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Abstract: Brain capillary endothelial cells form the blood-brain barrier (BBB), which is covered with
basement membranes and is also surrounded by pericytes and astrocyte end-feet in the neurovascular
unit. The BBB tightly regulates the molecular exchange between the blood flow and brain parenchyma,
thereby regulating the homeostasis of the central nervous system (CNS). Thus, dysfunction of the BBB
is likely involved in the pathogenesis of several neurological diseases, including Alzheimer’s disease
(AD). While amyloid-β (Aβ) deposition and neurofibrillary tangle formation in the brain are central
pathological hallmarks in AD, cerebrovascular lesions and BBB alteration have also been shown to
frequently coexist. Although further clinical studies should clarify whether BBB disruption is a specific
feature of AD pathogenesis, increasing evidence indicates that each component of the neurovascular
unit is significantly affected in the presence of AD-related pathologies in animal models and human
patients. Conversely, since some portions of Aβ are eliminated along the neurovascular unit and
across the BBB, disturbing the pathways may result in exacerbated Aβ accumulation in the brain.
Thus, current evidence suggests that BBB dysfunction may causatively and consequently contribute
to AD pathogenesis, forming a vicious cycle between brain Aβ accumulation and neurovascular unit
impairments during disease progression.

Keywords: amyloid-β; astrocytes; basement membrane; cerebral amyloid angiopathy; endothelial
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1. Introduction

Blood vessels are the essential components of the circulatory system that transport blood
throughout the body, proper functioning of which is critical to maintaining the homeostasis of organs
and tissues. They deliver oxygen and nutrients, remove metabolic waste, and mediate signaling
of the endocrine glands as well as provide a way for tissue to interact with the peripheral immune
system [1–4]. Vasculatures are composed of different segments, including arteries, arterioles, capillary
beds, venules, and veins, all of which differ from each other structurally and functionally. Furthermore,
these vascular segments—particularly microvessels—have unique properties, depending on their
corresponding organs or tissues and how they respond to specific requirements [5]. In the central
nervous system (CNS), capillary endothelial cells form the blood-brain barrier (BBB), which precisely
controls the entry of blood components, including plasma proteins, ions, red blood cells, and leukocytes,
into the CNS, as well as the elimination of toxic molecules to the blood [5–7]. Because the BBB plays a
critical role in maintaining CNS homeostasis, the disturbance of proper BBB functioning is increasingly
recognized as a potential contributor in a number of neurological disease pathogeneses, including
late-onset Alzheimer’s disease (AD) [8–10].

AD is the most common cause of dementia in the elderly, and is estimated to affect approximately
14 million people in the United States by 2050 [11,12]. Pathologically, AD is characterized by
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extracellular amyloid-β (Aβ) deposition in brain parenchyma as senile plaques and in vessels as
cerebral amyloid angiopathy (CAA) [13,14]. AD is also characterized by a neuronal accumulation of
phosphorylated tau–forming neurofibrillary tangles, which are typically accompanied by neuronal
loss and glial activation [15–17]. While these are the central pathological hallmarks in AD brains, the
majority of AD cases have been shown to exhibit a complex combination of multiple pathologies [18].
In particular, some extents of vascular pathology are frequently detected in AD brains. In one study,
more than 77% (316/410 cases) of postmortem AD brains had circle of Willis atherosclerosis, whereas
the prevalence was significantly higher than that of control individuals (47%, 28/59 cases) [19].
Furthermore, other types of vascular pathologies such as infarcts, microbleeds, and white matter
changes also often exist in AD patients [18]. In view of the increasing interest in cerebrovascular
contributions to AD pathogenesis and BBB function in maintaining CNS homeostasis, our review
summarizes current evidence for BBB alteration during AD progression, and discusses how BBB
dysregulation is associated with disease pathogenesis.

2. Blood-Brain Barrier (BBB) in the Neurovascular Unit

In brain capillaries, endothelial cells form the tube structure with barrier integrity, in which
the abluminal surface is covered by basement membranes composed of extracellular matrix. The
endothelial tubes are surrounded by pericytes, astrocyte end-feet, and neurons, comprising the
neurovascular unit (Figure 1). While physical barrier structures in endothelial cells predominantly
control BBB integrity, molecular barrier systems through endothelial transporters can mediate the influx
and efflux of specific molecules at the BBB. Furthermore, other cell types and basement membranes in
the neurovascular unit are also critical for the induction and maintenance of the proper functioning of
the BBB [5,7–10].
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Figure 1. Blood-brain barrier (BBB) and the neurovascular unit. Pial arteries branch out into smaller
arteries called penetrating arteries. The penetrating arteries go further down into the brain parenchyma,
giving rise to parenchymal arterioles, which eventually branch off into capillaries. Whereas pial and
penetrating arteries are covered by vascular smooth muscle cells and are separated from brain tissues
by the parenchymal basement membrane (glia limitans), parenchymal arterioles and capillaries become
associated with neurons and astrocytes. Parenchymal arterioles are covered by one layer of smooth
muscle cells. In capillaries, endothelial cells form the BBB. BBB properties in endothelial cells are
further maintained and regulated through communications with basement membranes and other
neighboring cells in neurovascular unit such as pericytes, astrocytes, and interneurons. BBB indicates
blood-brain barrier.
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2.1. Endothelial Cells

To ensure the precise regulation of transport across the BBB, endothelial cells in the CNS have
several unique properties compared to those in the periphery. Although endothelial cells in the CNS
have no fenestrations, they form tight junctions (TJs) that limit paracellular permeability between the
luminal and abluminal compartments [5,20] A series of transmembrane proteins (e.g., claudin, occludin,
and junctional adhesion molecule (JAM)) are involved in constructing TJs at the BBB (Figure 2). Claudin
is the major structural component of the TJs, and is a tetraspan transmembrane protein composed
of 207–305 amino acids in humans [21]. Indeed, overexpression of claudins sufficiently induces TJ
strands in fibroblasts [22], whereas their disruption compromises the paracellular barrier integrities
in kidney cells [23–26]. While different isoforms of claudin are expressed in endothelial/epithelial
barriers both in the CNS and periphery, the distributions of claudin-1, -3, -5, and -12 have been
identified in brain endothelial cells [27–30]. In particular, claudin-5 is highly expressed in brain
endothelial cells [28], where its deficiency results in the loosening of the BBB in a mouse model [31].
Occludin is also a tetraspan transmembrane TJ protein which possesses 522 amino acids [32]. While
the disruption of occludin decreases barrier integrities in vitro [33,34], BBB alteration has not been
detected in occludin-deficient mice [35]. Those transmembrane TJ proteins are connected to the
actin cytoskeleton through Zonula occludens-1 (ZO-1), a member of membrane-associated guanylate
kinase–like (MAGUK) protein [36,37] The deletion of ZO-1 leads to TJ disruption and the redistribution
of active myosin II in vitro [38]. Together, these restrictive TJ structures in brain capillary endothelial
cells reduce paracellular diffusion and limit transcellular activity, thereby strictly regulating the
nonspecific influx/efflux of biological molecules across the BBB. In addition to TJ, the dynamic
opening and closure of the cell-to-cell adherens junction also regulates BBB permeability [39]. Vascular
endothelial (VE)-cadherin is an endothelial-specific molecule located at the adherens junction, and
plays an important role for the control of endothelial permeability and leukocyte extravasation at the
BBB [40].
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Figure 2. Physical and molecular properties of endothelial cells contributing to BBB integrity and
function. Tight junction and adherens junction complexes between endothelial cells restrict paracellular
flux across the BBB. In addition, some nutrients and essential molecules are selectively transported
from luminal to abluminal membranes by specific influx transport systems. Most of the small lipophilic
molecules passively diffused across the lipid bilayer are returned to the blood by ATP-dependent efflux
transporters. ZO-1 (zonula occludens-1); JAM (junctional adhesion molecule); VE-cadherin (vascular
endothelial-cadherin); lgG (immunoglobulin G).
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In cerebrovascular endothelial cells, transcytosis activity is known to be extremely low compared
to that in peripheral endothelial cells [41,42]. The low rate of transcytosis likely restricts the
transcellular movement of macromolecules by vesicles. Nonetheless, several specific molecules
can be transported across the endothelial barrier through the transcellular lipophilic pathway,
carrier protein–mediated pathway, receptor-mediated endocytosis, and adsorptive endocytosis
(Figure 2) [20,43]. Transendothelial passive diffusion allows the influx of small, nonpolar, and lipophilic
molecules into brains across the lipid bilayer of endothelial cells [20], while most of them are likely
eliminated to the blood through ATP-dependent efflux transporters [43,44]. Glucose, hormones, amino
acids, and nucleotides can pass through the BBB by the carrier-mediated transport [43]. Since the
gradient in concentration across the BBB is the major driving factor for carrier-mediated transport,
the pathway is likely affected by the size, affinity, and physiochemical properties of each specific
molecule [45]. In addition, the receptor-mediated or adsorption-mediated endocytic transport system
enables several large molecules such as proteins and peptides to be delivered into the brain across the
BBB. The unique cellular phenotypes in cerebrovascular endothelial cells have been represented by the
enrichment of genes coding transporters in transcriptome, which accounts for more than 10% of gene
expressions in the cell type [46].

While the entry of neutrophils and lymphocytes from blood into tissues are limited under
homeostatic conditions, activated endothelial cells increase the expression of leukocyte adhesion
molecules (LAMs), which triggers invasion of those cells [5]. Given that endothelial cells in the CNS
express extremely low levels of LAMs compared with those in peripheral tissues [47–49], the property
may prevent the excess entry of immune cells from blood to brain parenchyma under homeostatic
conditions, contributing to the immunologic privilege in the CNS [50].

2.2. Pericytes

Pericytes are mural cells covering the abluminal surface of microvessels. In the neurovascular
unit, pericytes are embedded in a thin layer of basement membrane which separates pericytes
from endothelial cells and end-feet of astrocytes (Figure 1). While most of the pericyte bodies and
processes do not attach with endothelial cells because of the basement membrane, interdigitations of
pericyte and endothelial cell membranes can directly connect in the area lacking basement membrane,
forming the peg-and-socket connections. In addition, adherens junctions and gap junctions, which
are regulated by N-cadherin and connexin 43, respectively, allow pericytes to communicate with
endothelial cells [51,52]. Pericytes have been shown to regulate angiogenesis, extracellular matrix
formation, and BBB functioning in developing brains as well as adult brains [52–57]. In addition, the
contractile property of pericytes contributes to the regulation of blood flow by controlling capillary
diameter [52,58,59]. Highlighting the unique properties of brain pericytes, pericytes are much more
abundant in the CNS than in peripheral tissues; the number of pericytes is equal to that of endothelial
cells in the brain, whereas it is estimated to be only around 1% and 10% of the number of endothelial
cells in peripheral striated muscles and lung, respectively [60].

2.3. Astrocytes

Astrocytes, the main class of glial cells, are star-shaped cells with many processes emanating from
the cell body [61]. Astrocytes surround most portions of the microvessels and capillaries and interact
with endothelial cells through the end-feet of their processes in the neurovascular unit (Figure 1) [61,62].
Furthermore, a single astrocyte can contact thousands of synapses, as well as capillaries, through
their processes [63]. As such, astrocytes provide a cellular link between neuronal activity and blood
vessels, termed neurovascular coupling. In addition to their roles providing structural, metabolic, and
trophic support for neurons [64,65], astrocytes play critical roles in regulating cerebral blood flow in
response to neuronal activity by relaying signals [5,66,67]. Astrocytes also participate in maintaining
BBB function by inducing barrier properties and the polarization of transporters [62,68–70], while an
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in vivo study suggested that a functional BBB is already present during embryogenesis, even before
astrocyte generation [54].

2.4. Basement Membranes

Basement membranes in the neurovascular unit also significantly contribute to BBB integrity
through several mechanisms. The predominant constituents of the cerebrovascular basement
membranes include collagen IV, laminin, perlecan, nidogen, and fibronectin, which are extracellular
matrix proteins produced by each cell type in the neurovascular unit [71,72]. There are two types of
basement membranes in the unit: (1) an endothelial basement membrane composed of extracellular
matrix produced by endothelial cells and pericytes; and (2) a parenchymal basement membrane
formed by those from astrocytes [73–75]. While the endothelial basement membrane is enriched in
laminin α4 and α5 [76], laminin α1 and α2 isoforms are more abundant in the parenchymal basement
membrane [73,74,77]. Basement membranes function as a physical barrier surrounding the abluminal
surface of endothelial cells and anchor the cells in place at the BBB (Figure 1). In addition, they also
contribute to BBB regulation, where the extracellular matrix mediates diverse signaling in endothelial
cells and pericytes [75]. Indeed, basement membrane components have been shown to regulate the
cellular localization of occludin in endothelial cells, thereby influencing barrier stability [78,79].

3. BBB Alteration in Alzheimer’s Disease (AD)

As described above, BBB integrity is strictly controlled by cells and basement membranes in the
neurovascular unit in physiological conditions. However, the barrier function is likely compromised
during aging and AD. In this section, we summarize and discuss the current evidence from clinical
studies investigating BBB integrity in AD patients using biochemical and histological approaches in
postmortem brains, cerebrospinal fluid (CSF) biomarkers, and brain imaging techniques.

3.1. Leakages of Blood-Derived Molecules in Postmortem AD Brains

The measurement of plasma- or serum-derived molecules in the brain parenchyma has been
widely used as a method to detect BBB disruption. Perivascular immunoreactivities of plasma proteins,
albumin, and IgG, have been detected in microvascular segments associated with senile plaques and
CAA in AD brains [80,81]. In addition, increased levels of hemoglobin-derived peptides were identified
by reverse phase HPLC (high performance liquid chromatography) in the cerebellum of patients
with AD, compared to control cases with no significant neuropathology [82]. Elevated prothrombin
amounts in AD postmortem tissues have also been shown by immunohistochemical analysis and
ELISA (enzyme-linked immunosorbent assay), the degree of which was positively correlated with
the Braak stage [83]. Together, these observations suggest the existence of BBB disruptions in
AD brains. However, there are several studies showing conflicting results. Immunohistochemical
staining for albumin, prealbumin, immunoglobulin, C1q, C3c, or fibrinogen failed to detect higher
degrees of serum protein extravasation in AD brains than control individuals [84,85]. Differences
in the procedures for sample preparation [86] and immunohistochemical staining may be potential
factors leading to these inconsistent results. Moreover, the heterogeneity of concomitant vascular
pathology in AD brains might also contribute to the discrepancy in these findings. Further
studies in larger cohorts and optimizations for methodology are needed to determine whether
parenchymal accumulation of peripheral blood-derived molecules is specifically exacerbated in AD
brains, representing BBB disruption.

3.2. Cerebrospinal Fluid (CSF)/Blood Albumin Ratio in AD Patients

AD patients have been shown to possess an increased CSF/serum or CSF/plasma ratio of albumin,
which is often used as a proxy for BBB disruption [87–90]. However, some studies reported that the
change of CSF markers was evident only in AD patients with vascular risk factors or vascular lesions,
but not in AD cases without them [91–93], even though the majority of AD cases may have some
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extent of vascular pathology. A meta-analysis of 31 clinical studies (1953 individuals) measuring the
CSF/serum albumin ratio showed that the BBB permeability parameters are increased in association
with aging and vascular dementia, but to a lesser degree with AD and white matter lesions [94]. Thus,
vascular pathology, rather than senile plaque deposition or tauopathy, may impact the CSF/serum
albumin ratio in AD. Thus, BBB disruption in AD patients should be interpreted by taking the degree of
concomitant vascular factors into consideration. In addition, because AD patients have demonstrated
disturbed turnover of CSF proteins [95,96], the albumin ratio of CSF/plasma may not precisely
represent BBB permeability in AD.

3.3. Evaluation of BBB Function through Brain Imaging in AD Patients

Earlier brain imaging studies using computed tomography (CT) [97,98] and [68Ga]-EDTA
(ethylene diamine tetra acetic acid) positron emission tomography (PET) [99] failed to show
an increase in permeability in AD patients, although the number of cases analyzed was
small. A study using dynamic contrast-enhanced magnetic resonance imaging (MRI) through
gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) injection suggested the enhanced BBB
permeability in AD patients, compared to healthy control individuals, as higher levels of Gd-DTPA
drainage into the CSF was detected in AD cases, whereas there was no overall difference in the extent
of leakage into brain parenchyma [100]. A recent study using an advanced dynamic contrast-enhanced
MRI protocol showed an age-dependent increase in BBB permeability in the entire hippocampus,
CA1 region, and dentate gyrus [101]. Furthermore, the increase in BBB permeability in these regions
was evident in patients with mild cognitive impairment (MCI) compared to aged cognitive healthy
patients [101]. As such, recent advances in brain imaging technology might allow us to further
investigate BBB integrity in AD patients.

4. Neurovascular Unit Dysregulation and AD

While further clinical studies are needed to assess BBB function in AD patients, increasing
evidence from in vitro and in vivo studies suggests the disturbance of the neurovascular unit in AD.
In this section, we summarize how each of the components in the neurovascular unit is affected by
the presence of AD-related pathology. We also discuss how these changes in cellular properties could
contribute to AD pathogenesis.

4.1. Endothelial Cell Alternation in AD

In postmortem human brains, TJ proteins, occludin, claudin-5, and ZO-1 were substantially
reduced in capillaries with CAA, which was accompanied by increased fibrinogen leakages in the brain
parenchyma [102,103]. In addition, alterations in cerebral TJs were also observed in amyloid model
5XFAD mice. Electron microscopy demonstrated that lengths of TJs in 5XFAD mice were significantly
shorter than those in littermate control mice [104]. Consistent with those findings, the exposures of
Aβ42, in particular that with the oligomeric form, significantly decreased levels of occludin, claudin-5,
and ZO-1 [104,105] and compromised the barrier integrity [105] in a murine brain bEnd.3 endothelial
cell line. Other reports also showed the reduction of occludin by administrations with Aβ40 and
Aβ42 in human brain endothelial hCMEC/D3 cells [106] and primary rat brain endothelial cells [107],
respectively. Furthermore, exogenous application of Aβ42 likely downregulates the JAM (an integral
membrane protein at the TJ) in human umbilical vein endothelial cells (HUVECs) [108], although
the lack of specific barrier properties in HUVECs suggests that these cells are a less suitable model
for extrapolating the findings to brain microvessels [109]. In addition, hyperhomocysteinemia has
been shown to induce the significant decrease of VE-cadherin in cerebrovasculature and exacerbated
BBB permeability, as well as increased cerebrovascular deposition of Aβ and fibrinogen in a mouse
model [110]. Thus, Aβ is likely to disrupt the organization of TJs and adherens junction in endothelial
cells, thereby disturbing their barrier function.
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While glucose transporter 1 (GLUT1) is a type 3 integral transmembrane protein specifically
expressed in endothelial cells in the brain, GLUT1 is significantly reduced in the brain microvessels of
AD patients and amyloid mouse models [111–115]. Of note, endothelial GLUT1 deficiency initiates
early BBB disruption as represented by the reduction in TJ proteins and extravascular accumulation of
fibrinogen and IgG in mice [116]. Furthermore, GLUT1 deficiency also leads to cerebral microvascular
degeneration followed by the accelerated Aβ pathology in an amyloid mouse model [116]. Thus, the
reduction in GLUT1 in microvessels during AD could contribute to disease pathogenesis. However,
since defective GLUT1 causes hypoglycorrhachia, seizures, and developmental delay [117–119],
it remains unclear whether BBB dysregulation is a central mechanism initiating disease progression in
GLUT1-related AD pathogenesis.

4.2. Cerebrovascular Pericyte Degeneration in AD

Through a communication with neighboring endothelial cells and astrocytes in the neurovascular
unit, pericytes play multiple roles in the CNS, including a regulation of BBB integrity and clearance of
metabolites [120]. In AD brains, coverages of microvessels by pericytes were significantly reduced,
correlating with BBB disruption [121]. While age-dependent BBB breakdown in the hippocampus was
reported in an antemortem study, patients with MCI showed a higher degree of BBB permeability,
which is associated with an increased soluble platelet-derived growth factor receptor β (PDGFRβ) in the
CSF, representing pericyte damages [101]. Indeed, a mouse model with pericyte deficit has been shown
to lead to age-dependent BBB disruption, leading to secondary neurodegeneration [57]. Moreover,
pericyte deficiency causes accelerated brain Aβ deposition and CAA formation with impaired clearance
of soluble Aβ40 and Aβ42 from brains in an amyloid mouse model [122]. Thus, reduced coverage in
pericytes in AD may further exacerbate parenchymal and vascular Aβ accumulation.

4.3. Altered Perivascular Astrocytic End-Feet in AD

During the progression of AD and CAA, astrocyte characteristics are distinctly changed in
postmortem human brains [121,123–126] and amyloid mouse models [114,126,127]. In the temporal
cortex from AD patients, the reduced mRNA expressions of astrocytic end-feet water channel
aquaporin 4 (AQP4) and activated astrocyte marker glial fibrillary acidic protein (GFAP) were observed
in association with the severity of CAA pathology [126]. While global immunoreactivity of AQP4 was
increased during aging and AD in the frontal cortex, perivascular AQP4 localization was significantly
reduced in AD cases independent of age, compared to cognitively healthy individuals [125]. Loss of
perivascular AQP4 localization was associated with a high degree of AD-related pathology, including
Aβ burden and Braak stage [125]. In an amyloid mouse model, retraction and swelling in astrocytic
end-feet was also observed in those surrounding parenchymal Aβ deposits and CAA in both early- and
late-stage animals [114]. In addition, the redistribution of AQP4 from astrocytic end-foot membranes
to non–end-foot membrane domains was detected in amyloid model mice, which is likely due to
astrocyte depolarization induced by brain Aβ deposition [127]. Of note, paravascular astroglial water
transport mediated by AQP4 not only supports CSF flux into the parenchyma but also facilitates the
solute clearance through bulk interstitial fluid (ISF) drainage [128]. AQP4 deficiency has been shown
to impair the clearance of [125I]-Aβ40 as well as [3H]-mannitol or [3H]-dextran-10 from the brain when
injected into mouse brain parenchyma [128]. Thus, the dysfunction of astrocytic end-feet during AD
progression may exacerbate Aβ accumulation by disturbing cerebrovascular Aβ clearance along the
ISF drainage pathway.

4.4. Cerebrovascular Basement Membrane Pathology in AD

The thickening of basement membranes is likely one of the common pathologies detected in the
brain capillaries of AD patients [129]. Immunohistochemical analyses have revealed that basement
membrane components, including collagen IV, perlecan, and fibronectin, were increased in the frontal
and temporal cortex from subclinical AD (Braak stage III–IV) and AD patients (Braak stage V–VI)
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compared to controls, whereas no significant difference was detected between subclinical AD and
AD cases [130]. The extent of collagen IV staining was not associated with the severity of CAA in the
frontal or occipital cortex from AD patients [131]. Western blotting showed increased total collagen
and collagen IV levels in cerebral microvessels isolated from AD patients compared to those from
controls [132], although there is a conflicting study reporting reduced collagen IV and elevated collagen
I and III in AD vessels [133].

A mouse model demonstrated that vascular basement membranes play a critical role as pathways
for the lymphatic drainage of ISF from the brain parenchyma to cervical lymph nodes, as well as the
glymphatic drainage of CSF into ISF [134]. When gold nanoparticles or Aβ are injected into mouse
brain parenchyma, they flow through the ISF drainage pathway along a basement membrane layer
between endothelial cells and pericytes to the surrounding smooth muscle cells in the tunica media.
On the other hand, the tracer injected into the CSF enters the brain through a lymphatic pathway along
the basement membrane between the pia mater and glia limitans [134]. Importantly, the clearance of
Aβ injected into the mouse hippocampus through the ISF drainage pathway has been shown to be
impaired by aging, likely due to vascular basement membrane thickening with altered extracellular
matrix components [135]. Carrying APOE4, which is the strongest genetic risk factor for late-onset
AD [136,137], also alters basement membrane formation in APOE4-targeted replacement mice, which
likely disturbs perivascular clearance of Aβ40 [138]. Thus, further studies should determine how
basement membranes in the neurovascular unit are affected during AD and how their alteration
contributes to disease pathogenesis by impacting Aβ elimination along the cerebrovasculature.

5. Transport of Aβ across the BBB

During Aβ drainage through the lymphatic or glymphatic pathways, a portion of Aβ could be
degraded in extracellular space by diverse proteases, including neprilysin and insulin-degrading
enzymes [139]. Cells at the neurovascular unit also have the ability to endocytose Aβ and clear it
through lysosomal degradation [140]. Furthermore, endothelial cells likely mediate Aβ transport
across the BBB by expressing several receptors and transporters, such as the low-density lipoprotein
receptor-related protein 1 (LRP1), P-glycoprotein (P-gp), and the receptor for advanced glycation end
products (RAGE).

Reduced LRP1 expression in brain microvessels [141] and endothelial cells [142] was observed
in AD patients and amyloid mouse models. Importantly, endothelial cell-specific deletion of LRP1
has been shown to disturb Aβ clearance, resulting in the aggravated amyloid pathology in mouse
models [143]. Thus, endothelial cells may possess the active transport system of Aβ across the BBB
mediated by LRP1, as reported previously [141,142], although another study failed to confirm the
presence of this mechanism [144]. In the endothelial cells, internalized Aβ through LRP1 on the
abluminal side may either be transported into the lysosome for degradation or moved to the luminal
side by transcytosis, depending on conditions [144–148], although further studies are required to
confirm this. In addition to LRP1, P-gp is also likely involved in Aβ clearance at the BBB. P-gp
is an ATP-dependent efflux transporter that is predominantly expressed in epithelial cell types,
including the luminal surface of the endothelial cells in the BBB [149]. An animal study has shown
that P-gp deficiency suppresses Aβ clearance and increases brain Aβ deposition [150], while P-gp
expression was reduced near amyloid plaques in an amyloid mouse model [151]. In capillaries isolated
from mouse brains, P-gp degradation is facilitated by the exposure with Aβ40, thereby reducing
P-gp transport activity [152]. Consistent with the findings in animals, cerebrovascular expression
of P-gp is inversely correlated with Aβ plaque numbers in individuals without dementia [153].
In addition, a PET study using (R)-[11C] verapamil has demonstrated that P-gp transporter function at
the BBB is compromised in AD patients [154]. Thus, downregulations of LRP1 or P-gp in endothelial
cells during AD progression are predicted to further exacerbate parenchymal Aβ accumulation by
decreasing Aβ clearance from the brain. Indeed, pharmacological approaches to increase LRP1 [155]
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or P-gp [156] in brain capillaries likely facilitate Aβ clearance, thereby reducing brain Aβ levels in
amyloid mouse models.

RAGE, an immunoglobulin superfamily member, functions as a receptor for a series of ligands
including Aβ [157]. While RAGE is expressed in almost all brain cell types, including endothelial
cells, vascular smooth muscle cells, microglia, astrocytes, and neurons [158], a significant increase
in endothelial RAGE immunoreactivity was observed in postmortem AD brains compared to
controls [159]. Interestingly, RAGE is known to mediate the entry of circulating Aβ into the brain
across the BBB. Administration with an anti-RAGE antibody, soluble RAGE, or a RAGE-specific
inhibitor suppressed the RAGE-mediated influx of peripheral Aβ40 and Aβ42, which ameliorated
brain Aβ deposition in mouse models [160,161]. On the other hand, other members of endothelial
ATP-dependent efflux transporters such as ABCG2 [162,163] and ABCG4 [163] have been shown to
prevent Aβ entry from the blood flow into the brain across the BBB. Although downregulations of
those efflux transporters at the BBB may accelerate parenchymal Aβ accumulation in physiological
conditions, it remains unclear as to what extent this mechanism contributes to the AD pathogenesis,
considering that BBB integrity may be compromised during aging and AD.

6. Summary and Perspective

It is increasingly evident that aging, cerebrovascular damage, and/or Aβ accumulation can
initiate BBB dysregulation by affecting multiple components of the neurovascular unit. Disturbing BBB
homeostasis not only causes neuronal damage, but also compromises Aβ clearance at the neurovascular
unit, therefore likely resulting in a vicious cycle between Aβ accumulation and BBB dysfunction during
AD progression (Figure 3). While BBB disruption is often detected in AD patients, it is unclear whether
it is a specific feature of AD. In this regard, further efforts using larger prospective cohorts should
be devoted to defining how BBB function is altered before AD onset and during disease progression,
and how the alteration is correlated with AD pathologies, including senile plaque and neurofibrillary
tangle formations. As discussed in the above section, one of the challenges is that the sensitivity
and specificity of current techniques may not be robust enough to reliably evaluate BBB function in
human cohorts. Although the further optimization of brain imaging techniques and the development
of novel biomarkers to evaluate BBB function might be critical, the combination of those approaches
would help to overcome this limitation. In addition, the re-evaluation of BBB pathology would be
necessary by comprehensively investigating different regions of postmortem brains from cognitively
healthy individuals and patients with MCI, AD, and other neurodegenerative diseases. Verifying the
methodology for histological and biochemical assessments of BBB function and stratifying vascular
contributions might also be required.

Given that risk factors for both AD and atherosclerotic/cardiovascular diseases significantly
overlap [164–166], it might be important to explore vascular-mediated inflammation in AD
pathogenesis. In addition to maintaining endothelial barrier formation, the BBB also serves as an
interface to link the peripheral immune system to that in the CNS [167–169]. When cerebrovascular
endothelial cells and circulating leucocytes are activated as a part of immune responses, the expression
of adhesion molecules and chemoattractant productions are upregulated in those cells, thereby
facilitating the invasion of circulating immune cells into brain parenchyma across the BBB [9,170]. The
infiltrated immune cells likely lead to structural alterations of the BBB through the production and
secretion of proinflammatory cytokines, reactive oxygen species, and active proteases. Reciprocal
activation of cells at the neurovascular unit, in particular glial cells, and their production of cytotoxic
mediators may also influence the BBB, further sustaining endothelial inflammation. While leukocytes
such as lymphocytes, monocytes, and neutrophils likely penetrate the BBB and traffic into the brain in
AD [171], neutrophil depletion has been shown to improve cognitive function and reduce AD-related
pathology in amyloid model mice [172]. Thus, targeting vascular inflammation and/or leukocyte
trafficking through the BBB may have therapeutic potential in AD.
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Figure 3. Proposed model for BBB dysfunction in AD pathogenesis. Dysregulation of the neurovascular
unit (e.g., diminished endothelial transport, loss of tight junction (TJ) integrity, basement membrane
disorganization, pericyte degeneration, and astrocyte depolarization) is induced during Alzheimer’s
disease (AD) progression, which is particularly associated with brain Aβ accumulation. These
alterations, in turn, contribute directly or indirectly to the disturbed Aβ clearance in the neurovascular
unit and across the BBB, thus setting up a vicious cycle in AD pathogenesis. In parallel, plasma protein
leakage, reduced brain glucose uptake, and neuroinflammation caused by BBB damage may lead to
further cellular toxicity, making neurons more susceptible to AD pathologies.

In conclusion, despite accumulating evidence suggesting the link between BBB dysregulation
and AD pathogenesis, how BBB alteration contributes to the overall pathogenic cascades of AD
has not yet been determined. A greater understanding of how BBB dysfunction is causatively or
consequently related to AD pathogenesis could allow us to develop the diagnostic and therapeutic
strategies targeting BBB for this devastating disease. Further comprehensive studies that consider both
the multiple functions of the BBB and the associated complexities of AD development and progression
are needed.
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AD Alzheimer’s disease
AQP4 Aquaporin 4
Aβ Amyloid-β
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ISF Interstitial fluid
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LAM Leukocyte adhesion molecule
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MAGUK Membrane-associated guanylate kinases
MCI Mild cognitive impairment
MRI Magnetic resonance imaging
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PDGFRβ Platelet-derived growth factor receptor β
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