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Abstract

DNA sequences are translated into protein coding sequences and then further assigned to protein families in metagenomic
analyses, because of the need for sensitivity. However, huge amounts of sequence data create the problem that even
general homology search analyses using BLASTX become difficult in terms of computational cost. We designed a new
homology search algorithm that finds seed sequences based on the suffix arrays of a query and a database, and have
implemented it as GHOSTX. GHOSTX achieved approximately 131–165 times acceleration over a BLASTX search at similar
levels of sensitivity. GHOSTX is distributed under the BSD 2-clause license and is available for download at http://www.bi.cs.
titech.ac.jp/ghostx/. Currently, sequencing technology continues to improve, and sequencers are increasingly producing
larger and larger quantities of data. This explosion of sequence data makes computational analysis with contemporary tools
more difficult. We offer this tool as a potential solution to this problem.
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Introduction

Protein sequence homology searches are essential for identifying

potential functions, structures and evolutionary relationships. Both

database sizes and the number of queries have increased rapidly in

recent years, because of improvements in sequencing technology,

and with so much more data, searching takes even longer. DNA

sequences are usually translated into protein coding sequences and

then further assigned to protein families using a homology search

in metagenomic analyses, because of the need for sensitivity [1],

[2]. The homology search step has become one of the major

bottlenecks of the analysis. BLAST [3], [4] is a widely used

homology search tool that uses a heuristic algorithm. However, the

search speed of BLAST is becoming insufficient for current

demands of sequence homology searches. To solve this problem, a

number of tools have been developed. BLAT [5] is one of the most

famous tools, and is approximately 50 times faster than BLAST.

However, its search sensitivity is much lower than BLAST.

Recently, Ye et al. developed a faster and more sensitive

homology search tool, RAPSearch [6], [7]. RAPSearch is

approximately 20–90 times faster than BLAST, and has higher

search sensitivity than BLAT. However, RAPSearch uses a

reduced amino acid alphabet of ten symbols to restrict the seed

sequence search space. Therefore, RAPSearch cannot use any

score matrices except BLOSUM62, because the reduced amino

acid alphabet is only optimized for homology searches with

BLOSUM62. Thus, changing the score matrix is difficult with

RAPSearch.

Here, we have developed a new, fast algorithm using suffix

arrays [8] of both queries and database sequences for its seed

search process. We used a seed search method relying on a score-

based optimal length. In the algorithm, only seeds with a sufficient

match score are searched, based on a given score matrix. Thus,

the algorithm can effectively exclude seeds with sufficient length

but insufficient match scores. We implemented this algorithm as

GHOSTX. GHOSTX was implemented in C++ and supported

on Intel CPUs with GCC (version 4 or later) and SPARC64

(VIIIfx or later) with the Fujitsu C++ compiler. It is distributed

under the BSD 2-clause license and is available for download at

http://www.bi.cs.titech.ac.jp/ghostx/.

Materials and Methods

Overview of the GHOSTX algorithm
GHOSTX adopts the seed-extension approach used in BLAST.

GHOSTX consists of three main steps: a seed search, an

ungapped extension, and a gapped extension. The flow of

GHOSTX is shown in Figure 1. Initially, GHOSTX finds seeds

that are substrings of database sequences similar to the substrings

of a query sequence. Next, GHOSTX makes alignments by

extending those seeds without gaps, and then similar, nearby seeds

are brought together by a chain filter. Finally, GHOSTX makes

alignments from seeds with gaps. The gapped extension step
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requires heavy calculation, but the BLAST algorithm efficiently

decreases the number of gapped extension candidates through its

seed search and ungapped extension steps. As a result, the seed

search and the ungapped extension steps are the most computa-

tionally intensive parts of BLAST. The seed search and the

ungapped extension steps consume approximately 75% of the

computation time of BLAST, while approximately 20% of the

time is spent on the gapped extension [9]. Thus, reducing the

computation time for the seed search and ungapped extension

steps is effective for achieving acceleration. To accelerate the

search seed step, GHOSTX uses suffix arrays for both the query

sequences and the database sequences.

Our seed search method using a suffix array effectively reduces

the computation time of the seed search step. As a result, the

ungapped extension step then becomes the bottleneck. Thus, for

further acceleration, we have to decrease the number of ungapped

extensions. It would be easy to decrease the number of ungapped

extension candidates by using longer seeds. However, if this is

done, significant matches can be missed, and search sensitivity

becomes lower. Consequentially, a sophisticated method is

required for accelerating search speed, while still maintaining

search sensitivity. Therefore, GHOSTX does not fix the length of

a seed in the seed search step, but rather it extends the length until

the matching score exceeds a given threshold. In comparison,

BLAST searches with seeds of fixed lengths, and if one seed is

discovered near another, BLAST performs ungapped extensions

around it. BLAST seed hits with low matching scores using fixed

length seeds, such as an exact match of ‘‘AAA,’’ whose score is

only 12 based on the BLOSUM62 score matrix, are treated

equally with seed hits with high matching scores, such as an exact

match of ‘‘WWW,’’ whose score is 33. However, hits with lower

scores tend to be false. Consequently, GHOSTX extends such

seeds to check whether they are reliable, thus GHOSTX can use a

higher score threshold than BLAST, without losing its search

sensitivity. As a result, GHOSTX can reduce the number of

ungapped extensions and gapped extensions needed, thereby

reducing computation time after the initial seed search step.

Suffix Array
A suffix array is the list of indexes of all suffixes of a string in a

lexicographically sorted order. A suffix array can be constructed in

linear time. A text T[0,n] = t0…tn-1 is a sequence of symbols and

the length of T is |T| = n. Each symbol is an element of an

alphabet S (|S| of protein is 20). T[i] = ti and T[i, i+j] = ti…ti+j-1

are substrings. The suffix array of T is SA, that is, an array of

pointers to all the suffixes of T in lexicographical order. Therefore,

if i,j, then T[SA[i]],T[SA[j]]. An exact search based on a binary

search for pattern, whose length is m, can be performed as

O(mlog(n)) with the suffix array of T.

Seed Search
For two suffix arrays, we can find all the local matches using

dynamic programming [10]. However, calculating all alignments

using dynamic programming requires a huge amount of compu-

tation time. In GHOSTX, therefore, we introduce two methods to

prune the search space.

Here, the sequences S0, S1,…, SN-1 in a database are connected

with inserting delimiters to transform them into a long single

sequence Sdb = S0#S1#…SN-1 (marked by the special symbol #).

SAdb is the suffix array of Sdb, and SAq is the sequence of query Sq.

The pair of substrings Sdb and Sq, {Sdb[i, i+l], Sq[j, j+l]} is the

seed. Here, we want to find a seed whose score is more than the

threshold Tseed based on these two suffix arrays. Figure 2 shows the

pseudo-code of the seed search method, and Figure 3 shows a

pseudo-code for the search method of one character using a suffix

array. In Figure 2, spq, epq, spdb and epdb are positions on SAq and

SAdb, and GHOSTX gets the positions of substrings from suffix

arrays by using these positions. If the score of a pair of substrings

{Xdb, Xq} exceeds threshold Tseed, GHOSTX keeps the pair as a

seed (line 22 in Figure 2); otherwise, GHOSTX checks all pairs of

extended substrings {Xdbc’, Xqc} (c and c’ are members of S) (line

25 in Figure 2). Thus, the maximum number of new pairs of

substrings is |S|2. Using the suffix arrays of a query and a

database, GHOSTX can find a substring efficiently. Figure 4

Figure 1. The flow of GHOSTX.
doi:10.1371/journal.pone.0103833.g001

Table 1. Computation time with SRS011098 and KEGG GENES (3.9 GB).

Computation time (sec.) Acceleration ratio

GHOSTX 401.9 152.6

RAPSearch 649.5 94.4

RAPSearch in fast mode 91.2 672.2

BLAT 1409.7 43.5

BLAST 61314.1 1.0

The first, second, and third columns show the name of each program, the computation time, and the acceleration in processing speed relative to BLASTX using 1 thread,
respectively.
doi:10.1371/journal.pone.0103833.t001
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shows the example for the seed search. If {A, A} is found,

GHOSTX searches the query sequence and the sequences in a

database for extended substrings AA, AR, …, AV. And then,

GHOSTX checks all pairs of extended substrings that are found

{AA, AA}, {AA, AR}, …, {AV, AV}. GHOSTX repeats this

step. However, the search takes a long time if the max seed length

lengthmax is large, because the size of the seed search space is

O(S2length
max). Thus, the search space must be pruned.

GHOSTX uses two methods to prune the search space (line 24

in Figure 2). First, let scoremax be the sum of the exact match score

of all query substring characters (line 16 in Figure 2), score be the

score of the pair of the query and database substring (line 20 in

Figure 2), and D be the upper limit of scoremax - score. If score #

scoremax - D, GHOSTX does not extend the substring in the pair.

For example, if GHOSTX checks {AA, AR} and uses

BLOSUM62 score matrix, scoremax of this pair is 4z 5~ 9 and

score of this pair is 4 { 1~ 3. If D = 4. In this case, GHOSTX

does not extend the substrings in this pair. Second, if the score of a

substring pair is not more than 0, GHOSTX does not extend it. If

Table 2. Computation time with SRR444039 and KEGG GENES (3.9 GB).

Computation time (sec.) Acceleration ratio

GHOSTX 362.7 151.8

RAPSearch 553.2 99.5

RAPSearch in fast mode 64.8 849.6

BLAT 1265.3 43.5

BLAST 55045.0 1.0

The first, second, and third columns show the name of each program, the computation time, and the acceleration in processing speed relative to BLASTX using 1 thread,
respectively.
doi:10.1371/journal.pone.0103833.t002

Figure 2. Seed search algorithm using suffix arrays.
doi:10.1371/journal.pone.0103833.g002

Figure 3. Search algorithm using a suffix array.
doi:10.1371/journal.pone.0103833.g003
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x,y,z, the score of the substring pair {Sdb[i, i+y], Sq[j, j+y]} is less

than 0, and the score of the substring pair {Sdb[i, i+z], Sq[j, j+z]}

exceeds the threshold Tseed, then GHOSTX finds another pair

{Sdb[i+x, i+z], Sq[j+x, j+z]} whose score exceeds Tseed. Therefore,

GHOSTX examines only those pairs with scores greater than 0.

The number of search candidate substrings drastically decreases as

they become longer. For example, if GHOSTX checks {A, R}

and uses the BLOSUM62 score matrix, the score of this pair is 21.

Therefore, GHOSTX does not extend the substrings in this pair.

Consequently, GHOSTX can find long seeds quickly using these

pruning methods. In addition, GHOSTX uses a depth-first search

for the implementation of this algorithm to save memory. With a

breadth-first search, the depth of the recursion in a seed search is

proportional to the exponential of lengthmax, and thus it is difficult

to check all pairs of substrings. However, the depth of recursion in

SeedSearchCore is O(lengthmaxS
2) based on a depth-first search.

Therefore, using this depth first search strategy can save memory.

Even when using a binary search, this seed search approach was

originally a bottleneck in GHOSTX. To accelerate the process

GHOSTX searches parts of seeds using an auxiliary data

structure. GHOSTX stores the search results for all substrings

whose length is less than 6 on a table before the database search.

This process is performed only once, similar to the construction of

the database index. In the seed search, GHOSTX can find the

search result for a substring without performing a binary search on

the suffix array of a database, if the length of the substring is

shorter than 6. If we store the search results for longer substrings,

we can make the process more efficient. However, the table

requires more memory depending on the length of the substring. If

the length lengthsubstring of a substring is extended by 1, the size of

table increases by O(Slength
substring). Thus, GHOSTX only stores

the search results for the substring whose length is less than 6.

Ungapped Extension and Chain Filtering
Decreasing the number of seeds is critical for the acceleration of

a search. However, higher Tseed values cause an increase in the

number of significant hits missed, so it is difficult to use high Tseed

values without sacrificing sensitivity. Therefore, GHOSTX

performs an ungapped extension, which extends seeds without

any gaps and excludes low-score extended seeds, after the seed

search step, as in BLAST. In the ungapped extension step,

GHOSTX uses dropoff termination [4].

Some seeds may overlap with others after the seed search and

the ungapped extension step. In particular, if there is a sequence

highly similar to a query in the database, many seeds that overlap

with others are found, and almost identical alignments are often

obtained from these overlapped seeds. Thus, it is necessary to

merge such overlapped seeds to reduce the number of gapped

extensions. Therefore, GHOSTX uses a chain filtering technique.

There are two cases in which the seeds are filtered out, as shown in

Figure 5. First, if two seeds {Sdb[i, i+x], Sq[k, k+x]} and {Sdb[j, j+
y], Sq[l, l+y]} overlap as shown in Figure 5A, GHOSTX combines

these overlapped seeds together into one. Second, if two seeds

{Sdb[i, i+x], Sq[k, k+x]} and {Sdb[j, j+y], Sq[l, l+y]} do not overlap

but the score exceeds the dropoff parameter used for the ungapped

extension step, as shown in Figure 5B, GHOSTX also merges the

overlapped seeds.

Gapped Extension
Those seeds judged as meaningful by the chain filter are

extended with gaps. In the gapped extension, GHOSTX employs

dynamic programming and the same heuristics as BLAST. In

BLAST gapped extension, the process stops if the score is much

lower than the best score, which saves computation time.

GHOSTX also employs this technique and uses the same cutoff

parameter.

Figure 4. An example seed search.
doi:10.1371/journal.pone.0103833.g004

Figure 5. Conditions for reducing seeds in chain filtering.
doi:10.1371/journal.pone.0103833.g005

Table 3. Computation time with SRS011098 and NCBI nr (14.8 GB).

Computation time (sec.) Acceleration ratio

GHOSTX 1020.1 165.2

RAPSearch 1564.4 107.7

RAPSearch in fast mode 223.8 752.8

BLAT N/A N/A

BLAST 168488.0 1.0

The first, second, and third columns show the name of each program, the computation time, and the acceleration in processing speed relative to BLASTX using 1 thread,
respectively.
doi:10.1371/journal.pone.0103833.t003
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Database Division
GHOSTX requires a large amount of memory in its homology

search. Memory size depends on database size. However,

computing systems generally have relatively small memory sizes

compared with current database sizes. Therefore, GHOSTX

divides a database into several chunks, each of whose size is ldb,

before it constructs its indexes. GHOSTX sequentially searches

each database chunk, and merges its results with the results of

previous chunk searches, when this chunk division is performed

before the construction of its database indexes. GHOSTX

dramatically reduces working memory requirements using this

approach.

Multithreading Implementation
GHOSTX can be run in multithreading mode. Each query is

searched independently, and GHOSTX divides query sequences

into several parts. Therefore, each thread independently searches

different parts of the query sequences. GHOSTX uses OpenMP

for running in multithread mode.

Results and Discussion

Datasets and Conditions
To evaluate the performance of our tool, we compared its

search sensitivity and computation time to National Center for

Biotechnology Information (NCBI) BLASTX (version 2.2.28+),

BLAT (version 34 standalone) and RAPSearch (version 2.12). We

used the binaries of BLASTX and BLAT downloaded from Web

sites. We used RAPSearch compiled with GCC (version 4.3.4) and

the –O3 optimizing option. We also compiled GHOSTX using

GCC with the –O3 optimizing option and –fopenmp, because

GHOSTX can use OpenMP for multithreading. We used a

database obtained from KEGG GENES [11], [12] protein

sequences as of May 2013. This database contained approximately

10 million protein sequences, with a total size of approximately 3.6

billion residues (3.9 GB). We also used another database obtained

from NCBI non-redundant protein sequences (nr) that contained

25 million sequences, approximately 8.6 billion residues (14.8 GB),

to check our algorithm’s dependency on database size. For the

query sequences, we used 2 query sets: one from human

microbiome metagenomic sequences (SRS011098), and the other

of soil microbiome metagenomic sequences (SRR444039).

SRS011098 was obtained from the Data Analysis and Coordina-

tion Center for Human Microbiome Project [13] Web site (http://

www.hmpdacc.org/). We used the whole metagenomic shotgun

sequencing data from SRS011098. SRR444039 was obtained

from the Sequence Read Archive. 10 thousand randomly selected

DNA short reads were used from both sets, SRS011098 and

SRR444039. We also used 100 thousand randomly selected high

quality DNA short reads from SRS011098 to measure multi-

threading computation time. We performed the analyses on a

workstation with two 2.93 GHz Intel Xeon 5670 processors for a

total of 12 CPU cores and 54 GB of memory.

Relationship between GHOSTX Parameters and
Sensitivity and Computation Time

GHOSTX has two parameters for its seed search, threshold of

the seed search Tseed, and an upper mismatch score D. These

parameters affect the performance of GHOSTX. Therefore, we

first searched for optimal parameters. To determine the best

parameters, we used Tseed = 22, 24, 26, 28, 30, 32 and D = 1, 4, 7.

To evaluate search sensitivity, we used the search results obtained

using Smith-Waterman local alignment by SSEARCH [14] as the

Table 4. Computation time with SRR444039 and NCBI nr (14.8 GB).

Computation time (sec.) Acceleration ratio

GHOSTX 1003.5 130.8

RAPSearch 1404.1 93.4

RAPSearch in fast mode 223.8 586.2

BLAT N/A N/A

BLAST 131213.3 1.0

The first, second, and third columns show the name of each program, the computation time, and the acceleration in processing speed relative to BLASTX using 1 thread,
respectively.
doi:10.1371/journal.pone.0103833.t004

Figure 6. Search sensitivity of each tool with KEGG GENES. The
vertical axis shows the percentage of correct answers that correspond
to the correct answers for each method. The horizontal axis shows the
E-value of the alignments.
doi:10.1371/journal.pone.0103833.g006

Figure 7. Computation times with multithreading.
doi:10.1371/journal.pone.0103833.g007
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correct answer. Because the Smith-Waterman algorithm is based

on the dynamic programming algorithm and does not use any

heuristics, it returns an optimal local alignment. We analyzed the

performance of the particular parameter in terms of the fraction of

its results that corresponded to the correct answers. When the

subject sequences that had the highest score by SSEARCH and

each particular method corresponded on each query, the query

was deemed correct. Table S1 shows the sensitivity and

computation time of each different parameter. As shown in the

table, when Tseed is large or D is small, the sensitivity of GHOSTX

is low and its computing speed is fast. This is because the search

space in the seed search is small and the number of seeds is small.

However, when Tseed is small or D is large, the sensitivity of

GHOSTX is high and its computing speed is slow. This is because

the search space in the seed search is large and the number of

seeds is large. We selected Tseed = 30 and D = 4 as default

parameters that have a good balance between sensitivity and

computation time. We used those parameters in the following

evaluations.

Evaluation of Search Sensitivity
To evaluate search sensitivity, we evaluated sensitivity the same

way as we evaluated the relationship between GHOSTX seed

search parameters and their sensitivity and computation time. To

evaluate the software, we executed the BLASTX program with the

command line options ‘‘-outfmt 6 -comp_based_stats 0’’, which

instructed the program to output in tabular format, without using

composition-based statistics [15], because composition-based

statistics are not available in SSEARCH. We used default

parameters for the other options. The BLAT program does not

include a function to translate DNA reads to protein sequences.

Therefore, we translated the DNA reads into protein sequences

based on all six potential frames using a standard codon table

before executing BLAT. We executed the BLAT program with the

command line option ‘‘–q = prot –t = prot –out = blast8’’, which

instructed the program to run the queries and database as protein

sequences, and to output data in the BLAST tabular format. We

could not execute BLAT when we used nr as a database because

our machine has insufficient memory for the execution. Therefore,

we only executed BLAT with KEGG GENES. We executed the

RAPSearch program with 2 cases. One case used the default

options and the other used the command line option ‘‘–a T’’,

which instructed the program to perform a fast mode search. For

GHOSTX, we used the following parameters: threshold of the

seed search Tseed = 30, upper mismatch score D = 4, and size of the

database chunk ldb = 2 GB. The other parameters used are the

same as BLAST defaults. In Figure 6, GHOSTX shows lower

sensitivity than BLASTX, especially for those hits with E-values

above 1023. However, alignments with such high E-values are not

normally used in most practical analyses anyway, because it is

difficult to judge whether the results are merely because of chance.

In fact, most research have ignored those hits with such high E-

values [1], [2]. Therefore, we think GHOSTX has sufficient

search sensitivity for most practical analyses. The sensitivity of

GHOSTX is clearly better than that of BLAT and RAPSearch in

fast mode, and almost equal to, or better than that of RAPSearch.

Evaluation of Computation Time
We ran each method with the same commands as for the

evaluation of search sensitivity to measure computation time. We

used 2 query sets, 10 thousand randomly selected DNA short reads

from SRS011098 and from SRR444039, and we used KEGG

GENES as our database. Table 1 and Table 2 show the

computation time for each program. As shown with each query

set, GHOSTX showed accelerations of approximately 153 and

152 times with respect to BLASTX, and approximately 3.5 and

3.5 times with respect to BLAT. Additionally, GHOSTX was

approximately 1.6 and 1.5 times faster than RAPSearch, even

though GHOSTX showed better search sensitivity than RAP-

Search at E-values above 1023. GHOSTX outperforms BLASTX

in reducing computation time. The processing time acceleration is

caused by the use of a suffix array for its seed search and ungapped

extension steps. GHOSTX was slower than RAPSearch in fast

mode. However, the sensitivity of RAPSearch in fast mode is

clearly lower than GHOSTX.

We also checked the dependency on the database size for each

program by using a larger database. Table 3 and Table 4 show

the computation times and accelerations for NCBI nr. GHOSTX

showed a better acceleration ratio against BLASTX, as compared

with the KEGG GENES database (approximately 165 times and

Table 5. Computation time of the preprocessing including indexing with KEGG GENES (3.9 GB) and NCBI nr (14.8 GB).

Computation time with KEGG GENES (sec.) Computation time with NCBI nr (sec.)

GHOSTX 1589.2 4415.2

RAPSearch 1914.2 4210.5

BLAST 637.6 1678.9

The first, second, and third columns show the name of each program, the computation time with KEGG GENES, and the computation time with NCBI nr.
doi:10.1371/journal.pone.0103833.t005

Table 6. Comparison with memory size for KEGG GENES (3.9 GB) of each size of the database chunks.

Chunk size Memory size for constructing index (GB) Memory size for homology search (GB)

512 MB 4.6 4.2

1 GB 9.2 7.2

2 GB 18.2 13.3

The first, second, and third columns show the size of the database chunk, the used memory size for constructing index (GB), and the used memory size for homology
search (GB).
doi:10.1371/journal.pone.0103833.t006
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131 times, respectively). This indicates that these programs can

efficiently handle an increase in database size in the future. In

contrast to GHOSTX’s acceleration as compared with BLASTX,

GHOSTX’s acceleration ratio was 1.5 and 1.4 times as fast as

RAPSearch with the larger database, and almost the same when

using the smaller KEGG GENES database. Thus, the acceleration

ratio of GHOSTX to RAPSearch would not significantly change

regardless of the size of a database.

We measured the computation time of preprocessing, including

database indexing, for GHOSTX, BLAST and RAPSearch.

Table 5 shows the computation time for preprocessing. Prepro-

cessing in GHOSTX requires computation time almost equal to

RAPSearch. However, homology search computation time is

generally much larger than that required for the database

construction phase when a huge amount of DNA reads obtained

from next-generation sequencers are processed. Moreover, pre-

processing is only performed when a database is updated.

Therefore, we think preprocessing is not a problem in practice.

Evaluation of Multithreading Computation Time
To evaluate multithreading computation time, we ran

GHOSTX with Tseed = 30 and D = 4, and RAPSearch with its

default options except for the multithreading option. We used 100

thousand randomly selected DNA short reads from SRS011098 as

queries and KEGG GENES as the database, because 10 thousand

randomly selected DNA short reads were too small of a sample to

measure correct computation time. Figure 7 shows the computa-

tion time for each program with 1, 4, 8, and 12 threads. As shown,

GHOSTX sufficiently scales with multithreading. GHOSTX

shows an acceleration of approximately 9.4 times with 12 threads

as opposed to GHOSTX with 1 thread.

Evaluation of Memory Size
While GHOSTX can search for homologues more efficiently

than BLAST, GHOSTX requires more memory. GHOSTX uses

approximately 18 GB of memory for constructing the indexes of a

typical database, and approximately 13 GB for the homology

search itself, when a 2 GB database chunk is used. However, using

a smaller database chunk size can decrease the amount of memory

required. Table 6 shows the relationships between the amount of

memory required to construct the indexes and homology search

versus the size of a database chunk. The required memory size of

GHOSTX is almost linearly increased in proportion to the size of

a database chunk. If a database is divided into more chunks, the

required memory size becomes smaller accordingly. Therefore,

with smaller database chunk sizes, GHOSTX can be executable

even on a general PC. Of course, there is a trade-off between

database chunk size and search speed. Homology search

computation times increase as the size of a database chunk

becomes smaller. This is so because the same suffix array search

has to be performed for each respective chunk, and the number of

suffix array searches increases as a result. However, the situation is

not dire; as shown in Table 7, the search speed of GHOSTX with

512 MB chunks is approximately 20% slower than that with 2 GB

chunks. The maximum size of a database chunk is 2 GB in

GHOSTX, because the maximum size of a 32 bit integer is 2 GB.

Conclusions

We have developed an efficient algorithm for performing

sequence homology searches, and have implemented it as

GHOSTX. GHOSTX has sufficient search sensitivity for practical

analyses. It uses an extremely efficient seed search algorithm,

employing database and query suffix arrays, to achieve a well over

100 times faster sequence homology search than BLASTX.

GHOSTX is also almost 1.4–1.6 times faster than RAPSearch,

which is one of the fastest homology search tools available, even

though GHOSTX is slightly more accurate. Currently, sequenc-

ing technology continues to improve, increasingly producing

larger and larger quantities of data. This explosion of sequence

data makes computational analysis with contemporary tools more

difficult. We offer this tool as a potential solution to the problem.

Supporting Information

Table S1 Relationship between GHOSTX parameters
and sensitivity and computation time. The first, second,

and third columns show the parameter, the sensitivity, and the

computation time. The sensitivity is calculated as the ratio of

correctly searched queries whose E-values,1023.

(DOC)

Acknowledgments

The authors thank Prof. Ken Kurokawa and Dr. Takuji Yamada for their

helpful discussions of metagenomic analysis.

Author Contributions

Conceived and designed the experiments: SS MK TI YA. Performed the

experiments: SS. Analyzed the data: SS. Contributed reagents/materials/

analysis tools: SS MK TI. Contributed to the writing of the manuscript: SS

MK TI YA.

References

1. Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, et al. (2007)

Comparative metagenomics revealed commonly enriched gene sets in human

gut microbiomes. DNA Research : an international journal for rapid publication

of reports on genes and genomes 14: 169–181. doi:10.1093/dnares/dsm018.

Table 7. Comparison with Computation time for KEGG GENES (3.9 GB) of each size of the database chunks.

Chunk size Computation time (sec.) Acceleration ratio

512 MB 526.9 0.8

1 GB 452.7 0.9

2 GB 401.9 1.0

The first, second, and third columns show the size of the database chunk, the computation time, and the acceleration in processing speed relative to GHOSTX with 2 GB
database chunks, respectively.
doi:10.1371/journal.pone.0103833.t007

GHOSTX: An Improved Sequence Homology Search Algorithm

PLOS ONE | www.plosone.org 7 August 2014 | Volume 9 | Issue 8 | e103833



2. Turnbaugh PJ, Ley RE, Mahowald M a, Magrini V, Mardis ER, et al. (2006) An

obesity-associated gut microbiome with increased capacity for energy harvest.
Nature 444: 1027–1031. Available: http://www.ncbi.nlm.nih.gov/pubmed/

17183312. Accessed 1 November 2012.

3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local
alignment search tool. Journal of Molecular Biology 215: 403–410. Availa-

ble:http://linkinghub.elsevier.com/retrieve/pii/S0022283605803602. Accessed
24 May 2013.
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