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Abstract

Plant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant
growth-promoting bacteria (PGPB) are bacteria that can enhance plant growth and protect plants from disease and
abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as
the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics,
such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of sidero-
phores and phytohormones, can be assessed as plant growth promotion (PGP) traits. Bacterial inoculants can con-
tribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of
chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain suc-
cess in improving plant growth and productivity, several processes involved can influence the efficiency of inocula-
tion, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review
presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants,
once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible benefi-
cial bacteria.
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Introduction

The rhizosphere can be defined as the soil region

where processes mediated by microorganisms are specifi-

cally influenced by the root system (Figure 1A). This area

includes the soil connected to the plant roots and often

extends a few millimeters off the root surface, being an im-

portant environment for the plant and microorganism inter-

actions (Lynch, 1990; Gray and Smith, 2005), because

plant roots release a wide range of compounds involved in

attracting organisms which may be beneficial, neutral or

detrimental to plants (Lynch, 1990; Badri and Vivanco,

2009). The plant growth-promoting bacteria (or PGPB) be-

long to a beneficial and heterogeneous group of microor-

ganisms that can be found in the rhizosphere, on the root

surface or associated to it, and are capable of enhancing the

growth of plants and protecting them from disease and

abiotic stresses (Dimkpa et al., 2009a; Grover et al., 2011;

Glick, 2012). The mechanisms by which PGPB stimulate

plant growth involve the availability of nutrients originat-

ing from genetic processes, such as biological nitrogen fix-

ation and phosphate solubilization, stress alleviation

through the modulation of ACC deaminase expression, and

production of phytohormones and siderophores, among

several others.

Interactions between plants and bacteria occur

through symbiotic, endophytic or associative processes

with distinct degrees of proximity with the roots and sur-

rounding soil (Figure 1A). Endophytic PGPB are good

inoculant candidates, because they colonize roots and cre-

ate a favorable environment for development and function.

Non-symbiotic endophytic relationships occur within the

intercellular spaces of plant tissues, which contain high lev-

els of carbohydrates, amino acids, and inorganic nutrients

(Bacon and Hinton, 2006).

Agricultural production currently depends on the

large-scale use of chemical fertilizers (Wartiainen et al.,

2008; Adesemoye et al., 2009). These fertilizers have be-

come essential components of modern agriculture because

they provide essential plant nutrients such as nitrogen,

phosphorus and potassium. However, the overuse of fertil-

izers can cause unanticipated environmental impacts (She-

noy et al., 2001; Adesemoye et al., 2009). To achieve

maximum benefits in terms of fertilizer savings and better

growth, the PGPB-based inoculation technology should be

utilized along with appropriate levels of fertilization. More-

over, the use of efficient inoculants can be considered an

important strategy for sustainable management and for re-
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ducing environmental problems by decreasing the use of

chemical fertilizers (Alves et al., 2004; Adesemoye et al.,

2009; Hungria et al., 2010, 2013).

The success and efficiency of PGPB as inoculants for

agricultural crops are influenced by various factors, among

which the ability of these bacteria to colonize plant roots,

the exudation by plant roots and the soil health. The root

colonization efficiency of PGPB is closely associated with

microbial competition and survival in the soil, as well as

with the modulation of the expression of several genes and

cell-cell communication via quorum sensing (Danhorn and

Fuqua, 2007; Meneses et al., 2011; Alquéres et al., 2013;

Beauregard et al., 2013). Plant roots react to different envi-

ronmental conditions through the secretion of a wide range

of compounds which interfere with the plant-bacteria inter-

action, being considered an important factor in the effi-

ciency of the inoculants (Bais et al., 2006; Cai et al., 2009,

2012; Carvalhais et al., 2013). Soil health is another impor-

tant factor that affects the inoculation efficiency, due to

several characteristics such as soil type, nutrient pool and

toxic metal concentrations, soil moisture, microbial diver-

sity, and soil disturbances caused by management prac-

tices.

Mechanisms of Plant Growth Promotion

The mechanisms by which bacteria can influence

plant growth differ among species and strains, so typically

there is no single mechanism for promoting plant growth.

Studies have been conducted regarding the abilities of vari-

ous bacteria to promote plant growth, among them the

endophytic bacteria. Endophytes are conventionally de-

fined as bacteria or fungi that colonize internal plant tis-

sues, can be isolated from the plant after surface disinfec-

tion and cause no negative effects on plant growth (Gaiero

et al., 2013). Many bacteria promote plant growth at vari-

ous stages of the host plant life cycle through different

mechanisms (Figure 1B). Here we discuss five important

mechanisms of PGPB.

Biological nitrogen fixation

All organisms require nitrogen (N) to synthesize bio-

molecules such as proteins and nucleic acids. However, the

main source of N in nature, the atmospheric nitrogen (N2),

is not accessible to most living organisms, including euka-

ryotes. Biological nitrogen fixation (BNF) is the process re-

sponsible for the reduction of N2 to ammonia (NH3)

(Newton, 2000; Franche et al., 2009) and is performed in

diazotrophic microorganisms, particularly bacteria and

archaea (Dixon and Kahn, 2004).

Diazotrophic microorganisms perform BNF through

nitrogenase, a highly conserved enzyme that comprises two

metalloproteins, FeMo-protein and Fe-protein (Dixon and

Kahn, 2004). Although there are many morphological,

physiological and genetic differences between the diazo-
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Figure 1 - Rhizosphere/bacteria interactions. A) Different types of association between plant roots and beneficial soil bacteria; B) After colonization or

association with roots and/or rhizosphere, bacteria can benefit the plant by (i) tolerance toward abiotic stress through action of ACC deaminase; (ii) de-

fense against pathogens by the presence of competitive traits such as siderophore production; (iii) increase of fertility and plant growth through biological

nitrogen fixation (BNF), IAA (indole-3-acetic acid) production, and phosphate solubilization around roots.



trophics, as well as an enormous variability of environ-

ments where they can be found, they all contain the enzyme

nitrogenase (Moat and Foster, 1995; Boucher et al., 2003;

Zehr et al., 2003; Dixon and Kahn, 2004). Klebsiella

oxytoca M5a1 was the first diazotrophic bacterium that had

the genes involved in the synthesis and functioning of

nitrogenase (nif, N2 fixation) identified and characterized.

In the genome of this bacterium, 20 nif genes are grouped in

a 24-kb chromosomal region, organized into 8 operons:

nifJ, nifHDKTY, nifENX, nifUSVWZ, nifM, nifF, nifLA, and

nifBQ (Arnold et al., 1988). The nifD and nifK genes en-

code the FeMo-protein, and nifH encodes the Fe-protein

(Boucher et al., 2003).

Among the leguminous plants of the Fabaceae fam-

ily, the soil bacteria of the Rhizobiaceae (rhizobia) family

are confined to the root nodules (Willems, 2007). Within

these nodules, rhizobia effectively perform BNF through

the adequate control of the presence of oxygen, an inhibitor

of nitrogenase activity (Dixon and Kahn, 2004; Shridhar,

2012). Many species of microorganisms are used in the cul-

tivation of plants of economic interest, facilitating the host

plant growth without the use of nitrogenous fertilizers. For

instance, the production of soybean (Glycine max L.) in

Brazil is an excellent example of the efficiency of BNF

through the use of different strains of Bradyrhizobium sp.,

such as B. japonicum and B. elkanii (Alves et al., 2004;

Torres et al., 2012). The importance of endophytic N2-fix-

ing bacteria has also been the object of studies in non-

leguminous plants such as sugarcane (Saccharum

officinarum L.; Thaweenut et al., 2011). Other studies have

suggested that bradyrhizobia colonize and express nifH not

only in the root nodules of leguminous plants but also in the

roots of sweet potatoes (Ipomoea batatas L.), acting as

diazotrophic endophytes (Terakado-Tonooka et al., 2008).

Herbaspirillum sp. is a gram-negative bacterium as-

sociated with important agricultural crops, such as rice

(Oryza sativa L.; Pedrosa et al., 2011; Souza et al., 2013),

sorghum (Sorghum bicolor L.; James et al., 1997), maize

(Zea mays L.; Monteiro et al., 2008), and sugarcane (Pe-

drosa et al., 2011). Fluorescence and electron microscopy

have revealed that the Herbaspirillum sp. strain B501 colo-

nizes the intercellular spaces of wild rice (Oryza officinalis)

leaves, fixing N2 in vivo (Elbeltagy et al., 2001), and ex-

presses nif genes in wild rice shoots (You et al., 2005). This

same strain also colonizes the intercellular spaces of the

roots and stem tissues of sugarcane plants, showing

non-specificity to the host plant (Njoloma et al., 2006). In-

oculations of barley (Hordeum vulgare L.) and Miscanthus

plants with a strain of H. frisingense showed that this bacte-

rium is a true plant endophyte (Rothballer et al., 2008).

The PGPB related to genus Azospirillum have been

largely studied because of their efficiency in promoting the

growth of different plants of agronomical interest. Garcia

de Salamone et al. (1996) showed that Azospirillum sp.

contribute to plant fitness through BNF. The genus

Burkholderia also includes species that fix N2. B.

vietnamiensis, a human pathogenic species, was efficient in

colonizing rice roots and fixing N2 (Govindarajan et al.,

2008). In addition to Burkholderia, the potential of BNF

and endophytic colonization of bacteria belonging to the

genera Pantoea, Bacillus and Klebsiella was also con-

firmed in different maize genotypes (Ikeda et al., 2013).

Gluconacetobacter diazotrophicus is another well-studied

endophyte (Baldani et al., 1997; Oliveira et al., 2002;

Muthukumarasamy et al., 2005; Bertalan et al., 2009). In

conditions of N deficiency, the G. diazotrophicus strain

Pal5 isolated from sugarcane is able to increase the N con-

tent when compared with plants inoculated with a Nif- mu-

tant or uninoculated plants (Sevilla et al., 2001).

Production of indolic compounds

The influence of bacteria in the rhizosphere of plants

is largely due to the production of auxin phytohormones

(Spaepen et al., 2007). Several bacterial species can pro-

duce indolic compounds (ICs) such as the auxin phytohor-

mone indole-3-acetic acid (IAA), which present great phys-

iological relevance for bacteria-plant interactions, varying

from pathogenesis to phytostimulation (Spaepen et al.,

2007). The ability to produce ICs is widely distributed

among plant-associated bacteria. Souza et al. (2013) dem-

onstrated that approximately 80% of bacteria isolated from

the rhizosphere of rice produce ICs. Other studies have

shown that rhizosphere bacteria produce more ICs than

bulk soil bacteria (Khalid et al., 2004), and in a recent study

Costa et al. (2014) showed that this effect was also ob-

served in endophytic bacteria, demonstrating high IC pro-

duction in the Enterobacteriaceae family (Enterobacter,

Escherichia, Grimontella, Klebsiella, Pantoea, and

Rahnella).

The synthesis of ICs in bacteria depends on the pres-

ence of precursors in root exudates. Among the various

exudates, L-tryptophan has been identified as the main pre-

cursor for the route of IC biosynthesis in bacteria. The char-

acterization of intermediate compounds has led to the iden-

tification of different pathways that use L-tryptophan as the

main precursor. The different pathways of IAA synthesis in

bacteria show a high degree of similarity with the IAA

biosynthesis pathways in plants (Spaepen et al., 2007).

Beneficial bacteria predominantly synthesize IAA via the

indole-3-pyruvic acid pathway, an alternative pathway de-

pendent on L-tryptophan. In phytopathogenic bacteria,

IAA is produced from L-tryptophan via the indol-aceto-

amide pathway. In A. brasilense, at least three biosynthesis

pathways have been described for the production of IAA:

two L-tryptophan-dependent (indole-3-pyruvic acid and

indole-acetoamide pathways) and one L-tryptophan-inde-

pendent (Prinsen et al., 1993), with the indole-3-pyruvic

acid pathway as the most important among them (Spaepen

et al., 2008).
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The potential of rhizobia to establish symbiosis with

legumes has been well documented; however, studies have

indicated the importance of IAA in nodulation events. The

co-inoculation of beans (Phaseolus vulgaris L.; cultivar

DOR364) with A. brasilense Sp245 and Rhizobium etli

CNPAF512 yielded a greater number of nodules; however,

the results obtained using a mutant strain of Azospirillum

that produced only 10% of the IAA of the wild-type strain

were not satisfactory, indicating the importance of bacterial

IAA in the establishment and efficiency of symbiosis (Re-

mans et al., 2008). IAA-producing Azospirillum sp. also

promoted alterations in the growth and development of

wheat (Triticum aestivum L.) plants (Dobbelaere et al.,

1999; Akbari et al., 2007; Spaepen et al., 2008; Baudoin et

al., 2010).

Soil microorganisms are capable of synthesizing and

catabolizing IAA. The capacity of catabolizing IAA has

been well characterized in B. japonicum (Jensen et al.,

1995) and Pseudomonas putida 1290 (Leveau and Lindow,

2005). P. putida 1290 uses IAA as the sole source of carbon

(C), nitrogen (N), and energy. In addition to the utilization

of IAA, strain 1290 also produced IAA in culture medium

supplemented with L-tryptophan. In co-inoculation experi-

ments in radish (Raphanus sativus L.) roots, this strain min-

imized the negative effects of high IAA concentrations

produced by the pathogenic bacteria Rahnella aquaticus

and P. syringae. In this context, microorganisms that cata-

bolize IAA might also positively affect the growth of plants

and prevent pathogen attack (Leveau and Lindow, 2005).

Siderophore production

Iron (Fe) is an essential micronutrient for plants and

microorganisms, as it is involved in various important bio-

logical processes, such as photosynthesis, respiration, chlo-

rophyll biosynthesis (Kobayashi and Nishizawa, 2012),

and BNF (Dixon and Kahn, 2004). In anaerobic and acidic

soils, such as flooded soils, high concentrations of ferrous

(Fe2+) ions generated through the reduction of ferric (Fe3+)

ions might lead to iron toxicity due to excessive Fe uptake

(Stein et al., 2009). Under aerobic conditions, iron solubil-

ity is low, reflecting the predominance of Fe3+ typically ob-

served as oxyhydroxide polymers, thereby limiting the Fe

supply for different forms of life, particularly in calcareous

soils (Andrews et al., 2003; Lemanceau et al., 2009). Mi-

croorganisms have developed active strategies for Fe up-

take. Bacteria can overcome the nutritional Fe limitation by

using chelator agents called siderophores. Siderophores are

defined as low-molecular-mass molecules (< 1000 Da)

with high specificity and affinity for chelating or binding

Fe3+, followed by the transportation and deposition of Fe

within bacterial cells (Neilands, 1995; Krewulak and

Vogel, 2008).

Various studies have shown that siderophores are

largely produced by bacterial strains associated with plants.

This characteristic was the most common trait found in iso-

lates associated with sunflower (Helianthus annuus L.;

Ambrosini et al., 2012) and rice (Souza et al., 2013). Nota-

bly, in rice roots, isolates belonging to genera Enterobacter

and Burkholderia produced the highest levels of sidero-

phores (Souza et al., 2013, 2014). Costa et al. (2014) simul-

taneously analyzed the PGPB datasets from seven inde-

pendent studies that employed similar methodologies for

bioprospection and observed that 64% of all isolates and

100% of all bacterial genera presented siderophore-

producing strains. The bacterial genera Burkholderia,

Enterobacter and Grimontella presented strains with high

siderophore production, while the genera Klebsiella,

Stenotrophomonas, Rhizobium, Herbaspirillum and

Citrobacter presented strains with low siderophore produc-

tion.

The excretion of siderophores by bacteria might stim-

ulate plant growth, thereby improving nutrition (direct ef-

fect) or inhibiting the establishment of phytopathogens

(indirect effect) through the sequestration of Fe from the

environment. Unlike microbial pathogens, plants are not

affected by bacterial-mediated Fe depletion, and some

plants can even capture and utilize Fe3+-siderophore bacte-

rial complexes (Dimkpa et al., 2009b). The role of endo-

phytic siderophore-producing bacteria has been rarely

studied; however, the ability to produce siderophores con-

fers competitive advantages to endophytic bacteria for the

colonization of plant tissues and the exclusion of other mi-

croorganisms from the same ecological niche (Loaces et

al., 2011). These authors observed that the community of

endophytic siderophore-producing bacteria associated to

rice roots is richer than those from the soil at the tillering

and grain-filling stages. Endophytic bacterial strains be-

longing to genus Burkholderia showed preferential local-

ization inside rice plants, and their role may be relevant to

prevent the infection of young plants by Sclerotium oryzae

and Rhizoctonia oryzae.

In maize, endophytic strains belonging to genus Ba-

cillus show different plant growth-promoting characteris-

tics, such as siderophore production, and these effects were

the most efficient against the growth of Fusarium

verticillioides, Colletotrichum graminicola, Bipolaris

maydis, and Cercospora zea-maydis fungi (Szilagyi-

Zecchin et al., 2014). Siderophores produced by A.

brasilense (REC2, REC3) showed in vitro antifungal activ-

ity against Colletotrichum acutatum (the causal agent of

anthracnose). Also, a reduction of disease symptoms was

observed in strawberry (Fragaria vesca) plants previously

inoculated with A. brasilense (Tortora et al., 2011).

ACC deaminase activity

Ethylene is an endogenously produced gaseous

phytohormone that acts at low concentrations, participating

in the regulation of all processes of plant growth, develop-

ment and senescence (Shaharoona et al., 2006; Saleem et

al., 2007). In addition to acting as a plant growth regulator,

404 Souza et al.



ethylene has also been identified as a stress phytohormone.

Under abiotic and biotic stresses (including pathogen dam-

age, flooding, drought, salt, and organic and inorganic con-

taminants), endogenous ethylene production is

substantially accelerated and adversely affects the growth

of the roots and thus the growth of the plant as a whole.

A number of mechanisms have been investigated

aiming to reduce the levels of ethylene in plants. One of

these mechanisms involves the activity of the bacterial en-

zyme 1-aminocyclopropane-1-carboxylate (ACC) dea-

minase (Glick, 2005; Jalili et al., 2009; Farajzadeh et al.,

2012). ACC deaminase regulates the production of plant

ethylene by metabolizing ACC (the immediate precursor of

ethylene biosynthesis in higher plants) into �-ketobutyric

acid and ammonia (Arshad et al., 2007; Saleem et al.,

2007). A significant amount of plant ACC might be ex-

creted from the plant roots and subsequently taken up by

soil microorganisms and hydrolyzed by the enzyme ACC

deaminase, thus decreasing the amount of ACC in the envi-

ronment. When associated with plant roots, soil microbial

communities with ACC deaminase activity might have a

better growth than other free microorganisms, as these or-

ganisms use ACC as a source of nitrogen (Glick, 2005).

Bacterial ACC deaminase activity can be conceptu-

ally divided into two groups, based on high or low enzy-

matic activity (Glick, 2005). High ACC deaminase-

expressing microorganisms nonspecifically bind to a vari-

ety of plant surfaces, and these microbes include rhizo-

sphere and phyllosphere microorganisms and endophytes.

However, low ACC deaminase-expressing microorgan-

isms only bind to specific plants or are only present in cer-

tain tissues, and although these microbes do not lower the

overall level of ethylene produced by the plant, they might

prevent a localized increase in ethylene levels. Low ACC

deaminase-expressing microorganisms include most, if not

all, rhizobia species (Glick, 2005). Shaharoona et al. (2006)

demonstrated that the co-inoculation of mung bean (Vigna

radiate L.) with Bradyrhizobium and one bacterial strain

presenting ACC deaminase activity enhanced nodulation as

compared to inoculation with Bradyrhizobium alone, sug-

gesting that this approach might be effective to achieve le-

gume nodulation.

Onofre-Lemus et al. (2009) observed that ACC dea-

minase activity is a widespread feature in species belonging

to genus Burkholderia. These authors identified 18 species

of this genus exhibiting this activity; among these bacteria,

B. unamae was able to endophytically colonize tomato

(Solanum lycopersicum L.). In addition, tomato plants in-

oculated with the wild-type B. unamae strain presented

better growth than those inoculated with a mutant strain de-

ficient for ACC deaminase activity (Onofre-Lemus et al.,

2009). In another study, a mutation in the ACC deaminase

pathway altered the physiology of the endophytic B.

phytofirmans PsJN2 strain, including the loss of ACC

deaminase activity, an increase in IAA synthesis, a de-

crease in the production of siderophores and the loss of the

ability to promote the growth of canola roots (Brassica

napus L.; Sun et al., 2009).

Plant growth and productivity is negatively affected

by abiotic stresses. Bal et al. (2013) demonstrated the effec-

tiveness of bacteria exhibiting ACC deaminase activity,

such as Alcaligenes sp., Bacillus sp., and Ochrobactrum

sp., in inducing salt tolerance and consequently improving

the growth of rice plants under salt stress conditions.

Arshad et al. (2008) obtained similar results, demonstrating

that a strain of Pseudomonas spp. with ACC deaminase ac-

tivity partially eliminated the effect of drought stress on the

growth of peas (Pisum sativum L.). Similarly, tomato plants

pretreated with the endophytic bacteria P. fluorescens and

P. migulae displaying ACC deaminase activity were

healthier and showed better growth under high salinity

stress compared with plants pretreated with an ACC deami-

nase-deficient mutant or without bacterial treatment (Ali et

al., 2014). Moreover, the selection of endophytes with

ACC deaminase activity could also be a useful approach for

developing a successful phytoremediation strategy, given

the potential of these bacteria to reduce plant stress (Glick,

2010).

Phosphate solubilization

Phosphorus (P) is an essential nutrient for plants, par-

ticipating as a structural component of nucleic acids, phos-

pholipids and adenosine triphosphate (ATP), as a key

element of metabolic and biochemical pathways, important

particularly for BNF and photosynthesis (Khan et al., 2009;

Richardson and Simpson, 2011). Plants absorb P in two sol-

uble forms: the monobasic (H2PO4
-) and the dibasic

(HPO4
2-) (Glass, 1989). However, a large proportion of P is

present in insoluble forms and is consequently not available

for plant nutrition. Low levels of P reflect the high reactiv-

ity of phosphate with other soluble components (Khan et

al., 2009), such as aluminum in acid soils (pH < 5) and cal-

cium in alkaline soils (pH > 7) (Holford, 1997; McLaughlin

et al., 2011). Organic (incorporated into biomass or soil or-

ganic matter) and inorganic compounds, primarily in the

form of insoluble mineral complexes, are major sources of

available P in the soil (Rodríguez et al., 2006; Richardson

and Simpson, 2011). Therefore, the availability of P de-

pends on the solubility of this element, which could be in-

fluenced by the activity of plant roots and microorganisms

in the soil. Phosphate-solubilizing bacteria and fungi con-

stitute approximately 1-50% and 0.1-0.5%, respectively, of

the total population of cultivable microorganisms in the soil

(Chabot et al., 1993; Khan et al., 2009).

Among the different sources of P in the soil (as previ-

ously mentioned), the solubilization of inorganic phos-

phates has been the main focus of research studies.

Phosphate-solubilizing bacteria solubilize inorganic soil

phosphates, such as Ca3(PO4)2, FePO4, and AlPO4, through

the production of organic acids, siderophores, and hydroxyl
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ions (Jones, 1998; Chen et al., 2006; Rodríguez et al., 2006,

Sharma et al., 2013). Some bacteria only solubilize calcium

phosphate, while other microorganisms are capable of solu-

bilizing other forms of inorganic phosphates at different in-

tensities. Bacterial isolates belonging to genera

Enterobacter, Pantoea and Klebsiella solubilize Ca3(PO4)2

to a greater extent than FePO4 and AlPO4 (Chung et al.,

2005). The production of organic acids, particularly

gluconic and carboxylic, is one of the well-studied mecha-

nisms utilized by microorganisms to solubilize inorganic

phosphates (Rodriguez and Fraga, 1999).

Several phosphate-solubilizing bacteria have been

isolated from the roots and rhizospheric soil of various

plants (Ambrosini et al., 2012; Farina et al., 2012; Costa et

al., 2013; Souza et al., 2013, 2014; Granada et al., 2013).

Among the 336 strains associated with rice plants, Souza et

al. (2013) identified 101 isolates belonging to the genera

Burkholderia, Cedecea, Cronobacter, Enterobacter,

Pantoea and Pseudomonas which were able to solubilize

tricalcium phosphate [Ca3(PO4)2]. Ambrosini et al. (2012)

demonstrated that Burkholderia strains associated with

sunflower plants were predominant in Ca3(PO4)2 solubili-

zation. Chen et al. (2006) had previously reported several

phosphate-solubilizing bacteria strains belonging to the

genera Bacillus, Rhodococcus, Arthrobacter, Serratia,

Chryseobacterium, Gordonia, Phyllobacterium and

Delftia. These authors also identified various types of or-

ganic acids produced by bacterial strains, such as the citric,

gluconic, lactic, succinic and propionic acids.

Qin et al. (2011) suggested that the ability of rhizobia

to solubilize inorganic phosphate is associated with rhizo-

sphere acidification. Moreover, the inoculation with

Rhizobium enhanced P acquisition by soybean plants, par-

ticularly where Ca3(PO4)2 was the primary P source. The

inoculation of rice with the phosphate-solubilizing

diazotrophic endophytes Herbaspirillum and Burkholderia

increased grain yield and nutrient uptake in plants culti-

vated in soil with Ca3(PO4)2 and 15N-labeled fertilizer, sug-

gesting that the selection and use of P-solubilizing

diazotrophic bacteria is an effective strategy for the promo-

tion of P solubilization (Estrada et al., 2013).

Several studies have reported the isolation of phos-

phate-solubilizing bacteria from soils or rhizospheres. Con-

firming that endophytes are important for phosphate solu-

bilization, Chen et al. (2014) observed that the endophyte

Pantoea dispersa, isolated from the roots of cassava

(Manihot esculenta C.), effectively dissolved Ca3(PO4)2,

FePO4, and AlPO4, producing salicylate, benzene-acetic

and other organic acids. Moreover, the inoculation of P.

dispersa in soil enhanced the concentration of soluble P in a

microbial population, increasing the soil microbial diver-

sity, which suggests that an endophyte could adapt to the

soil environment and promote the release of P.

Soil also contains a wide range of organic substrates

which can be a source of phosphorus for plant growth. Or-

ganic P forms, particularly phytates, are predominant in

most soils (10-50% of total P) and mineralized by phytases

(myo-inositol hexakisphosphate phosphohydrolases)

(Rodríguez et al., 2006; Richardson and Simpson, 2011).

Bacteria with phytase activity have been isolated from

rhizosphere and proposed as PGPB to be used in soils with

high content of organic P. Bacterial isolates identified as

Advenella are positive for phytase production, and in-

creased the P content and growth of Indian mustard (Bras-

sica juncea) (Singh et al., 2014). In another study, Kumar et

al. (2013) reported phytase-producing bacteria belonging

to genera Tetrathiobacter and Bacillus which also pro-

moted the growth of Indian mustard and significantly in-

creased the P content. Idriss et al. (2002) reported that

extracellular phytase from B. amyloliquefaciens FZB45

promoted the growth of maize seedlings. The production of

phytase has been characterized in other rhizosphere bacte-

ria, as for example, Bacillus sp., Cellulosimicrobium sp.,

Acetobacter sp., Klebsiella terrigena, Pseudomonas sp.,

Paenibacillus sp., and Enterobacter sp. (Yoon et al., 1996;

Kerovuo et al., 1998; Idriss et al., 2002; Gulati et al., 2007;

Acuña et al., 2011; Jorquera et al., 2011; Kumar et al.,

2013; Singh et al., 2014). Moreover, bacteria with both ac-

tivities, production of organic acids to solubilize inorganic

P and production of phytase to mineralize phytate, have

been isolated from the rhizospheres of different plants, such

as perennial ryegrass (Lolium perenne L.), white clover

(Trifolium repens L.), wheat, oat (Avena sativa L.) and yel-

low lupin (Lupinus luteus L.) (Jorquera et al., 2008).

Inoculants Can Reduce Chemical Fertilization

The demand for chemical fertilizers in agriculture has

historically been influenced by interrelated factors such as

population growth worldwide, economic growth, agricul-

tural production, among others (Morel et al., 2012). Interest

in the use of inoculants containing PGPB that promote

plant growth and yield has increased because nitrogen fer-

tilizers are expensive and can damage the environment

through water contamination with nitrates, acidification of

soils and greenhouse-gas emissions (Adesemoye et al.,

2009; Hungria et al., 2013). Plant-microorganism associa-

tions have long been studied, but their exploitation in agri-

culture for partially or fully replacing nitrogen fertilizers is

still low (Hungria et al., 2013). Moreover, plants can only

use a small amount of phosphate from chemical sources,

because 75-90% of the added P is precipitated through

metal-cation complexes and rapidly becomes fixed in soils

(Sharma et al., 2013). Approximately 42 million tons of ni-

trogenous fertilizers are applied annually on a global scale

for the production of the three major crop cereals: wheat,

rice, and maize. Annually, 8 x 1010 kg of NH3 are produced

by nitrogenous fertilizer industries, while 2.5 x 1011 kg of

NH3 are fixed through BNF (Cheng, 2008). The nitrogen

provided by BNF is less prone to leaching, volatilization

and denitrification, as this chemical is used in situ and is
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therefore considered an important biological process that

contributes to sustainable agriculture (Dixon and Kahn,

2004).

The management of bacteria, soil and plant interac-

tions has emerged as a powerful tool in view of the biotech-

nological potential of these interactions, evidenced by

increased crop productivity, reduction of production costs

by reducing the volume of fertilizers applied and a better

conservation of environmental resources. Moreover, ino-

culants are composed of beneficial bacteria that can help

the plant meet its demands for nutrients. As previously dis-

cussed, these bacteria increase plant growth, accelerate

seed germination, improve seedling emergence in response

to external stress factors, protect plants from disease, and

promote root growth using different strategies (Table 1).

Whether gram-negative or gram-positive, these bacteria re-

quire isolation in culture media and analysis of various

genotypic and phenotypic aspects, as well as analysis re-

garding their beneficial interaction with the host plant in

experimental and natural conditions.

Rhizobia species are well investigated because of

their symbiotic relationship with leguminous plants and

their agronomical application as inoculants in the cultiva-

tion of economic crops (Alves et al., 2004; Torres et al.,

2012). The soybean-Bradyrhizobium association is a good

example of the efficiency of BNF, and B. elkanii and B.

japonicum are species commonly used to inoculate this le-

guminous plant. In this system, the BNF is so efficient that

attempts to increase grain yields by adding nitrogenous fer-

tilizers are not successful in plants effectively inoculated

with the recommended Bradyrhizobium strains (Alves et

al., 2004). In Brazil, where approximately 70% of the ni-

trogenous fertilizers are imported, the costs of mineral N

utilization in agriculture are high, and inoculants are a more

cost-effective alternative, particularly for soybean crops. It

is estimated that, in this culture alone, Brazil saves approxi-

mately US$ 7 billion per year thanks to the benefits of BNF

(Hungria et al., 2013).

In the last few decades, a large array of bacteria asso-

ciated with non-leguminous plants, including Azospirillum

species, have demonstrated plant growth-promoting prop-

erties (Okon and Labandrera-Gonzalez, 1994; Garcia de

Salamone et al., 1996; Bashan et al., 2004; Cassán and Gar-

cia de Salamone, 2008; Hungria et al., 2010). Azospirillum

might promote the growth, yield and nutrient uptake of dif-

ferent plant species of agronomic importance, particularly

wheat and maize (Hungria et al., 2010). Inoculants contain-

ing Azospirillum have been tested under field conditions in

Argentina, with positive results regarding plant growth

and/or grain yield (Cassán and Garcia de Salamone, 2008).

In Brazil, field experiments designed to evaluate the perfor-

mance of A. brasilense strains isolated from maize plants

showed effectiveness in both maize and wheat. These re-

sults were grounds for the authorization of the first strains

of inoculants to be produced and commercially used in

wheat and maize in this country. According to the authors

(Hungria et al., 2010), the partial (50%) replacement of the

nitrogenous fertilizer required for these crops in association

with Azospirillum sp. inoculation would save an estimated

US$ 1.2 billion per year, suggesting that the use of inocu-

lants could reduce the use of chemical fertilizers world-

wide.

Inoculation with a consortium of several bacterial

strains could be an alternative to inoculation with individ-

ual strains, likely reflecting the different mechanisms used

by each strain in the consortium. The co-inoculation of soy-

bean and common bean (P. vulgaris L.) with rhizobia and

A. brasilense inoculants showed good results for improving

sustainability (Hungria et al., 2013). In field trials, the

co-inoculation of soybean with B. japonicum and A.

brasilense species resulted in outstanding increases in grain

yield and improved nodulation compared with the

non-inoculated control. For common bean, co-inoculation

with Rhizobium tropici and A. brasilense species resulted in

an impressive increase in grain yield, varying from 8.3%

when R. tropici was inoculated alone to 19.6% when the

two bacterial species were used. Domenech et al. (2006)

showed that the inoculation of tomato and pepper with a

product based on Bacillus subtilis GB03 (a growth-pro-

moting agent), B. amyloliquefaciens IN937a (endophytic

bacteria, systemic resistance inducer) and chitosan, com-

bined with different bacterial strains such as P. fluorescens,

provided better biocontrol against Fusarium wilt and

Rhizoctonia damping-off as compared to the use of the

product alone.

Processes Involved in the Efficiency of
Inoculation

Exudation by plant roots

Plant roots respond to environmental conditions

through the secretion of a wide range of compounds, ac-

cording to nutritional status and soil conditions (Cai et al.,

2012; Carvalhais et al., 2013). This action interferes with

the plant-bacteria interaction and is an important factor

contributing to the efficiency of the inoculant (Cai et al.,

2009, 2012; Carvalhais et al., 2013). Root exudation in-

cludes the secretion of ions, free oxygen and water, en-

zymes, mucilage, and a diverse array of C-containing

primary and secondary metabolites (Bais et al., 2006). The

roots of plants excrete 10-44% of photosynthetically fixed

C, which serves as energy source, signaling molecules or

antimicrobials for soil microorganisms (Guttman et al.,

2014). The root exudation varies with plant age and geno-

type, and consequently specific microorganisms respond

and interact with different host plants (Bergsma-Vlami et

al., 2005; Aira et al., 2010; Ramachandran et al., 2011).

Thus, inoculants are generally destined to the one specific

plant from which the bacterium was isolated.
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The well-studied flavonoids also vary with plant age

and physiological state when exuded from legume rhizo-

spheres, and induce nodD gene expression in rhizobial

strains. NodD is a transcriptional activator of bacterial

genes involved in the infection and nodule formation dur-

ing the establishment of legume-rhizobia symbioses (Long,

2001). Similarly to flavonoids, several compounds secreted

by roots modulate the relationships between plants and

PGPB (Badri et al., 2009). Bacillus subtilis FB17, for in-

stance, is attracted by L-malic acid, secreted by the roots of

Arabidopsis thaliana infected with the foliar pathogen P.

syringae pv tomato (Pst DC3000; Rudrappa et al., 2008).

Profiles of secreted secondary metabolites, such as pheno-

lic compounds, flavonoids and hydroxycinnamic deriva-

tives, were different in rice cultivars (Nipponbare and

Cigalon), according to inoculation with Azospirillum 4B

and B510 strains. Interestingly, strains 4B and B510 prefer-

entially increased the growth of the cultivar from which

they were isolated; however, both strains effectively colo-

nized either at the rhizoplane (4B and B510) or inside roots

(B510) (Chamam et al., 2013).

Some molecules exudated from roots might act as

antimicrobial agents against one organism and as stimuli

for the establishment of beneficial interactions with regard

to other organisms. For example, canavanine, a non-protein

amino acid analog to arginine, secreted at high concentra-

tions by many varieties of legume seeds, acts as an anti-

metabolite in many biological systems and also stimulates

the adherence of rhizobia that detoxify this compound (Cai

et al., 2009). In the Leguminosae family, canavanine is a

major N storage compound in the seeds of many plants, and

constitutes up to 13% of the dry weight of seeds (Rosenthal,

1972). Benzoxazinoids (BXs) are secondary metabolites

synthesized by Poaceae during early plant growth stages.

These molecules are effective in plant defense and allelo-

pathy (Nicol et al., 1992; Zhang et al., 2000; Frey et al.,

2009; Neal et al., 2012). However, qualitative and quantita-

tive modifications of BXs production in maize were differ-

entially induced according to inoculation with different

Azospirillum strains (Walker et al., 2011a, b).

The quantitative and qualitative changes in the com-

position of the exudates result from the activation of bio-

chemical defense systems through elicitors mimicking

stresses in plants. Biotic and abiotic elicitors stimulate de-

fense mechanisms in plant cells and greatly increase the di-

versity and amount of exudates (Cai et al., 2012). Several

studies have reported that endophytic PGPB induce stress

and defense responses, causing changes in plant metabo-

lites that lead to the fine control of bacterial populations in-

side plant tissues (Miché et al., 2006; Chamam et al., 2013;

Straub et al., 2013). Jasmonate is an important plant-

signaling molecule that mediates biotic and abiotic stress

responses and aspects of growth and development (Waster-

nack, 2007). Rocha (2007) showed that the jasmonate re-

sponse is initiated prior to the establishment of an effective

association. Following the inoculation of Miscanthus

sinensis with H. frisingense GSF30T, transcriptome and

proteome data showed the rapid and strong up-regulation of

jasmonate-related genes in plants, and this effect was sup-

pressed after the establishment of an association with bac-

teria (Straub et al., 2013).

Bacterial root colonization

Rhizosphere competence reflects variation in the

ability of a PGPB to colonize plant roots during the transi-

tion from free-living to root-associated lifestyles. The at-

tachment and colonization of roots are modulated through

PGPB abilities involved in important processes for sur-

vival, growth, and function in soil (Cornforth and Foster,

2013). Associative and endophytic PGPB respond to plant

exudates through the modulation of the expression of sev-

eral genes, such as those associated with exopolysaccharide

(EPS) biosynthesis and biofilm formation (Rudrappa et al.,

2008; Meneses et al., 2011; Beauregard et al., 2013). Bio-

films are surface-adherent microbial populations typically

embedded within a self-produced matrix material (Fuqua

and Greenberg, 2002). As previously mentioned, B. subtilis

is attracted by L-malic acid secreted by A. thaliana. More-

over, bacterial biofilm formation is selectively triggered

through L-malic acid, in a process dependent on the same

gene matrix required for in vitro biofilm formation

(Rudrappa et al., 2008; Beauregard et al., 2013). EPS

biosynthesis is also required for biofilm formation and

plant colonization by the endophyte G. diazotrophicus. A

functional mutant of G. diazotrophicus PAL5 for EPS pro-

duction did not attach to the rice root surface or exhibit

endophytic colonization (Meneses et al., 2011).

Cell-cell communication via quorum sensing (QS)

regulates root colonization and biocontrol (Danhorn and

Fuqua, 2007). Quorum sensing involves intercellular sig-

naling mechanisms that coordinate bacterial behavior, host

colonization and stress survival to monitor population den-

sity (Danhorn and Fuqua, 2007; Schenk et al., 2012; He and

Bauer, 2014). Plant-associated bacteria frequently employ

this signaling mechanism to modulate and coordinate inter-

actions with plants, including acylated homoserine lactones

(AHLs) among proteobacteria and oligopeptides among

gram-positive microbes (Danhorn and Fuqua, 2007). The

endophytic G. diazotrophicus PAL5 strain colonizes a

broad range of host plants, presenting QS comprising luxR

and luxI homolog gene products and producing eight mole-

cules of the AHL family (Bertini et al., 2014). The levels of

QS were modified according to glucose concentration, the

presence of other C sources and saline stress conditions.

Stress-induced bacterial genes are also associated

with plant-bacterial interactions. The bacterial enzymes

superoxide dismutase and glutathione reductase were cru-

cial for the endophytic colonization of rice roots by G.

diazotrophicus PAL5 (Alquéres et al., 2013). Bacillus

amyloliquefaciens FZB42 genes involved in chemotaxis
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and motility were induced through exudates from P-defi-

cient maize plants, whereas the exudates from N-deficient

plants triggered a general bacterial stress response (Carva-

lhais et al., 2013). The global gene expression of A.

lipoferum 4B cells during interactions with different rice

cultivars (Nipponbare and Cigalon) involved genes associ-

ated with reactive oxygen species (ROS) detoxification,

multidrug efflux, and complex regulatory networks (Dro-

gue et al., 2014). The cultivar-specific expression profiles

of PGPB suggested host-specific adaptation (Drogue et al.,

2014).

Moreover, microbial competition was closely associ-

ated with the root colonization efficiency of PGPB, as the

exudation of different compounds attracts a great number

of different microbial populations. The deposition of nutri-

ents in the plant rhizosphere (rhizodeposition) supports

higher microbial growth than the surrounding soil, a phe-

nomenon referred to as the “rhizosphere effect” (Rovira,

1965; Dunfield and Germida, 2003; Mougel et al., 2006).

This intense molecular communication surrounding the

roots provides a broad range of microbe-microbe interac-

tions, making this environment highly competitive among

soil bacteria. Microbial competition and activities include,

for example, motility (Capdevila et al., 2004; de Weert et

al., 2002), attachment (Buell and Anderson, 1992; Rodri-

guez-Navarro et al., 2007), growth (Browne et al., 2009;

Miller et al., 2010), stress resistance (Espinosa-Urgel et al.,

2000; Martinez et al., 2009), secondary metabolite produc-

tion (Abbas et al., 2002; Haas and Defago, 2005), and quo-

rum sensing (Edwards et al., 2009; Ramachandran et al.,

2011).

Soil health

Soil is a heterogeneous mixture of different organ-

isms and organic and mineral substances present in three

phases: solid, liquid, and gaseous (Kabata-Pendias, 2004).

The physical forces and natural grouping of particles result

in the formation of soil aggregates of different sizes, ar-

rangements and stabilities, which are the basic units of soil

structure (Lynch and Bragg, 1985). Soil aggregation is in-

fluenced by several factors, such as soil mineralogy, cycles

of wetting and drying, the presence of iron and aluminum

oxides as a function of soil pH range, and clay and organic

material contents (Lynch and Bragg, 1985; Cammeraat and

Imeson, 1998; Castro Filho et al., 2002; Majumder and

Kuzyakov, 2010; Vogel et al., 2014). Plant roots directly

contribute to the stability of soil aggregates through the in-

herent abundance of these structures in organic matter and

the production of exudates stimulating microbial activity,

and indirectly by the production of EPS (Leigh and Coplin,

1992; Alami et al., 2000; Schmidt et al., 2011).

The fine spatial heterogeneity of soils results in a

complex mosaic of gradients selecting for or against bacte-

rial growth (Vos et al., 2013). The microbial biomass de-

creases with soil depth, and changes in the community

composition reflect substrate specialization (Schmidt et al.,

2011). The distribution of micro (< 250 �m) and macro

(> 250 �m)-aggregates provides microhabitats differen-

tially assembled in terms of temperature, aeration, water re-

tention and movement (Dinel et al., 1992; Zhang, 1994;

Denef et al., 2004; Schmidt et al., 2011). Soil aggregates of

different pore sizes influence C sequestration and the avail-

ability of nutrients (Zhang et al., 2013), and low pore con-

nectivity due to low water potential increases the diversity

of bacterial communities in the soil (Carson et al., 2010;

Ruamps et al., 2011). Moreover, the moisture content, pore

size and habitat connectivity differently impact the expan-

sion of motile rod-shaped and filamentous bacterium types

(Wolf et al., 2013).

Soil stability results from a combination of biotic and

abiotic characteristics, and the microbial communities

could provide a quantitative measure of soil health, as these

bacteria determine ecosystem functioning according to bio-

geochemical processes (Griffiths and Philippot, 2012). Soil

health defines the capacity of soil to function as a vital liv-

ing system, within ecosystem and land-use boundaries, to

sustain plant and animal productivity, maintain or enhance

water and air quality, and promote plant and animal health

(Doran and Zeiss, 2000). The factors controlling broad-

range soil health comprise chemical, physical, and biologi-

cal features, such as soil type, climate, cropping patterns,

use of pesticides and fertilizers, availability of C substrates

and nutrients, toxic material concentrations, and the pres-

ence or absence of specific assemblages and types of organ-

isms (Doran and Zeiss, 2000; Young and Ritz, 1999;

Kibblewhite et al., 2008).

The sustainable management of soils requires soil

monitoring, including biological indicators such as micro-

bial communities, which provide many potentially interest-

ing indicators for environmental monitoring in response to

a range of stresses or disturbances (Pulleman et al., 2012).

Community stability is a functional property that focuses

on community dynamics in response to perturbation: the re-

turn to a state of equilibrium following perturbation is the

ability to resist to changes, which is called resistance; the

rate of return to a state of equilibrium following perturba-

tion is called resilience (Robinson et al., 2010). Soil func-

tional resilience is governed by the effects of the physi-

cochemical structure on microbial community composition

and physiology (Griffiths et al., 2008). Microbial catabolic

diversity is reduced through intensive land-use, which may

have implications for the resistance of the soils to stress or

disturbance (Degens et al., 2001; Ding et al., 2013).

Modern land-use practices highly influence the fac-

tors controlling soil health because, while these techniques

increase the short-term supply of material goods, over time

these practices might undermine many ecosystem services

on regional and global scales (Foley et al., 2005). Soil dis-

turbances operate at various spatial and temporal scales and

mediate soil spatial heterogeneity. For instance, such dis-
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turbances may reduce the biomass of dominant organisms

or provoke alterations in the physical structure of the soil

substrate (Ettema and Wardle, 2002). Cultivation intensity

reduces C content and changes the distribution and stability

of soil aggregates, leading to a loss of C-rich macro-

aggregates and an increase of C-depleted microaggregates

in soils (Six et al., 2000). Moreover, soil aggregation is a

major ecosystem process directly impacted, via intensified

land-use, by soil disturbances, or indirectly through im-

pacts on biotic and abiotic factors that affect soil aggregates

(Barto et al., 2010).

The physical disruption spectrum induced by tillage

presents various degrees of soil disturbance and associa-

tions between no-tillage or minimum tillage and the ‘bene-

ficial’ effects on soil microorganisms (Elliott and Coleman,

1988; Derpsch et al., 2014). The primary effect of tillage is

the physical disturbance of the soil profile through alter-

ations in the habitat space, water and substrate distribution

and the spatial arrangement of pore pathways (Young and

Ritz, 1999). Accumulated evidence suggests that conserved

tillage systems, including no-tillage and reduced tillage, ef-

fectively reverse the disadvantage of conventional tillage in

depleting the carbon stock through increases in the abun-

dance and activity of the soil biota (Zhang et al., 2013).

Lower microbial biomass in arable land likely reflects soil

disturbance through tillage and the tillage-induced changes

in soil properties (Cookson et al., 2008).

Disturbances alter the immediate environment, po-

tentially leading to repercussions or direct alterations to this

community (Shade et al., 2012). The manipulation of soil

structure is one of the principal mechanisms for the regula-

tion of microbial dynamics, at both the small and field scale

(Elliott and Coleman, 1988; Derpsch et al., 2014). The

microscale impact in crop soil under grassland, tillage, and

no-tillage systems resulted in micro-aggregates containing

similar bacterial communities, despite the land manage-

ment practice, whereas strong differences were observed

between communities inhabiting macro-aggregates (Cons-

tancias et al., 2014). In this same study, tillage decreased

the density and diversity of bacteria from 74 to 22% and

from 11 to 4%, respectively, and changed taxonomic

groups in micro and macro-aggregates. These changes led

to the homogenization of bacterial communities, reflecting

the increased protection of micro-aggregates.

The combination of crop rotation with legumes, till-

age management and soil amendments considerably influ-

ences the microbiotic properties of soil. Conventional

agriculture systems, according to the FAO definition, use

no tillage and have seeds placed at a proper depth in untilled

soil, with previous crops or cover crop residues retained on

the soil surface. In a no-tillage system, crop residue man-

agement plays an equally important role in minimizing and

even avoiding soil disturbance (Derpsch et al., 2014). More

research will expand our understanding of the combined ef-

fects of these alternatives on feedback between soil micro-

biotic properties and soil organic C accrual (Ghimire et al.,

2014). However, the terms “reduced tillage” or “minimum

tillage” or other degrees of tillage disturbance have been

coined as no-tillage systems, and this term has been revised

to “conservation agriculture systems” as a more holistic de-

scription (Derpsch et al., 2014). These authors also revised

other terms associated with no-tillage systems.

Conclusions

At a global scale, the effects of continuous agricul-

tural practices such as fertilization can cause serious dam-

age to the environment. Inoculation is one of the most im-

portant sustainable practices in agriculture, because

microorganisms establish associations with plants and pro-

mote plant growth by means of several beneficial charac-

teristics. Endophytes are suitable for inoculation, reflecting

the ability of these organisms for plant colonization, and

several studies have demonstrated the specific and intrinsic

communication among bacteria and plant hosts of different

species and genotypes.

The combination of different methodologies with

these bacteria, such as identification of plant growth-

promoting characteristics, the identification of bacterial

strains, as well as assays of seed inoculation in laboratory

conditions and cultivation experiments in the field, are part

of the search for new technologies for agricultural crops.

Thus, when this search shows a potential bacterial

inoculant, adequate for reintroduction in the environment,

many genera such as Azospirillum, Bacillus and Rhizobium

may be primary candidates.

Finally, the search for beneficial bacteria is important

for the development of new and efficient inoculants for ag-

riculture. Also important are investments in technologies

that can contribute to increase the inoculum efficiency and

the survival rate of bacteria adherent to the seeds, which are

other essential factors for successful inoculation.Thus, the

introduction of beneficial bacteria in the soil tends to be less

aggressive and cause less impact to the environment than

chemical fertilization, which makes it a sustainable agro-

nomic practice and a way of reducing the production costs.
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