A New Interpretation of Classical Electromagnetic Theory at the Micro Level

Wei Fan (凡伟)
Yunnan Institute of Modern Physics Kunming, 65000 China

Abstract:
Because Maxwell's classical electromagnetic theory is a macroscopic electromagnetic theory, this paper attempts to establish a new theory of microscopic expression of macroscopic electromagnetic theory to compensate for the shortcomings of macroscopic electromagnetic theory at the micro level. Among them, under the microscopic electromagnetic theory system, the current will be further interpreted as the momentum flow produced by the directed collision between electrons; the charge will be further interpreted as a form of expression of electron motion; the voltage will be further interpreted as the potential difference (energy level difference) of the electron orbit. Finally, this paper successfully developed a new theory of microscopic expression of Maxwell's macroscopic electromagnetic theory by introducing microscopic atomic physics and rigid body mechanics models.

Keywords: charge; current; electric field; magnetic field;

1: Introduction
What is the origin of the charge? What is the origin of the current? What is the origin of the resistor? What is the origin of the voltage? What is the origin of the electric field? What is the origin of the magnetic field? What is the origin of electromagnetic force? What is the origin of electromagnetic waves? What is the origin of magnetic monopoles? This has always been the mystery of physics. At the same time, referring to the relevant literature [1,2,3,4,5,6,7,8,9,10,11,12,13,14], I have seen many people trying to solve similar problems, but I will adopt another new way to solve these problems.

Because Maxwell's classical electromagnetic theory was established in the 19th century, and there was no micro-atomic physics in that era, Maxwell established a set of macro-electromagnetic theory. Due to the limitations of cognition in that era, Maxwell could not obtain cognition at the micro level (conditions are not allowed). Therefore, Maxwell can only describe various electromagnetic phenomena from a macroscopic point of view, and cannot explain their origins microscopically. For example, learning Maxwell's macroscopic electromagnetic theory system can prompt us to know the existence of such things as electric charge, current, voltage, electric field and magnetic field, but it does not prompt us to know their origin. This is some pain points in macroscopic electromagnetic theory.

Since the 20th century atomic physics has gained new understanding, it seems that in the 21st century (conditions allow), we can establish a new theory of microscopic expression of Maxwell's macroscopic electromagnetic theory, so that we can solve the pain points of Maxwell's macroscopic electromagnetic theory at the micro level.

2: New definition of charge, current, voltage and resistance at the micro level
According to the classical electromagnetic theory [15], the conduction current is the quantity of charges that flow across a section of a conductor per unit time, which can be expressed mathematically as follows:

\[I = \frac{dq}{dt} \] (1)

Since the hypothesis of conducting current is based on the cognition of the 19th century, the nuclear model was not known at that time, and the existence of electrons was not known, and the movement of electrons around the nucleus was unknown. Therefore, the current can only be explained by the hypothesis of directed transfer of charge. Since the conduction current is only a hypothesis, we need a more visual explanation, considering that we are unaware of what the nature of the charges is.
Therefore, the interpretation of the current with the direction of the electrical charges appears too abstract, and we need a more vivid explanation. Here, based on the new cognition of atomic physics [15], we know the atomic model, the movement of electrons around the nucleus, we can regard the current as a momentum flow. That is to say, the current is the transfer of momentum \(P \) transfer between electrons. Because electrons movement around the nucleus, so here the electronic momentum \(P \) is the electronic angular momentum impulse (increment) \(u \), namely \(P \rightarrow u \). The current \(I \) can be expressed as the quantity of electronic angular momentum impulses \(u \) that flow across a section of a conductor per unit time. Thus the nature of an electric charge is the electronic angular momentum \(u \), while the nature of charge quantity \(q \) is the quantity \(n \) of electronic angular momentum impulse \(u \). That is to say, \(q \Rightarrow n \). Then the conduction current can become a conduction force flow:

\[
I_n = \frac{dn}{dt} \tag{2}
\]

It can be seen from equations (1) and (2) that the interpretation of current by charge transfer is based on the macroscopic understanding of the 19th century; the use of momentum transfer to explain current is based on the microscopic cognition of atomic physics in the 20th and 21st centuries. So, I redefine the current.

Then, the new current density can be expressed as:

\[
J = \frac{dn}{dt \cdot ds} \tag{3}
\]

If the number of carriers per unit volume in the conductor is \(N \), then \(\rho = Nn \) (\(n \) is the electric momentum of a single carrier). Then the current density in the conductor is:

\[
J = Nnv \tag{4}
\]

The relationship between the current density and the current on surface \(s \) is:

\[
I = \iint_s j \cdot ds \tag{5}
\]

On closed surfaces, it is:

\[
I = \iint_s j \cdot ds \tag{6}
\]

The continuity equation of the current is:

\[
I = \iint_s j \cdot ds = -\frac{dn_{int}}{dt} \tag{7}
\]

Because the current is the momentum flow, so, the electromotive force is the impulse force of the electron, expressed as:

\[
\varepsilon = \int \frac{dp}{dt} \tag{8}
\]

Since the current is the momentum flow generated by the impulse of the electron angular momentum, the voltage is the potential difference (energy level difference) of the electron angular momentum or the orbital potential:

\[
U_{ab} = \varphi_a - \varphi_b = L_a - L_b = E_a - E_b = \varepsilon \tag{9}
\]

Then, the intensity of the voltage represents the number of potential differences of the electrons:

\[
U = n(\varphi_a - \varphi_b) = n(L_a - L_b) = n(E_a - E_b) = ne \tag{10}
\]

Therefore, in the closed circuit, the voltage intensity is the inventory quantity of the impulse of the electronic angular momentum; the current represents the flux of the impulse of the electronic angular momentum, so the resistance can be expressed as:

\[
R = U - I \tag{11}
\]

It can be seen from the above equation that the resistance is the amount of impulse of the electron angular momentum lost during the conduction process. So, we can see that the definition of ohms is actually wrong \(R \neq \frac{U}{I} \), we need to correct Ohm's law. (Note: I know that modifying Ohm's law will make it difficult for everyone to accept, but we must face the fact that Ohm's law is wrong. Even when I just realized that there is something wrong with the definition of ohms on resistance, I don't believe this is true .I was very determined at the time that I made a mistake myself, but when I thought about it over and over again, I found that the definition of Ohm's law was indeed wrong. But that doesn't mean I'm smarter than ohms, it just means that I have the advantage of the times.)

Thus, the resistivity is expressed as:

\[
\rho = \frac{U - I}{U} = \frac{R}{U} \tag{12}
\]
Conductivity is:

$$\sigma = \frac{I}{U}$$ (13)

Conclusion

From the above derivation, it can be seen that based on the new cognition of atomic physics at the microscopic level, we can know that the current is the momentum flow, the charge is the impulse (or increment) of the electron angular momentum, the quantity of charge is the amount of the impulse of the electron angular momentum, and the voltage is the potential difference of the electrons (the energy level difference), the resistance is the amount of impulse of the electron angular momentum that is lost during conduction. Considering that charge is a manifestation of electron motion, it is expressed in the form of impulse of electron momentum or electron angular momentum.

3: The origin and new definition of Electric field, magnetic field, electromagnetic force and electromagnetic wave at the micro level

Based on the new cognition of atomic physics, we know the atomic model, know the existence of electrons, know the electron spin, know the movement of electrons around the nucleus, and know the existence of electron magnetic moments. According to the classical electromagnetic theory, the electric field intensity is expressed as:

$$E = \frac{F}{q}$$ (14)

As is shown above, the nature of the charge is the impulse u of the electronic angular momentum. According to classical electromagnetic theory and quantum optics theory [16], the electric field is generated by the charge, and the photon is the medium particle of the electric field. It follows that the electric field force is the force produced by the collision of electronic angular momentum impulses with photons. This force is an impulse moment, expressed as $M = r \times u$. The impulse of the electronic angular momentum is generated by electron spin and orbital motion, so, the field source of the electric field is the electron magnetic moment, and the field source particles are electrons e, namely $q \Rightarrow e$. Given that the magnetic field is generated by the molecular magnetic moment $\sum m \neq 0$, while the magnetic moment is generated by the electron spin angular momentum and orbital angular momentum, and also given that the photon is the medium particles of the magnetic field, then the magnetic field force can also be seen as the force produced by the collision of electronic angular momentum impulses with photons. This force is also an impulse moment, expressed as $M = r \times u$. Accordingly, the field source of the magnetic field is also the electron magnetic moment, and the field source particles are also electrons e. Therefore, we can deduce that the electric field E and the magnetic field H have the same field source, which is the electron e. So, we can get a powerful equation that explains that a magnetic field and an electric field have the same field source:

$$H = E = \frac{F}{e}$$ (15)

According to the above derivation, since the electric field and the magnetic field have the same field source, the electric field and the magnetic field belong to the same object. This signifies that the nature of the electric field is the magnetic field, so the nature of the electric field force is the magnetic force and the acting force of the positive and negative charges is the acting force of the two magnetic poles. Therefore, we explain the electric field from the aspect of the magnetic field, and explain the acting force of positive and negative charges from the aspect of the magnetic force. Electromagnetic waves can be interpreted as media fluctuations generated by electronic collision media. The amount of charge measured by Millikan's 'oil-drop' experiment can be interpreted as the amount of action produced by the electron magnetic moment. The positive and negative charges can be interpreted as the behavior of the two magnetic poles of the magnetic field. (Note: The amount of information here is a bit large. It has changed many points of view in textbooks. Maybe we can't digest and accept it at once. I will give further theoretical and experimental proofs later.)

Since we have explained the electric field from the aspect of the magnetic field, we need to explain
the nature of magnetic and magnetic forces. For the nature of the magnetic force, we can assume from the kinetic point of view that the impulse of the angular momentum impinging on the photon of the medium causes the photon vortex to move, which in turn produces a medium impulse moment (similar to fan blowing). The medium impulse moment is the magnetic force, and the essence of the magnetic force line can be regarded as the cyclotron motion path of the medium photon. Thus, the magnetic force represents the cross product of the impulse u applied by the electron to the photon of the medium with the vector of the photon displacement vector r, which can be expressed mathematically as:

$$M = r \times u$$ \hspace{1cm} (16)

Magnetic field can be defined as "a vortex force system generated by photon cyclotron motion of electrons colliding with multiple spins", that is the superposition state of the magnetic moment. Its mathematical expression is:

$$M = \sum m$$ \hspace{1cm} (17)

If the magnetic field line is used to express the magnetic field, then the magnetic field can also be expressed with the geometric changes of field strength and magnetic flux:

$$\Phi_H = \iint_H H \cdot ds$$ \hspace{1cm} (18)

In this way, we defined the nature of magnetic field and magnetic force, and thus unraveled the mystery about the intrinsic nature of electromagnetic field and electromagnetic force.

According to the law of Ampere, the magnetic field strength and the current in the current-carrying conductor can be expressed as:

$$\oint_L B \cdot dl = \mu_0 \sum_{i=1}^{n} I_i$$ \hspace{1cm} (19)

Taking into account that the field source of the magnetic field is the electron e, the force applied on static electrons in the magnetic field is:

$$F = eH$$ \hspace{1cm} (20)

The total force acting on the current-carrying conductor in the magnetic field is:

$$F = \int dF = \int_H dH \times H$$ \hspace{1cm} (21)

Taking into account that the field source of the magnetic field is the electron e, and the impulse momentum produced by per unit electron is M_e.

With reference to Biot-Savart law, it indicates that the physical meaning of current element is the electronic impulse moment $Idl \Rightarrow M_e$. Then the magnetic field strength generated by the electron at any point in the space can be expressed as:

$$dH = \frac{dM_e \times e_e}{r^2} = \frac{Idl \times e_e}{r^2}$$ \hspace{1cm} (22)

The vector integral form is:

$$H = \int_L dH = \int \frac{dM_e \times e_e}{r^2}$$ \hspace{1cm} (23)

The magnetic interaction between two electrons can be expressed as:

$$dF_{1 \rightarrow 2} = \frac{dM_e \times (dM_e \times e_e)}{r^2}$$ \hspace{1cm} (24)

When the vector is not considered, the acting forces between two electrons can be idealized as $F_{1 \rightarrow 2} = \frac{e_e e_1}{r^2}$. The equivalent Coulomb’s law thus can be derived:

$$F_{1 \rightarrow 2} = \frac{e_e e_1}{r^2} \Leftrightarrow \frac{q_2 q_1}{r^2}$$ \hspace{1cm} (25)

It can be seen from the above that we can deduce the equivalent Coulomb’s law from the angle of the magnetic field, and prove that the Coulomb electrostatic field is a current element magnetic field. (Of course, this is an interesting discovery, you can think of a lot of things)

Thus, we can come up with a prediction: "The frictional electrification phenomenon is the friction generating current (momentum flow) and the magnetic field".

The mechanism is:

Friction causes the electron to direct the collision motion to generate a momentum flow (current), and the electron momentum flow (current) polarizes the electron magnetic moment to generate a magnetic
field (this is an electromagnet).

The rubbed object has the property of attracting light and small objects. The essence is that the friction generates a current, and the current acts on the electron magnetic moment of the small and small object, causing the electron magnetic moment to be polarized to display magnetic properties and generate a magnetic field. The attraction phenomenon is the interaction between two magnetic fields. Therefore, the frictional electrification phenomenon is the friction generating current and magnetic field.

Therefore, we can draw 3 predictions:
A: The rubbed ruler has a magnetic field that can cause small magnetic needle deflection.
B: The rubbed ruler has electromagnetic radiation.
C: The electromagnet can attract light and small objects (paper scraps).

Note: According to the traditional textbook, the rubbed ruler only generates static electricity (static charge and electric field), does not generate magnetic field and electromagnetic radiation, and the electromagnet does not attract shredded paper. (If the above prediction does not occur, it means that my point of view is wrong; if the above prediction occurs, it can prove that my point of view is correct, we need to modify the textbook)

Experimental results:
A: In the experiment, the rubbed ruler can trigger the deflection of the small magnetic needle (welcome to repeat this experiment), and the strength of the magnetic field generated by the rubbed ruler is 0.2Gs.
B: The rubbed ruler has an electromagnetic radiation intensity of 0—3160w/cm^2.
C: When the electromagnetic radiation value is 0—8181w/cm^2, the electromagnet can produce more intense and significant experimental phenomena of attracting shredded paper.

Discussion:
Because ordinary magnets don’t attract shredded paper and other light and small objects, I need to clarify. Here, the reason why ordinary magnets cannot attract shredded paper is that the magnetic force is small and the magnetization ability is weak. The rubbed ruler can attract shredded paper because friction generates current (momentum flow), current can re-arrange the electron magnetic moment of small and light objects and generate magnetic field, so the rubbed ruler is more likely to magnetize and attract paper scraps. (Note: Because the current can cause the electrons of light and small objects to be rearranged, and the electrons have magnetic moments, when the electrons are rearranged, the magnetic moment of the electrons will be rearranged again. Therefore, the magnetization ability of the current is stronger than that of ordinary permanent magnets. Can magnetize and attract shredded paper.)

In fact, because any object has an electronic magnetic moment, any object has an internal magnetic property. Therefore, in theory, as long as the magnetic field strength is strong enough, the magnet can attract any object. Therefore, we can use a powerful magnet to achieve the phenomenon of attracting shredded paper. In fact, powerful magnets can also attract hanging apples, tomatoes and kiwis, as well as attracting burnt matches (I can provide experimental videos).

The force exerted by the current carry conductor \(L_1 \) on the electron \(e_2 \) is:

\[
dF_{1\rightarrow2} = M_{e_2} \times \int_{t_1} \frac{dM_{e_1} \times e_r}{r^2} \tag{27}
\]

The force exerted by the current carrying conductor \(L_1 \) on the current carrying conductor \(L_2 \) is:

\[
F_{1\rightarrow2} = \int_{t_2} dF_{1\rightarrow2} = \int_{t_2} \int_{t_1} \frac{dM_{e_2} \times (dM_{e_1} \times e_r)}{r^2} \tag{28}
\]

On the contrary:

\[
F_{L_2 \rightarrow L_1} = -F_{L_1 \rightarrow L_2} \tag{29}
\]

From the above, we can extrapolate that the magnetic field excited by the impulse of the electronic angular momentum follows the inverse square of the distance.

The moment of forces in the magnetic field can be
expressed as:

\[M = m \times H \] \hspace{1cm} (30)

According to Faraday's law of electromagnetic induction, we can work out the relationship equation between EMF and magnetic field strength:

\[\varepsilon_i = -\frac{d\Phi}{dt} = -\int_s \frac{\partial H}{\partial t} \cdot ds \] \hspace{1cm} (31)

It can be inferred from the above deduction that we can theoretically explain all the electric field phenomena from the aspect of the magnetic field, and predict that triboelectrification is a result of friction generating a magnetic field, which is another major breakthrough point in this paper.

Discussion: If triboelectrification is essentially a phenomenon where friction produces a magnetic field, then the unipolar electrostatic field is actually a dipole magnetic field. We can verify this by seeing if the charged scraps in the triboelectrification phenomenon have the magnetic properties of the two poles.

4: A new expression of Maxwell's equations at the microscopic level

According to the above inference, the essence of the electric field at the microscopic is the current element magnetic field. So, the same objects cannot be transformed into each other, and we need to improve Maxwell's equations.

According to the above-mentioned derivation of Faraday's law of electromagnetic induction, the electromotive force in the magnetic field is:

\[\varepsilon_i = -\frac{d\Phi}{dt} = -\int_s \frac{\partial H}{\partial t} \cdot ds \] \hspace{1cm} (32)

The electromotive force \(\varepsilon_i \) here represents the impulse force of the electron.

The fourth equation of Maxwell's equations is:

\[\oint L \cdot dl = I_{\text{int}} + \int_s \frac{\partial D}{\partial t} \cdot ds \] \hspace{1cm} (33)

Considering that the current density of electric displacement is \(J_d = \frac{\partial D}{\partial t} \), and the current density of the conduction momentum flow is \(J = \frac{dn}{dt} \cdot ds \), then the relationship between the electric displacement \(D \) and the quantity of electronic angular momentum impulses \(n \) can be expressed as \(\partial D = \frac{n}{\partial s} \), so the above equation can be improved as follows:

\[\oint L \cdot dl = I_{\text{int}} + \int_s \frac{n}{\partial t} \] \hspace{1cm} (34)

Which signifies the varied quantity of electronic angular momentum impulses can generate a magnetic field.

Considering that the electric field and the magnetic field have the same field source, namely the electron \(e \), the equations of the Maxwell’s equations of the electric field and the magnetic field can be overlooked. The latest improved Maxwell’s electromagnetic transformation equation is as follows,

\[\varepsilon = -\int_s \frac{\partial H}{\partial t} \cdot ds \]

According the above derivation, a varied magnetic field can produce an electromotive force and the varied quantity of electron momentum can produce a magnetic field which means.

5: Conclusion

This paper aims to establish a new theory of Maxwell’s macroscopic electromagnetic theory to solve some pain points in macroscopic electromagnetic theory.

Because Maxwell’s theory of electromagnetics was established in the 19th century, there was no atomic physics at the micro level in that era. Therefore, the conceptual foundations of the classical electromagnetism theory are based on the macroscopic physics concept of cognitive definition in the 19th century. This led Maxwell to describe various electromagnetic phenomena based only on macroscopic electromagnetic conceptual foundations defined by cognition before the 19th century, and could not explain their origin at the micro level.

Because in the past 100 years we have gained new understanding in atomic physics, therefore, this paper attempts to introduce microscopic atomic
physics and rigid body mechanics models for Maxwell's macroscopic electromagnetic theory based on the new cognition of atomic physics in the 20th century. A new definition and interpretation of the conceptual basis of classical electromagnetic theory is given. Thus, a new theory of microscopic expression of Maxwell's classical electromagnetic theory is established, and finally a new interpretation of macroscopic electromagnetic phenomena at the micro level is sought.

Finally, based on the microscopic expression of Maxwell's electromagnetic theory, we propose a feasible interpretation of the origins of charge, current, voltage, resistance, electric field and magnetic field.

Acknowledgement
I am grateful to Professor Josephson of the Cavendish Laboratory of the University of Cambridge for his discussion and some valuable suggestions for my experiment.

References

