, (b) the sum of model output
from the Global Land Data Assimilation System (GLDAS) of snow water equivalent (SWE) and canopy water storage (CAN) anomalies, (c) routed river storage anomalies from the Commu-
nity Land Model (CLM) 4.0, (d) subsurface storage anomalies as the difference between total storage anomalies and the sum of SWE, CAN, and river storage.
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Figure 5. Spatially distributed groundwater withdrawal statistics in the study aquifers in millimeters per year. The statistics represent the
sum of withdrawals for agricultural, domestic, and industrial end uses.

Table 3. Study Aquifers With Basin Averaged Groundwater Withdrawal Statistics (Qstat) (mm/yr), GRACE-Derived Subsurface Depletion
(DSUBN1A) (mm/yr) and the DSUBN1A Error (DSUBerror) (mm/yr), Mean Annual Recharge (R) (mm/yr), the Dimensionless Statistics-Based
Renewable Groundwater Stress Ratio (RGSstat), and the Dimensionless GRACE-Based Renewable Groundwater Stress Ratio (RGSGRACE)

Aquifer ID Qstat DSUBN1A DSUBerror R RGSstat RGSGRACE

1 20.46 22.91 0.88 20.27 1.69 10.59
2 20.34 22.81 0.79 20.26 1.33 10.80
3 20.46 24.28 1.02 20.23 2.04 18.92
4 20.01 20.50 0.65 1.04 20.01 20.48
5 20.38 4.65 1.68 34.38 20.01 0.14
6 20.15 2.41 1.07 11.18 20.01 0.22
7 20.23 21.04 0.85 5.99 20.04 20.17
8 20.01 22.86 1.09 218.43 0.00 0.16
9 20.06 20.34 1.06 25.89 0.01 0.06
10 20.05 24.85 0.95 18.99 0.00 20.26
11 20.04 24.28 1.03 101.11 0.00 0.24
12 20.20 3.20 1.03 212.30 0.02 20.26
13 20.23 5.59 1.24 211.80 0.02 20.47
14 20.71 4.95 0.84 8.42 20.08 0.59
15 23.35 2.45 1.56 151.81 20.02 0.02
16 226.50 28.89 1.91 24.10 21.10 20.37
17 210.06 0.31 1.00 23.67 2.74 20.08
18 21.93 25.93 1.01 168.35 20.01 20.04
19 20.04 7.13 1.03 546.56 0.00 0.01
20 20.15 6.71 1.33 323.00 0.00 0.02
21 20.33 20.58 0.94 225.66 0.00 0.00
22 21.37 29.13 0.90 22.58 0.53 3.54
23 251.55 24.26 0.87 24.62 11.16 0.92
24 263.05 219.56 1.22 214.40 20.29 20.09
25 20.13 21.98 0.99 39.37 0.00 20.05
26 20.03 1.66 1.24 36.22 0.00 0.05
27 20.14 3.99 1.26 36.44 0.00 0.11
28 20.05 2.89 1.20 16.51 0.00 0.18
29 212.49 27.50 1.30 96.56 20.13 20.08
30 23.29 2.40 1.54 20.16 20.16 0.12
31 21.39 20.23 0.30 20.74 1.89 0.32
32 22.30 24.12 1.45 133.56 20.02 20.03
33 20.58 24.01 1.06 98.55 20.01 20.04
34 20.34 216.10 1.41 28.77 20.01 20.56
35 20.06 3.04 1.65 161.30 0.00 0.02
36 20.05 10.60 0.98 13.67 0.00 0.78
37 0.00 29.41 1.34 6.05 0.00 21.56
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residential area, but the third highest rate of GRACE-derived depletion occurs in this system
(29.40 6 1.34 mm/yr). Mining activities in the rural Canning Basin are likely influencing the GRACE signal
which is lost in the statistics-based use rate of 20.002 mm/yr.

3.2. Distribution and Severity of Renewable Groundwater Stress
The differences between GRACE-derived groundwater depletion and water withdrawal statistics discussed
in Section 3.1 further influence the distribution and severity of Renewable Groundwater Stress (RGS) in the
study aquifers (Table 3). Our estimates of mean annual recharge (Figure 7) counteract or enhance the influ-
ence of the use estimates on stress. Groundwater use as quantified by the withdrawal statistics results in
only two of the characteristic stress regimes (Figure 2), Overstressed and Variable Stress, because water use
is always negative with this approach. RGS calculated with GRACE-derived use exhibits characteristics of all
regimes illustrated in Figure 2. Figure 8 shows the RGS ratio based on equation (7) and Figure 9 shows the
RGS ratio based on equation (8).

Figure 6. Basin-averaged groundwater use quantified by (a) groundwater withdrawal statistics and (b) GRACE-derived depletion in milli-
meters per year. The GRACE-derived estimates have both positive and negative estimates, while the withdrawal statistics are limited to
negative estimates alone.
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Groundwater recharge is negative in 11 study aquifers, predominantly in semiarid and arid regions, thus
capillary fluxes are the dominant subsurface flux and recharge does not occur. This corresponds with previ-
ous findings that in thick desert vadose zone regions there is a long-term transient drying state dominated
by upward moisture fluxes, and drainage beneath the root zone is not representative of recharge to the
underlying aquifer [Walvoord et al., 2002; Scanlon et al., 2003; Walvoord and Scanlon, 2004]. The magnitude
of the negative recharge could be influenced by the model structure whereby water is withdrawn from the
aquifer, as a capillary flux, to maintain the minimum water content in the soil layers as prescribed by the
model [Oleson et al., 2010]. The temporal and spatial scale of our study approach does not account for local-
ized recharge zones, such as through cracks or fissures in the subsurface, or intense precipitation events
that provide recharge in semiarid and arid regions [De Vries and Simmers, 2002] and could increase recharge
in the study aquifers.

3.2.1. Overstressed RGS Regime
There are eight Overstressed aquifers based on RGSGRACE in equation (8) and 11 Overstressed aquifers quan-
tified by RGSstat in equation (7). Estimates of both use and availability are negative in the Overstressed
regime. Negative recharge predominantly occurs in semiarid to arid regions (Figure 7), as described above.
The most Overstressed aquifer systems based on RGSGRACE are the Arabian and the Murzuk-Djado Basin
(Aquifer #3, ‘‘Murzuk’’), where the depletion rates are the highest with no available recharge. The most Over-
stressed aquifer from RGSstat is the Indus. All of the aquifers that are Overstressed as determined using

Figure 7. Basin-averaged mean annual recharge from CLM 4.0 model output in millimeters per year. Negative recharge represents
capillary fluxes as a flow out of the groundwater system. Positive recharge represents vertical flow into the system.

Figure 8. Renewable groundwater stress ratio derived from groundwater withdrawal statistics. (a) Overstressed conditions are shown as the rate of withdrawals assuming no available
recharge (mm/yr). (b) Variable stressed conditions are dimensionless with a positive value of recharge and a negative value of use.
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RGSGRACE are dominated by a mixture of rangeland and cropland, although rangeland is the main biome in
six of the eight overstressed aquifers. The majority of these systems are more Overstressed from GRACE
than from the statistics that are unable to capture use in regions dominated by less densely populated ran-
geland. The Indus is the only exception where high population and irrigation demand result in the second
highest rate of use from the statistics.

3.2.2. Human-Dominated RGS Regime
The eight Overstressed aquifers as determined by RGSGRACE in equation (8) (Figure 9a) are also
Overstressed from the withdrawal statistics (Figure 8a). There are three aquifers that are Over-
stressed based on the statistics, but are estimated to be in the Human-dominated Variable stress
category based on GRACE due to gaining trends in groundwater storage anomalies. In this case,
capillary fluxes are believed to be dominant in removing groundwater from storage through natural
processes. However, human practices are likely artificially increasing the amount of recharge enter-
ing the system such that groundwater storage changes from GRACE are increasing. The positive
GRACE trend could also be influenced by a wet period toward the end of the study period that has
not manifested in recharge yet due a lag in between surface wet periods and recharge. Therefore,
RGSGRACE is negative due to a positive trend in groundwater storage anomalies but a negative rate
of mean annual recharge. In the Ogallala Aquifer (Aquifer #17, ‘‘Ogallala’’), irrigation for agriculture
is likely increasing the amount of water available for recharge through return flow [Sophocleous,
2005]. Since the water withdrawal statistics only capture static withdrawals from the system, equa-
tion (7) is unable to capture this characteristic stress regime that is dominated by influxes into the
system.

3.2.3. Variable RGS Regime
The majority of the study aquifers follow the Variable Stress regime based on equation (7), where there is
potential for recharge to offset use. The aquifers in the Variable Stress category are predominately cropland
with some villages and dense settlements. There are 26 aquifers in the Variable Stress regime from RGSstat

in equation (7), 22 of which are characterized by low stress according to the UN stress scale (Table 2). In
these systems, 10% or less of renewable available groundwater is used to meet human demand. The Central

Figure 9. Renewable Groundwater Stress ratio derived from GRACE-based groundwater depletion. (a) Overstressed conditions and (c) human-dominated stress are shown as the rate of
GRACE-based use assuming no available recharge (mm/yr). (b) Variable stressed conditions have a positive value of recharge and a negative value of use. (d) Unstressed systems have
positive estimates of use and availability. The values are dimensionless in Figures 9b and 9d.
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Valley is the only extremely stressed aquifer from equation (7) with a ratio of 21.1, indicating more water is
being extracted than is recharging the system. The Central Valley is dominated by populated irrigated crop-
land, which drives the third highest rate of use from the statistics.

Only 13 of the study aquifers are variably stressed based on RGSGRACE. Seven of these systems are in the
low stress category, including the Ganges, where a high rate of mean annual recharge (214 mm/yr) balances
the highest rates of use based on both the statistics and GRACE. The magnitude of use in the Ganges, dis-
cussed in Section 3.1, influences the categorization of the aquifer as either low stress by RGSstat or high
stress by RGSGRACE. The seven low-stress systems are mainly dominated by rainfed and forested regions
with only minor irrigated area.

Two aquifers are highly stressed based on RGSGRACE including the Central Valley, which was extremely
stressed from RGSstat. The Congo Basin (Aquifer #10, ‘‘Congo’’) is characterized as low stress from RGSstat,
where the diversity of biome types could not be represented by the distributed statistics. Three aquifers are
considered extremely stressed from RGSGRACE, two of which are dominated by unpopulated rangeland and
wildland. For example, the stress ratio in the Canning is 21.6, implying that about 150% more water is
being depleted than is naturally available and water in storage is used to supplement available supplies
[Taylor, 2009]. In reality, storage loss and environmental degradation can occur when the RGS ratio is less
than one [Bredehoeft, 1997; Sophocleous, 2000; Sophocleous, 2005]. Although the Taoudeni has one of the
smallest depletion rates from GRACE, it has the smallest mean annual recharge rate that dominates the
extreme stress estimate.

3.2.4. Unstressed RGS Regime
Unstressed aquifers have positive estimates of both groundwater use and availability, and can therefore
only be quantified by equation (8). There are 13 unstressed aquifers in this category. Overall, the unstressed
aquifer systems are mainly in remote forested areas and rainfed regions. The unstressed systems have very
limited irrigated area.

An unstressed ratio close to one implies that the trend in increasing groundwater storage anomalies
approaches the mean annual recharge rate, thus the system is more influenced by natural recharge than
external perturbations. The Great Artesian Basin (Aquifer #36 ‘‘Great Artesian’’) and the Northern Great Plains
Aquifer (Aquifer #14, ‘‘Great Plains’’) have the unstressed ratio closest to one at 0.78 and 0.59, respectively.
Both of these systems are predominantly remote cropland, rangeland, and forested area. The Great Plains is
also dominated by populated rainfed cropland; therefore groundwater is not the dominant water supply
source for agriculture.

The Amazon Basin (Aquifer #19) has the highest mean annual recharge rate, but a ratio of 0.01, implying that
the large recharge is not dominating the trend in groundwater storage anomalies from GRACE. Given the
dominance of the Amazon River in this heavily forested region, it could be inferred that high recharge rates
are balanced by high base flow rates [Pokhrel et al., 2013]. Thus, the trend in groundwater storage anomalies
is not as controlled by recharge alone.

4. Discussion

As the dependence on groundwater increases into the future [Kundzewicz and D€oll, 2009; Famiglietti,
2014], it is increasingly critical to understand where and why groundwater stress occurs to evaluate
future stress conditions. We have shown in this study that the definition of ‘‘groundwater use’’ in the
Renewable Groundwater Stress (RGS) ratio can lead to large differences in how stressed a specific
region may appear to be. We find that the GRACE-based approach to quantify RGS (equation (8)) cap-
tures the variability of stress that is expected in a natural system (Figure 2). The traditional approach to
define groundwater use based on distributed withdrawal statistics can only capture two characteristic
stress regimes. This statistics-based approach to quantify RGS (equation (7)) is controlled by the
assumptions that groundwater use is correlated to population and irrigation demand [V€or€osmarty et al.,
2000; Wada et al., 2010]. These assumptions do not allow for heterogeneous use of groundwater within
a country in space or time.

Understanding the dominant biomes in the study aquifers is a key to assessing how groundwater stress
may change into the future and where conflicts may arise based on external pressures including population
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growth, food demand, and climate variability. GRACE-derived stresses capture the variability of possible
stress regimes. The end-member regimes are predominately grouped by anthropogenic biome type. We
find that the majority of the overstressed aquifers from GRACE are in rangeland biomes with remote regions
where the withdrawal statistics are unable to capture use. Conversely, the unstressed aquifers are predomi-
nately in forested, rainfed, and remote areas. The Central Valley and the Congo exemplify the importance of
incorporating biomes to understand the difference between the stress estimates based on equations (7)
and (8).

The dominant biome type in the Central Valley is irrigated cropland with minor (1 – 10 persons per km2) to
substantial (10–100 persons per km2) human populations (Figure 3). The distribution of use in aquifers
dominated by similar biomes as the Central Valley can be captured by the statistics since water use in such
regions is related to population density and irrigation demand. In the Central Valley, the estimate of use by
the statistics is 226.5 mm/yr compared to 28.91 6 1.91 mm/yr from GRACE.

The Congo represents the opposite case, whereby the dominant biome types limit the characteriza-
tion of use from the distributed statistics. The Congo is dominated by a mix of populated and
remote regions with a combination of forested area and rainfed cropland. Population dominates the
distribution of statistics in this case given low irrigation demand, but groundwater only provides
about a quarter of urban supply [Groundwater Consultants Bee Pee Ltd., and SRK Consulting Ltd.,
2002]. Boreholes are spread throughout the region and are not solely used for irrigation [Ground-
water Consultants Bee Pee Ltd., and SRK Consulting Ltd., 2002]. The Congo is experiencing a combina-
tion of a drying trend [Zhou et al., 2014] and deforestation in the region [Zhang et al., 2005,
Duveiller et al., 2008; Hansen et al., 2008] that may be increasing temperatures and decreasing
precipitation in the basin [Nogherotto et al., 2013]. The combination of these factors can increase
pressure on groundwater resources that can’t be captured by statistics, but may be influencing the
GRACE trend. The estimate of use by the statistics is 20.05 millimeters per year (mm/yr) compared
to 24.27 6 0.91 mm/yr from GRACE in the Congo.

5. Conclusion

It is important to understand where existing socio-economic tensions may collide with water stress
to produce stress-driven conflicts [ICA, 2012; U.S. Department of State, 2013]. However, the definitions
of water stress by both the U.S. Department of State and the United States Agency for International
Development (USAID) depend on either the Falkenmark Indicator or a high ratio of withdrawal statis-
tics to availability [ICA, 2012; U.S. Department of State, 2013]. The Falkenmark Indicator does not
account for groundwater as a water supply source or water use that is not driven by population
density, such as irrigated agriculture. We have shown that simply quantifying water use based on
withdrawal statistics cannot fully capture the range of impacts that groundwater use has on ground-
water systems.

This study has shown how quantifying groundwater use with trends in groundwater storage anomalies from
GRACE holistically represents the distribution of renewable groundwater stress. GRACE incorporates the influ-
ence of withdrawals, the aquifer’s response to withdrawals through capture, and natural variability. Additionally,
the GRACE-based estimates of use can encompass natural and anthropogenic variations on groundwater sys-
tems across a range of biome types. Although natural variability is integrated into the statistics-based estimate
of stress through variability in recharge, the statistics-based approach to quantify use is based on withdrawals
alone. As a result, the withdrawal statistics provide an incomplete representation of characteristic stress regimes
by not accounting for dynamic aquifer responses to pumping and natural variability. The statistics-based esti-
mates of use are limited to biomes dominated by populated and cropland regions.

The study implications extend to an improved ability to distribute aid to regions currently identified as
experiencing varying levels of water stress with a greater understanding of the driving land cover factors
behind such stress. The results highlight regions that may be vulnerable to tipping points toward higher
levels of stress driven by a range of factors including land cover, for example, through conversion to intensi-
fied agriculture, or population pressures that increase demand. We conclude that the estimate of ground-
water stress using GRACE-derived estimates of use can provide additional information in assessing RGS
within the world’s largest aquifer systems.
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Appendix A

The dominant anthropogenic biome types by Ellis and Ramankutty [2008] are determined for each
study aquifer. The percentage of aquifer area covered by the six most common biome types are
listed. The dominant biome types were used to determine land use drivers behind different levels of
stress.

Table A1. The Six Most Common Anthropogenic Biome Types in Each Study Aquifera

Aquifer ID Dominant Anthropogenic Biome Types

1 Remote
rangelands

Populated
rangelands

Barren Residential
rangelands

Remote
croplands

Sparse trees

57% 17% 12% 10% 1% 1%
2 Remote

rangelands
Populated
rangelands

Barren Residential
rangelands

Residential
irrigated
cropland

Cropped and
pastoral
villages

36% 26% 16% 14% 3% 2%
3 Remote

rangelands
Barren Populated

rangelands
Residential
rangelands

Cropped and
pastoral
villages

Populated
irrigated
cropland

61% 15% 12% 7% 2% 2%
4 Remote

rangelands
Barren Populated

rangelands
Residential
rangelands

Populated
rainfed

cropland

Urban

52% 25% 18% 4% 2% 0%
5 Populated

rainfed
cropland

Residential
rangelands

Populated
rangelands

Residential
rainfed
mosaic

Remote
rangelands

Populated
forests

19% 15% 14% 12% 7% 6%
6 Remote

rangelands
Residential

rainfed
mosaic

Residential
irrigated
cropland

Cropped and
pastoral
villages

Populated
rangelands

Barren

19% 15% 14% 12% 12% 10%
7 Populated

rainfed
cropland

Populated
rangelands

Residential
rangelands

Residential
rainfed
mosaic

Remote
rangelands

Populated
forests

18% 17% 16% 15% 12% 6%
8 Populated

rainfed
cropland

Populated
rangelands

Residential
rangelands

Residential
rainfed
mosaic

Populated
forests

Remote
rangelands

29% 19% 19% 14% 12% 2%
9 Residential

rangelands
Populated

rainfed
cropland

Populated
rangelands

Residential
rainfed
mosaic

Remote
rangelands

Populated
forests

26% 22% 16% 10% 9% 9%
10 Populated

forests
Residential

rainfed
mosaic

Remote
forests

Populated
rainfed

cropland

Populated
rangelands

Rainfed
mosaic
villages

27% 21% 20% 15% 5% 4%
11 Populated

forests
Populated
rangelands

Remote
forests

Remote
rangelands

Populated
rainfed

cropland

Residential
rainfed
mosaic

23% 22% 15% 13% 13% 9%
12 Populated

rangelands
Barren Remote

forests
Remote

rangelands
Sparse trees Residential

rangelands
33% 13% 11% 11% 9% 9%

13 Populated
rangelands

Residential
rangelands

Residential
rainfed
mosaic

Populated
rainfed

cropland

Remote
rangelands

Pastoral
villages

21% 20% 16% 11% 10% 7%
14 Populated

rainfed
cropland

Remote
croplands

Remote
rangelands

Populated
rangelands

Residential
rainfed
mosaic

Remote
forests

24% 15% 14% 11% 9% 8%
15 Residential

rainfed
mosaic

Populated
rainfed

cropland

Residential
irrigated
cropland

Populated
forests

Dense
settlements

Urban

32% 20% 19% 11% 7% 3%
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Table A1. (continued)

Aquifer ID Dominant Anthropogenic Biome Types

16 Populated
irrigated
cropland

Residential
irrigated
cropland

Populated
rangelands

Remote
rangelands

Remote
croplands

Populated
rainfed

cropland
14% 14% 11% 9% 8% 7%

17 Populated
irrigated
cropland

Populated
rangelands

Remote
croplands

Populated
rainfed

cropland

Residential
irrigated
cropland

Remote
rangelands

18% 16% 15% 15% 14% 9%
18 Residential

rainfed
mosaic

Populated
rainfed

cropland

Populated
forests

Residential
irrigated
cropland

Remote
forests

Rainfed
mosaic
villages

19% 19% 13% 9% 9% 6%
19 Wild forests Populated

forests
Remote
forests

Residential
rainfed
mosaic

Populated
rainfed

cropland

Remote
rangelands

31% 27% 22% 10% 6% 1%
20 Populated

rainfed
cropland

Populated
forests

Residential
rainfed
mosaic

Remote
forests

Residential
rangelands

Populated
rangelands

45% 19% 14% 6% 4% 3%
21 Populated

rainfed
cropland

Residential
rainfed
mosaic

Populated
forests

Populated
rangelands

Residential
rangelands

Remote
forests

20% 14% 12% 12% 10% 9%
22 Remote

rangelands
Populated
rangelands

Residential
rangelands

Barren Populated
irrigated
cropland

Remote
croplands

31% 22% 14% 13% 5% 5%
23 Residential

irrigated
cropland

Cropped and
pastoral
villages

Residential
rangelands

Urban Populated
rangelands

Rainfed villages

24% 17% 14% 8% 7% 6%
24 Rainfed villages Urban Dense

settlements
Residential

irrigated
cropland

Rainfed
mosaic
villages

Rice villages

20% 18% 12% 10% 10% 9%
25 Remote

forests
Populated

forests
Wild forests Sparse trees Residential

rainfed
mosaic

Populated
rainfed

cropland
20% 19% 18% 12% 10% 7%

26 Remote
forests

Wild forests Sparse trees Populated
forests

Remote
rangelands

Barren

37% 24% 17% 12% 5% 2%
27 Remote

forests
Populated

forests
Wild forests Residential

rainfed
mosaic

Populated
rainfed

cropland

Remote
rangelands

31% 23% 17% 10% 6% 5%
28 Wild forests Remote

forests
Populated

forests
Sparse trees Remote

rangelands
Residential

rainfed
mosaic

37% 26% 20% 10% 3% 2%
29 Dense

settlements
Rainfed villages Irrigated villages Urban Rice villages Residential

irrigated
cropland

25% 22% 10% 9% 7% 6%
30 Residential

rainfed
mosaic

Pastoral
villages

Residential
irrigated
cropland

Populated
forests

Populated
rainfed

cropland

Dense
settlements

21% 14% 11% 8% 7% 6%
31 Remote

rangelands
Populated
rangelands

Residential
rangelands

Barren Cropped and
pastoral
villages

Residential
irrigated
cropland

32% 20% 16% 7% 7% 7%
32 Rainfed villages Rainfed

mosaic
villages

Residential
irrigated
cropland

Dense
settlements

Urban Residential
rainfed
mosaic

27% 20% 14% 14% 5% 4%

Water Resources Research 10.1002/2015WR017349

RICHEY ET AL. QUANTIFYING RENEWABLE GROUNDWATER STRESS WITH GRACE 5234



References
Alcamo, J., P. D€oll, F. Kaspar, and S. Siebert (1997), Global Change and Global Scenarios of Water Use and Availability: An Application of Water-

GAP 1.0, Cent. for Environ. Syst. Res., Univ. of Kassel, Kassel, Germany. [Available at file:///home/sasha/Documents/Research/papers/
alcamo_etal_1997.pdf.]

Alcamo, J., M. Fl€orke, and M. M€arker (2007), Future long-term changes in global water resources driven by socio-economic and climatic
changes, Hydrol. Sci. J., 52(2), 247–275, doi:10.1623/hysj.52.2.247.

Alexandra, S. R., and J. S. Famiglietti (2012), Quantifying Water Stress Using Total Water Volumes and GRACE, AGU, Kona, Hawaii.
Alley, W. M. (2006), Tracking U.S. groundwater reserves for the future?, Environment, 48(3), 10–25.
Alley, W. M., T. E. Reilly, and O. L.Franke (1999), Sustainability of ground-water resources, U.S. Geol. Surv. Circ., 1186, 79 pp.
Bawden, G. W., W. Thatcher, R. S. Stein, K. W. Hudnut, and G. Peltzer (2001), Tectonic contraction across Los Angeles after removal of

groundwater pumping effects, Nature, 412(6849), 812–5, doi:10.1038/35090558.
Bredehoeft, J. (1997), Safe yield and the water budget myth, Ground Water, 35(6), 929–929, doi:10.1111/j.1745-6584.1997.tb00162.x.
Bredehoeft, J. D. (2002), The water budget myth revisited: Why hydrogeologists model, Ground Water, 40(4), 340–345.
Bredehoeft, J. D., and R. A. Young (1970), The temporal allocation of ground water—A simulation approach, Water Resour. Res., 6(1), 3–21,

doi:10.1029/WR006i001p00003.
Castle, S. L., B. F. Thomas, J. T. Reager, M. Rodell, S. C. Swenson, and J. S. Famiglietti (2014), Groundwater depletion during drought threat-

ens future water security of the Colorado River Basin, Geophys. Res. Lett., 41, 5904–5911, doi:10.1002/2014GL061055.
Chen, F., K. Mitchell, J. Schaake, Y. Xue, H.-L. Pan, V. Koren, Q. Y. Duan, M. Ek, and A. Betts (1996), Modeling of land surface evaporation by

four schemes and comparison with FIFE observations, J. Geophys. Res., 101(D3), 7251–7268, doi:10.1029/95JD02165.
Colesanti, C., A. Ferretti, F. Novali, C. Prati, and F. Rocca (2003), Sar monitoring of progressive and seasonal ground deformation using the

permanent scatterers technique, IEEE Trans. Geosci. Remote Sens., 41(7), 1685–1701, doi:10.1109/TGRS.2003.813278.
Coudrain-Ribstein, A., B. Pratx, A. Talbi, and C. Jusserand (1998), L’�evaporation des nappes phr�eatiques sous climat aride est-elle

ind�ependante de la nature du sol?, C. R. Acad. Sci., Ser. IIa, Sci. Terre Planetes, 326(3), 159–165.
Dai, Y., et al. (2003), The common land model, Bull. Am. Meteorol. Soc., 84(8), 1013–1023.
De Vries, J. J., and I. Simmers (2002), Groundwater recharge: An overview of process and challenges, Hydrogeol. J., 10(1), 5–17, doi:

10.1007/s10040-001-0171-7.
D€oll, P. (2009), Vulnerability to the impact of climate change on renewable groundwater resources: A global-scale assessment, Environ. Res.

Lett., 4, 035006, doi:10.1088/1748-9326/4/3/035006.
Dorigo, W., R. de Jeu, D. Chung, R. Parinussa, Y. Liu, W. Wagner, and D. Fern�andez-Prieto (2012), Evaluating global trends (1988–2010) in

harmonized multi-satellite surface soil moisture, Geophys. Res. Lett., 39, L18405, doi:10.1029/2012GL052988.
Duveiller, G., P. Defourny, B. Descl�ee, and P. Mayaux, P. (2008), Deforestation in Central Africa: Estimates at regional, national and landscape

levels by advanced processing of systematically-distributed Landsat extracts, Remote Sens. Environ., 112(5), 1969–1981, doi:10.1016/
j.rse.2007.07.026.

Ellis, E. C., and N. Ramankutty (2008), Putting people in the map: Anthropogenic biomes of the world, Frontiers Ecol. Environ., 6(8), 439–447,
doi:10.1890/070062.

Falkenmark, M. (1989), Water scarcity now threatening Africa: Why isn’t it being addressed?, Ambio J. Hum. Environ., 18(2), 112–118.
Famiglietti, J. S. (2014), The global groundwater crisis, Nat. Clim. Change, 4(11), 945–948, doi:10.1038/nclimate2425.
Famiglietti, J. S., M. Lo, S. L. Ho, J. Bethune, K. J. Anderson, T. H. Syed, S. C. Swenson, C. R. deLinage, and M. Rodell (2011), Satellites measure

recent rates of groundwater depletion in California’s Central Valley, Geophys. Res. Lett., 38, L03403, doi:10.1029/2010GL046442.
Faunt, C. C. (Ed.) (2009), Groundwater availability of the Central Valley Aquifer, California, U.S. Geol. Surv. Prof. Pap., 1766, 225 pp.
Food and Agricultural Organization (FAO) (2003), AQUASTAT INformation System on Water and Agriculture Database, U.N., Rome. [Available

at http://www.fao.org/nr/water/aquastat/water_use/index.stm.]
Foster, S. S. D., and P. J. Chilton (2003), Groundwater: The processes and global significance of aquifer degradation, Philos. Trans. R. Soc.

London B, 358(1440), 1957–72, doi:10.1098/rstb.2003.1380.

Table A1. (continued)

Aquifer ID Dominant Anthropogenic Biome Types

33 Populated
rainfed

cropland

Populated
forests

Residential
rainfed
mosaic

Remote
forests

Wild forests Rainfed
mosaic
villages

27% 18% 18% 17% 5% 3%
34 Populated

rainfed
cropland

Residential
rainfed
mosaic

Rainfed villages Residential
rangelands

Populated
rangelands

Residential
irrigated
cropland

21% 15% 12% 8% 7% 6%
35 Remote

forests
Populated

forests
Wild forests Sparse trees Remote

rangelands
Residential

rainfed
mosaic

44% 21% 16% 11% 3% 3%
36 Remote

forests
Remote

rangelands
Sparse trees Remote

croplands
Barren Populated

rangelands
22% 19% 16% 11% 11% 9%

37 Sparse trees Remote
rangelands

Remote
forests

Barren Populated
rangelands

Populated
forests

59% 12% 12% 11% 3% 2%

aThe percentages list the percent of the aquifer area that is dominated by the corresponding biome type.
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