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Abstract 

Multidrug resistance (MDR) occurs frequently after long‑term chemotherapy, resulting in refractory cancer and tumor 
recurrence. Therefore, combatting MDR is an important issue. Autophagy, a self‑degradative system, universally arises 
during the treatment of sensitive and MDR cancer. Autophagy can be a double‑edged sword for MDR tumors: it par‑
ticipates in the development of MDR and protects cancer cells from chemotherapeutics but can also kill MDR cancer 
cells in which apoptosis pathways are inactive. Autophagy induced by anticancer drugs could also activate apopto‑
sis signaling pathways in MDR cells, facilitating MDR reversal. Therefore, research on the regulation of autophagy to 
combat MDR is expanding and is becoming increasingly important. We summarize advanced studies of autophagy in 
MDR tumors, including the variable role of autophagy in MDR cancer cells.
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Background
Biosynthesis and degradation are two processes involved 
in the maintenance of metabolic homeostasis, which is 
the basis of all biological activities. The major protein 
degradation systems include the ubiquitin–proteasome 
pathway (targeting short-lived and misfolded proteins) 
and the lysosome-autophagy system (targeting long-lived 
macromolecular complexes and organelles) [1, 2]. Accu-
mulating evidence indicates that autophagy plays a vital 
role in maintaining homeostasis in cells, and deficient 
autophagy seriously impacts embryonic differentiation. 
Autophagy is also closely related to the development 
of many diseases, including Alzheimer’s disease, can-
cer, and microorganism infection [3, 4]. Autophagy is a 
highly conserved cellular process in which cytoplasmic 
materials are degraded and recycled to maintain energy 
homeostasis. Autophagy can be classified as macro-
autophagy, microautophagy, and chaperone-mediated 

autophagy [5]. Given that current researches primar-
ily focus on macroautophagy and the mechanisms are 
more clearly established than other types of autophagy, 
the term “autophagy” is commonly used to refer to 
macroautophagy.

Autophagy is a successive process which is initiated by 
the formation of an isolation membrane called phago-
phore. The phagophore is often seen as a thin cisterna 
with a clear lumen and is the structure that recruits 
autophagy-related proteins to induce autophagy. This 
lipid-based membrane then elongates and creates a com-
plete, closed, double-membrane structure containing 
damaged organelles or long-lived proteins. Ultimately, 
autolysosomes are formed to degrade the contents, recy-
cling amino acids, fatty acids, and nucleotides to main-
tain energetic homeostasis and viability [4, 6]. Autophagy 
occurs frequently during tumorigenesis and cancer 
chemotherapy. In general, constructive autophagy pro-
tects cancer cells during chemotherapy, leading to cancer 
drug resistance and refractory cancer [7].

Multidrug resistance (MDR) is another refractory out-
come of chemotherapy and is defined as the resistance of 
cancer cells to multiple chemotherapeutic drugs with dif-
ferent structures and mechanisms of action [8]. MDR is 
a major cause of chemotherapy failure and responsible 
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for increasing cancer-related mortality. Interestingly, 
recent mechanistic investigations have demonstrated that 
autophagy pathways are involved in the development of 
MDR [9]. Recent studies have explored approaches of using 
autophagy to hijack MDR cancer cells during anticancer 
therapy, but the mechanisms underlying the relationship 
between autophagy and MDR have not been fully studied.

Mechanisms of autophagy
Autophagy is a highly conserved cellular process. 
Approximately 30 autophagy-related genes (Atgs) in 
yeast and many mammalian genetic homologs have been 
identified [10]. Atgs are essential in responses to micro-
environmental stresses such as hypoxia, heat stress, 
and accumulation of reactive oxygen species (ROS). 
Autophagy proceeds in successive stages, including ini-
tiation of phagophore assembly, autophagosomal for-
mation, and lysosomal fusion [11, 12]. Here, we briefly 
discuss some primary pathways that regulate autophagy.

Phagophore assembly
The formation of autophagosomes begins with the 
expansion of the membrane core. The serine/threonine-
protein kinase ULK1 complex containing unc-51-like 
autophagy activating kinase 1 (ULK1), Atg13, and focal 
adhesion kinase (FAK) family kinase-interacting pro-
tein 200 (FIP200) is at the most upstream position dur-
ing autophagosome formation [13, 14]. Autophagosomal 
membrane contains a high level of phosphatidylinosi-
tol 3-phosphate (PI3P) in comparison to other types 
of membrane within the cell [15]. The formation of the 
autophagosomal membrane is regulated by class III 
PtdIns3K complexes containing Vacuolar protein sorting-
associated protein 34 (Vps34), Vps15, Beclin1, and Atg14, 
which regulates the process that generates PtdIns(3)
P-rich membranes [16]. Activating molecule in BECN1-
regulated autophagy protein 1-deleted in liver cancer 1 
(Ambra1-DLC1) released from the dynein motor com-
plex acts as a cofactor of Beclin1 in a ULK1-dependent 
manner and is essential to autophagosome [17]. The 
autophagosomal membrane is thought to be derived 
from endoplasmic reticulum-Golgi [18]. The phagophore 
may be built up from the endoplasmic reticulum-mito-
chondria contact site [19]. Other compartments, such as 
the endosomes and the plasma membrane, also contrib-
ute to the formation of autophagosomes [20].

Autophagosome formation and maturation 3
Following autophagy initiation by the formation of pha-
gophores, double-membrane autophagosomes (which 
load degradative cargos) are assembled under the con-
trol of the Atg12 conjugation system. In this system, 
the E1-like enzyme Atg7 and E2-like enzyme Atg10 

jointly catalyze the formation of the Atg12–Atg5 com-
plex, which is covalently conjugated [21]. Ultimately, the 
Atg12–Atg5–Atg16 (L1) complex is formed and directly 
binds membranes and constructs autophagosomes [22]. 
The complex is efficient for the microtubule-associated 
protein 1 light chain 3 (LC3) conjugation system. LC3 
is first conjugated with lipid phosphatidylethanolamine 
(PE). During the conversion, Atg4 plays a role in lipoxi-
dating LC3 to LC3-I and exposes the C-terminal glycine 
of LC3 for the subsequent conjugation of PE [23]. PE is 
conjugated to the C-terminal glycine of LC3-I, and this 
conjugation needs to be catalyzed by the E1-like enzyme 
Atg7 and the E2-like enzyme Atg3 [24].

Autolysosome degradation
The autophagosome is degraded by docking and fus-
ing with a lysosome to construct an autolysosome. The 
autophagosomal membrane is conjugated with LC3-PE. 
During fusion with the lysosome, the outer membrane is 
cleaved and recycled by Atg4, while LC3-PE associated 
with the inner membrane is degraded by lysosomal pro-
teases along with the cargo of the autophagosome, thus 
recycling amino acids, fatty acids, and nucleotides [25].

Core regulator of autophagy
The mechanistic target of rapamycin (mTOR), which reg-
ulates cell growth and survival, is the central modulator of 
autophagy regulation. As an environmental sensor, mTOR 
responds to intracellular microenvironmental changes 
including amino acids and glucose, as well as extracel-
lular stresses such as agent treatments, hypoxia, and 
ultraviolet radiation. mTOR is active under nutrient-rich 
conditions and inhibits autophagy and protein degrada-
tion. By contrast, mTOR is inactive under nutrient-poor 
conditions: dephosphorylated ULK1 dissociates from the 
mTOR complex and then phosphorylates Atg13 and RB1-
inducible coiled-coil (1RB1CC1/FIP200), thus triggering 
autophagy [26]. Inactivation of mammalian target of rapa-
mycin complex 1 (mTORC1) by amino acid starvation can 
activate Atg14-containing type III phosphatidylinositol 
(PtdIns) 3-kinase (PIK3C3/VPS34) and induce autophagy 
both in vitro and in vivo [27]. The PIK3C3/VPS34 inhibi-
tor SAR405 inhibits autophagy induced by mTOR 
inhibition, further indicating a crucial role of kinase regu-
lation by mTOR in regulating autophagy [28]. In addition, 
mTOR can regulate autolysosome reformation by directly 
activating PIK3C3, leading to autolysosomal tubule sort-
ing and lysosome regeneration [29].

Mechanisms of MDR
Mechanisms of MDR can be divided into seven catego-
ries: (1) increasing drug efflux by membrane transport-
ers, with ATP-binding cassette (ABC) transporters as 
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the main transporters [30]; (2) reducing drug uptake 
by influx transporters, such as solute carriers [31]; (3) 
boosting drug metabolism, including elimination by glu-
tathione S-transferase and cytochrome P450 enzymes 
[32, 33]; (4) blocking apoptotic signaling pathways due 
to change in the expression level of B cell lymphoma 
(BCL) family proteins or mutations in the p53 pathway 
[34, 35]; (5) elevating adaptability by epigenetic regula-
tion and miRNA regulation [36, 37]; (6) mutation in drug 
targets or feedback activation of other targets and sign-
aling pathways [38]; and (7) chemoresistance induced 
by changes in the microenvironment, such as hypoxia 
response and cancer stem cell regulation [39, 40] (Fig. 1). 
Cellular-based resistant mechanisms are further classi-
fied into transporter-based classical MDR phenotypes 
and non-classical MDR phenotypes.

The ABC superfamily contains 49 different types of 
transporters and can be classified into seven subfamilies 
from ABC-A to ABC-G based on sequence similarities 
and structural organization [9]. Among them, P-glyco-
protein (P-gp/ABCB1), multidrug-resistant protein 1 
(MRP1/ABCC1), breast cancer resistant protein (BCRP/
ABCG2/MXR/ABCP), and multidrug-resistant pro-
tein 10 (ABCC10/MRP7) transporters frequently drive 
chemosensitive cancers to MDR [41]. Human ABCB1 
was the first identified ABC transporter. Overexpres-
sion of ABCB1 contributes to resistance against a wide 
variety of chemotherapeutic drugs. ABCC1 also leads 
to resistance to a wide range of anticancer drugs, and 
extensive evidence indicates that resistance of cancer 
cells to mitoxantrone, saquinavir, epipodophyllotoxins, 
and anthracyclines is mediated by ABCC1 [42–45]. The 

Fig. 1 Complicated mechanisms of multidrug resistance (MDR) in tumor. The main mechanism of MDR is overexpressing ATP‑binding cassette 
(ABC) transporters to increase drug efflux, resulting in a decrease in intracellular drug concentration. Other mechanisms of MDR are reducing drug 
uptake by influx transporters, boosting drug metabolism, blocking apoptotic signaling pathways, elevating adaptability by epigenetic regulation 
and microRNA regulation, mutation in drug targets or feedback activation of other targets and signaling pathways, and change of tumor microen‑
vironment. ABCB1, ATP‑binding cassette subfamily B member 1; ABCG2, ATP‑binding cassette subfamily G member 2; ABCC1, ATP‑binding cassette 
subfamily C member 1; CYP450, cytochrome P450
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ABCG2 transporter is primarily expressed in breast can-
cer, colon cancer, gastric cancer, small cell lung cancer, 
and ovarian cancer [31]. ABC transporters are recog-
nized as chief culprits in the development of MDR. Ther-
apies continue to be developed with the goal of blocking 
or inactivating ABC transporters to increase the concen-
tration of anticancer drugs within cells [46].

The relationship between autophagy and MDR
Chemotherapeutic agents that kill cancer cells primarily 
act by inducing apoptosis. Deficient apoptosis has been 
proposed to contribute to the development of MDR. 
Thus, alternative anticancer drugs that can directly 
induce apoptosis of MDR cancer cells would be valu-
able. However, the inactivation of apoptosis pathways 
adds to the complexity and difficulty of the develop-
ment of such drugs. Importantly, MDR is inevitable fol-
lowing prolonged exposure to a new agent. Accordingly, 
other types of programmed cell death in MDR cells have 
attracted increasing attention, with autophagy emerging 
as a promising candidate.

Complex and controversial evidence indicating a role of 
autophagy in tumorigenesis has emerged in recent years. 
Autophagy can play a protective role against cancer by 
eliminating damaged organelles and recycling degrada-
tion products in normal cells. Paradoxically, excessive 
autophagy can devote cancer cells to “autophagic cell 
death” or “type II programmed cell death.” Thus, 
autophagy induced by metabolic and therapeutic stresses 
can have a pro-death or pro-survival role. Autophagy 
also plays dual roles in tumorigenesis, tumor progres-
sion, and resistance of cancer cells to chemotherapy [47]. 
Autophagy can be activated as a protective mechanism 
to mediate MDR during treatment. Thus, the inhibition 
of autophagy can re-sensitize resistant cancer cells and 
enhance the effect of chemotherapeutic agents. However, 
autophagy may also induce autophagic cell death, which 
differs from type I programmed cell death (apoptosis). 
Thus, autophagy can be used to promote the efficacy of 
treatment on MDR cancer if applied properly, and the 
role of autophagy in MDR must be clarified.

Autophagy as a cytoprotective mechanism mediating MDR
Because ABC transporters are associated with MDR, 
agents that modulate ABC transporters have been advo-
cated to be developed as targets for chemotherapeutic 
drugs to overcome MDR. However, current ABC trans-
porter modulators have not been as effective in the clinic 
as expected. Furthermore, MDR is an extremely complex 
phenotype. Recent studies have focused on clarifying the 
connection between autophagy and MDR based on clini-
cal data. The expression level of ABCB1 was positively 
correlated with LC3, Beclin1, Rictor expression levels 

and negatively correlated with Raptor expression level in 
tumor samples from colorectal cancer patients surviving 
5 years [48], strongly indicating that autophagy is related 
to the development and progression of cancer and MDR 
in clinical settings.

Autophagy promotes the development of MDR
Substantial evidence demonstrates that MDR devel-
ops after autophagy. The enhanced autophagy levels 
detected in patients with poor prognosis indicate that 
the presence of autophagy may catalyze the develop-
ment of MDR. Yang et  al. [49] demonstrated that S100 
calcium-binding protein A8 (S100A8) is involved in the 
development of MDR by regulating autophagy in leuke-
mia cells. Adriamycin and vincristine treatment can up-
regulate the expression of S100A8, which is required for 
the formation of the Beclin1–Class III phosphatidylino-
sitol 3-kinase (PI3KC3) complex [49, 50]. MDR may be 
mediated by high-mobility group box 1 (HMGB1), which 
promotes protective autophagy in response to antican-
cer agents. HMGB1 translocates from the nucleus to 
the cytoplasm and promotes the formation of Beclin1–
PI3KC3 complexes by activating the mitogen-activated 
protein kinase (MAPK)/extracellular signal-regulated 
kinase (ERK) signaling pathway [51]. Similarly, Fan et al. 
[52] demonstrated that peptidylarginine deiminase IV 
may lead to MDR in hepatocellular carcinoma cells by 
inducing autophagy as a protective function.

MicroRNAs (miRNAs) can target Atgs and are consid-
ered as important modulators in MDR cancer cells. Xu 
et al. [53] confirmed that miR-199a-5p is down-regulated 
after cisplatin-based chemotherapy, resulting in cisplatin 
resistance via activation of autophagy. By contrast, miR-
181a targets Atg5 and inhibits autophagy, thus enhancing 
the cytotoxicity of cisplatin in cisplatin-selective MDR 
SGC7901/CDDP cells in vitro and in vivo [54].

Recent studies have revealed that autophagy triggered 
by chemotherapeutics may facilitate resistance of can-
cer cells to paclitaxel [55], tamoxifen [56], epirubicin 
[57], or trastuzumab [58]. Sun et al. [57] found that epi-
rubicin induced autophagy not only in MCF-7 cells but 
also in epirubicin-resistant MCF-7er cells. The induc-
tion of autophagy in MCF-7er cells may defend against 
epirubicin-mediated apoptosis, act as a pro-survival 
factor, and lead to deficient apoptosis [57]. Sun et  al. 
[59] further studied two epirubicin-resistant cell lines, 
MCF-7er and SK-BR-3er, which overexpress ABCB1 and 
are simultaneously insensitive to paclitaxel and vinorel-
bine. Their study revealed that paclitaxel and vinorelbine 
induce autophagy, protecting MDR cells from apoptosis 
[59]. Although the expression of ABCB1 is independent 
of autophagy, the induction of MDR by autophagy cannot 
be ignored.
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Autophagy inhibition facilitates the efficiency 
of chemotherapy in MDR cancer
As MDR-promoted autophagy is well-documented, new 
therapeutic strategies incorporating a combination of 
autophagy inhibitors have been proposed (Table 1). Inhi-
bition of autophagy via genetic silencing of Atgs such as 
Beclin1, Atg5, Atg7, and Atg12 sensitizes MDR cells to 
therapeutic agents [73–75]. For example, chemoresistant 
cancer cell line SGC7901/VCR develops upon exposure 
to vincristine and exhibits increased autophagy, which 
is regulated by Atg12 and high-mobility group box  2 
(HMGB2). Overexpression of miR-23b-3p, which targets 
Atg12 and HMGB2, sensitizes chemoresistant cells to 
multiple chemotherapeutics such as vincristine, 5-fluoro-
uracil, and cisplatin in vitro and can restore the sensitivity 
of MDR cells to chemotherapy in vivo [60]. Furthermore, 
inhibition of autophagy by small interfering RNAs (siR-
NAs) targeting Atg12 and HMGB2 or by the autophagy 
inhibitor chloroquine (CQ) also sensitizes SGC7901/VCR 
cells to chemotherapeutics [60]. This finding indicates 
that vincristine-based MDR is related to autophagy. In 
response to 5-fluorouracil, cisplatin, or other chemother-
apeutic drugs, some types of MDR cells exhibit protective 
autophagy and rapidly recover after the removal of chem-
otherapeutic agents [61]. Basal autophagic flux is higher 
in the anthracycline-resistant lines MDA-MB-231-R8 
and SUM159PT-R75 than in their respective parent lines 
MDA-MB-231 and SUM159PT [76]. Furthermore, Atg5/
Atg7 knockdown as well as pharmacologic inhibition of 
autophagy with CQ or hydroxychloroquine (HCQ) sig-
nificantly reduce viability of both epirubicin-sensitive 
and epirubicin-resistant triple-negative breast cancer 

cells [76]. These findings suggest that autophagy responds 
to anthracycline-induced MDR and protects MDR cells 
from injury.

Inducing autophagic cell death overcomes MDR
Autophagy can also play a pro-death role and trigger 
autophagic cell death in apoptosis-deficient MDR cells. 
Several studies have sought to identify a novel anti-
cancer agent that effectively kills MDR cancer cells by 
inducing excessive autophagy (Table  2). Suberoylanilide 
hydroxamic acid (SAHA), a newly developed prototype 
histone deacetylase inhibitor, induces autophagic cell 
death in tamoxifen-resistant MCF-7 breast cancer cells 
and significantly suppresses tumor growth [77]. Two 
lipophilic tanshinones, cryptotanshinone and dihydro-
tanshinone, also inhibit the growth of apoptosis-resistant 
colon cancer cells by inducing autophagic cell death and 
p53-independent cytotoxicity [78]. The bisindolic alka-
loid voacamine induces autophagy, which causes MDR 
tumor cell death [75]. The resistance of the leukemic cell 
line K562 to edelfosine can be reversed by edelfosine 
lipid nanoparticles, which induce caspase-independent 
and autophagic cell death [79]. These results indicate that 
autophagic cell death can be induced in MDR cells as an 
alternative cell death mechanism when the cells fail to 
undergo apoptosis.

Several signaling pathways contribute to autophagic 
cell death in MDR cancer cells (Table  1). For instance, 
the AMP-activated protein kinase (AMPK)-protein 
kinase B (Akt)-mTOR pathway is critical to the regu-
lation of autophagic cell death. A Ganoderma micro-
sporum immunomodulatory (GMI) protein inhibits 

Table 1 Recent studies on the pro-survival role of autophagy in multidrug-resistant (MDR) cancer

5-FU, 5-fluorouracil; FTY720, 2-amino-2-[2-(4-octylphenyl)]-1,3-propanediol hydrochloride; PP2, 4-amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine; 
SAHA, suberoylanilide hydroxamic acid; PTEN, phosphatase and tensin homologue; CML, chronic myelogenous leukemia; VCR, vincristine resistance; CQ, chloroquine; 
siRNA, small interfering RNA; Atg, autophagy-related gene; HMGB2, high-mobility group box 2; 3-MA, 3-methyladenine; Baf A1, bafilomycin A1; LC3, protein 1 light 
chain 3; HCQ, hydroxychloroquine

Intervention for tumor treatment Cell line Method(s) to study autophagy References

miR‑23b‑3p Vincristine‑resistant SGC7901 CQ, siRNAs (Atg12, HMGB2) [60]

5‑FU Drug‑resistant esophageal cancer cells 3‑MA, siRNAs (Beclin1, Atg7) [61]

Epirubicin Epirubicin‑resistant MDA‑MB‑231 CQ [62]

Ursolic acid PTEN‑deficient PC3 3‑MA, siRNAs (Atg5, Beclin1) [63]

FTY720 Cisplatin‑resistant ovarian cancer cells siRNAs (Beclin1, LC3), Baf A1 [64]

PI‑103 PTEN‑deficient glioma cell lines siRNA (Atg5), Baf A1, 3‑MA [65]

PP2 Ras‑NIH3T3/Mdr 3‑MA [66]

SAHA Imatinib‑resistant CML cells CQ [67]

B‑raf inhibitors B‑Raf inhibitor‑resistant melanoma cells HCQ [68]

Cisplatin Cisplatin‑resistant A549/DDP 3‑MA [69]

Docetaxel Adriamycin‑resistant MCF‑7 CQ [70]

Doxorubicin Adriamycin‑resistant MCF‑7 CQ [71]

Vincristine VCR‑resistant ovarian carcinoma SKVCR 3‑MA, CQ [72]
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the phosphorylation of Akt and the 70  kDa S6 protein 
kinase (p70S6K) in the A549 lung cancer sub-cell lines 
A549/D16 and A549/V16, inducing autophagy and over-
coming MDR in lung cancer [80]. Similarly, the dual 
phosphoinositide 3-kinase (PI3K) and mTOR inhibitor 
NVP-BEZ235 suppresses the proliferation of cisplatin-
resistant urothelial cancer cells by activating autophagic 
flux independent of apoptotic cell death [81]. Other cellu-
lar signaling cascades may also be involved in autophagic 
cell death in MDR cells. For example, a human single-
chain fragment variable, HW1, kills tumor necrosis fac-
tor-related apoptosis-inducing ligand (TRAIL)-resistant 
cancer cells by inducing autophagic cell death, which can 
be inhibited by autophagy inhibitors. HW1-mediated 
autophagic cell death occurs primarily through the c-Jun 
NH2-terminal kinase pathway [89].

Autophagy facilitates cell death in apoptosis‑deficient 
MDR cancer
In apoptosis-deficient MDR cells, an adaptive response 
of autophagy may aggravate MDR cancer resistance 
to chemotherapeutics. However, under certain condi-
tions, autophagy can be a scavenger in apoptosis-blocked 
signaling pathways, sensitizing MDR tumors to apop-
tosis. Feroniellin A, a novel furanocoumarin derives 
from Feroniella lucida, elicits autophagy dependent on 
the mTOR/Beclin1/Atg5 pathway in etoposide-resist-
ant, ABCB1-overexpressed A549 cells. Interestingly, 
inhibition of autophagy by Beclin1 siRNA could elimi-
nate Feroniellin A-induced apoptosis. Moreover, fur-
ther stimulation of autophagy by rapamycin accelerates 
Feroniellin A-induced apoptosis [90]. Coincidentally, 
autophagy induced by metformin could also assists 

TRAIL-mediated apoptosis in TRAIL-resistant lung 
adenocarcinoma. Metformin is found to down-regulate 
cellular FADD-like IL-1β-converting enzyme (FLICE)-
inhibitory protein (c-FLIP) and markedly enhance 
autophagic flux, ultimately facilitates apoptosis triggered 
by TRAIL [91].

Autophagy mediates chemosensitization
A plenty of studies have revealed that autophagy, the 
chemotherapeutics’ appendant, is a patron of MDR 
cancer cells, consequently harass sensitive effect of 
MDR-reversal agents. Conversely, emerging evidence 
arises that the increase in autophagy upon some agents 
could facilitate MDR reversal (Fig.  2). For example, the 
nanocrystal of underivatized fullerene C60 (nano-C60) 
exhibits potential anticancer property to several neo-
plasms in  vitro [92]. Nano-C60 is capable of triggering 
oxidative stress and then induces autophagy which is 
enhanced by photoactivation. In particular, autophagy 
induced by nano-C60 is able to sensitive drug-resistant 
MCF-7 cancer cells. The chemosensitizing effect of nano-
C60 can be dampened after autophagy inhibition by a 
ROS scavenger, N-acetyl-l-cysteine. Furthermore, the 
chemosensitizing effect of nano-C60 depends on Atg5 
and is vanished in Atg5−/− cells and Atg5 siRNA-treated 
cells [93]. In addition, a derivative of nano-C60 is also 
capable to vulnerable doxorubicin-resistant MCF-7 cells 
to doxorubicin by modulating autophagy, and its activ-
ity is much greater than that of nano-C60 [94]. Simi-
larly, cysteamine-elicited autophagy could also reverse 
resistance of adriamycin-resistant MCF-7/ADR cells to 
doxorubicin in vitro and in vivo [95]. Although the exact 
molecular mechanisms remain blurred, those results 

Table 2 Recent studies on the pro-death role of autophagy in MDR cancer

SAHA, suberoylanilide hydroxamic acid; GMI, Ganoderma microsporum immunomodulatory; HTCC-MNPs, N-[(2-hydroxy-3-trimethylammonium)propyl] chitosan 
chloride/alginate-encapsulated  Fe3O4 magnetic nanoparticle; 3-MA, 3-methyladenine; Baf A1, bafilomycin A1; siRNA, small interfering RNA; Atg, autophagy-related 
gene; CQ, chloroquine

Intervention for tumor treatment Cell line Method(s) to study autophagy References

SAHA Tamoxifen‑resistant MCF‑7 3‑MA [77]

Tanshinones Apoptosis‑resistant SW620 3‑MA [78]

Edelfosine lipid nanoparticles Edelfosine‑resistant leukemic K562 Starvation, staurosporine [79]

GMI protein Multidrug‑resistant lung cancer cells CQ [80]

NVP‑BEZ235 Cisplatin‑resistant urothelial cancer cells 3‑MA [81]

Cisplatin Cisplatin‑resistant H460 3‑MA, trifluoperazine [82]

RAD001 Apoptotic deficient H460 3‑MA, siRNAs (Atg5, Beclin1) [83]

Isoliquiritigenin Adriamycin‑resistant MCF‑7 3‑MA, CQ [84]

p53 plasmids Multidrug‑resistant SKVCR 3‑MA [85]

Hernandezine Apoptosis‑resistant cell lines Atg7‑knockout, 3‑MA [86]

HTCC‑MNPs Drug‑resistant SGC7901 3‑MA [87]

Quinacrine Chemoresistant ovarian cancer cells Baf A1 [88]
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still strongly highlight a novel biological function of 
autophagy in MDR reversal strategy.

Conclusions
In recent years, a large body of evidence has indicated 
that autophagy plays dual roles in MDR. The pro-death or 
pro-survival roles of autophagy are highly dependent on 
the tumor type and treatment characteristics. Autophagy 
protects MDR cancer cells from apoptosis and promotes 
resistance to chemotherapy treatment, and inhibition of 
autophagy may sensitize MDR cells to anticancer drugs. 
The combination of autophagy inhibitors with cyto-
toxic drugs is highly anticipated. Excitingly, CQ and its 
derivative HCQ, in combination with several anticancer 
drugs, have been approved to augment cytotoxicity and 
to sensitize refractory cancers. They are expected to be 
used in the battlefield of MDR tumor. On the other hand, 
autophagic cell death which is induced by autophagy 
inducers could directly bypass apoptosis and ultimately 
eliminate MDR cells. It represents a new battle line in 
the fight against MDR cancer. On the other battleground, 
emerging evidence demystifies that autophagy is a strong 
propulsor to sensitize apoptosis-resistant MDR cells to 
anticancer drugs and reverse MDR. It shows a novel bio-
logical function of autophagy in MDR cancer cells and 
will enable the development of promising strategies to 

overcome MDR. Although the exact mechanisms of the 
interaction between autophagy and MDR reversal remain 
obscure, it provides us a vast research space to elucidate 
the mysteries.
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