Rice volatiles lure gravid malaria mosquitoes, Anopheles arabiensis

Betelehem Wondwosen^{1,2,3}, Göran Birgersson², Emiru Seyoum¹, Habte Tekie¹, Baldwyn Torto³, Ulrike Fillinger^{3,4}, Sharon R Hill^{2§}, and Rickard Ignell^{2§*}
¹Department of Zoological Sciences, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia.
²Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P. O. Box 102, Sundsvägen 14, 230 53 Alnarp, Sweden.
³Behavioural and Chemical Ecology Department, International Centre of Insect Physiology and Ecology, P. O. Box 30772, Nairobi 00100, Kenya
⁴Disease Control Department, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK

[§]Shared authorship

*Corresponding author, <u>rickard.ignell@slu.se</u>

Supplementary Figure Legends

Supplementary Figure 1. Attraction preference of Anopheles arabiensis to the booting, tillering and flowering stages of the MR1 (a, c, e) and MR3 (b, d, f) rice cultivars against hexane controls (HEX). Headspace volatiles of the three phenological stages of MR1 and MR3 rice cultivars elicited release rate-dependent attraction (a, χ^2 =6.104, P=0.0135; b, χ^2 =13.55, P=0.0002; c, χ^2 =14.02, P=0.0002; d, χ^2 =13.13, P=0.0003; e, χ^2 =8.370, P=0.0038; f, χ^2 =8.349, P=0.0039). No significant difference in attraction was found between the phenological stages of either cultivar (MR1, Release rate, χ^2 =32.74, P<0.0001, Stage, χ^2 =0.2267, P=0.8928; MR3, Release rate, χ^2 =29.53, P<0.0001, Stage, χ^2 =0.3283, P=0.8486). Statistical significance was tested using nominal logistic regression (likelihood ratio test). Ten replicates, of 10 gravid mosquitoes each, were used for every behavioural experiment. Error bars represent standard errors of the mean.

Supplementary Figure 2. Attraction preference of Anopheles arabiensis to the booting, tillering and flowering stages of the MR1 (a, c, e) and MR3 (b, d, f) rice cultivars against the headspace of breeding water (BW). Headspace volatiles of the three phenological stages of MR1 and MR3 rice cultivars elicited release rate-dependent attraction (a, χ^2 =9.628, P=0.0019; b, χ^2 =13.18, P=0.0003;

c, χ^2 =8.207, P=0.0042; d, χ^2 =21.30, P<0.0001; e, χ^2 =18.26, P<0.0001; f, χ^2 =6.083, P=0.0136). No significant difference in attraction was found between the phenological stages of either cultivar (MR1, Release rate, χ^2 =30.63, P<0.0001, Stages, χ^2 =0.3287, P=0.8485; MR3, Release rate, χ^2 =42.90, P<0.0001, Stages, χ^2 =0.2532, P=0.8811). Statistical significance was tested using nominal logistic regression (likelihood ratio test). Ten replicates, of 10 gravid mosquitoes each, were used for every behavioural experiment. Error bars represent standard errors of the mean.

Supplementary Figure 3. Oviposition preference of Anopheles arabiensis to the booting (a, b), tillering (c, d) and flowering (e, f) stages of the MR1 (left) and MR3 (right) rice cultivars against hexane controls (HEX). Headspace volatiles of the three phenological stages of MR1 and MR3 rice cultivars added to distilled water elicited release rate-dependent oviposition (a, χ^2 =14.58, P<0.0001; b, χ^2 =10.02, P=0.0015; c, χ^2 =9.607, P=0.0019; d, χ^2 =9.959, P=0.0016; e, χ^2 =13.34, P=0.0003; f, χ^2 =20.57, P<0.0001). No significant difference in oviposition was found between the phenological stages of either cultivar (MR1, Release rate, χ^2 =33.90, P<0.0001, Stage, χ^2 =0.5059, P=0.7765; MR3, Release rate, χ^2 =42.89, P<0.0001, Stage, χ^2 =5.426, P=0.0663). Statistical significance was tested using nominal logistic regression (likelihood ratio test). Ten replicates, of 10 gravid mosquitoes each, were used for every behavioural experiment. Error bars represent standard errors of the mean.

Supplementary Figure 4. Oviposition preference of Anopheles arabiensis to the booting (a, b), tillering (c, d) and flowering (e, f) stages of the MR1 (left) and MR3 (right) rice cultivars against hexane controls in breeding water (BW). Headspace volatiles of the three phenological stages of MR1 and MR3 rice cultivars added to breeding water elicited release rate-dependent oviposition (a, χ^2 =10.18, P=0.0014; b, χ^2 =9.631, P=0.0019; c, χ^2 =9.837, P=0.0017; d, χ^2 =9.200, P=0.0024; e, χ^2 =6.262, P=0.0123; f, χ^2 =10.03, P<0.0015). No significant difference in oviposition was found between the phenological stages of either cultivar (MR1, Release rate, χ^2 =29.64, P<0.0001, Stage, χ^2 =2.563, P=0.2776; MR3, Release rate, χ^2 =25.19, P<0.0001, Stage, χ^2 =5.686, P=0.0582). Statistical significance was tested using nominal logistic regression (likelihood ratio test). Ten replicates, of 10 gravid mosquitoes each, were used for every behavioural experiment. Error bars represent standard errors of the mean.

Supplementary Figure 5. Attraction preference of Anopheles arabiensis to the pooled headspace of MR1 (a) and MR3 (b) rice cultivars compared to the headspace of breeding water (BW). Headspace volatiles of the MR1 and MR3 rice cultivars elicited a release rate-dependent attraction to the headspace of the breeding water control (a, χ^2 =11.51, P=0.0007; b, χ^2 =11.88, P=0.0006). Statistical significance was tested using nominal logistic regression (likelihood ratio test). Ten replicates, of 10 gravid mosquitoes each, were used for every behavioural experiment. Error bars represent standard errors of the mean.

Supplementary Figure 6. Oviposition preference of *Anopheles arabiensis* to the pooled headspace of MR1 (a) and MR3 (b) rice cultivars compared to hexane in breeding water (BW) and between the headspace of the cultivars in BW (c). Headspace volatiles of the MR1 and MR3 rice cultivars elicited a release rate-dependent oviposition to the headspace of the breeding water control (a, χ^2 =11.34, P=0.0008; b, χ^2 =7.538, P=0.0060; c, χ^2 =4.740, P=0.0295). Statistical significance was tested using nominal logistic regression (likelihood ratio test). Ten replicates, of 10 gravid mosquitoes each, were used for every behavioural experiment. Error bars represent standard errors of the mean.

Supplementary Figure 7. Relative release rates of individual components in the synthetic MR3 rice odour blend in the different assays. Release rates were calculated as percentage of the release rate of Q-pinene, after dispensing the full synthetic blend on water (green; oviposition assay) and by cotton wick (blue; attraction assay) and assaying the headspace; then comparing back to the full blend as synthesized (red).

Supplementary Figure 8. Attraction preference of Anopheles arabiensis to the full and subtractive synthetic MR3 blends against pentane controls. Overall, the subtractive blends were found to elicit an attraction comparable with the full blend (χ^2 =14.68, P=0.1002). Statistical significance was tested using nominal logistic regression (likelihood ratio test) between each treatment and the full blend (*** P<0.001; ** P<0.01; * P<0.05). The attraction to the nonanal-reduced blend was significantly different from that to the full blend (Odds ratio=3.105, P=0.0022). Nonanal by itself was unable to elicit attraction equivalent to that of the full blend (Odds ratio=2.306, P=0.0225). Ten replicates, of

10 gravid mosquitoes each, were used for every behavioural experiment. Error bars represent standard errors of the mean. Box plots are shown with whiskers determined as Tukey inner fences.

Supplementary Figure 9. Oviposition preference of Anopheles arabiensis to the full and subtractive synthetic MR3 blends against pentane controls in distilled water. Overall, the subtractive blends elicited a positive oviposition preference compared with pentane (χ^2 =22.09, P<0.0001), however, not to the level of the full blend (χ^2 =4.82, P=0.0282). The oviposition response to the nonanal-reduced blend was significantly different from that to the full blend (Odds ratio=0.6510, P=0.0017). Statistical significance was tested using nominal logistic regression (likelihood ratio test) between each treatment and the full blend (*** P<0.001; ** P<0.01; * P<0.05). Ten replicates, of 10 gravid mosquitoes each, were used for every behavioural experiment. Box plots are shown with whiskers determined as Tukey inner fences.

Supplementary Figure 10. Experiment to determine the effective release rate of the synthetic MR3 odour blend under semi-field conditions. The release rates indicated are based on those of α -pinene in heptane. The ratio among the compounds within the blend was maintained as a constant across all doses. Statistical significance was tested with nominal logistic regression (likelihood ratio test) (χ^2 =137.1, P<0.0001). Different lowercase letters indicate significant differences by Odds ratio pairwise comparisons (likelihood ratio test). Error bars denote standard error of the mean.

Attraction response					
Figure	Dose	Control	Test		
Suppl. Fig. 1a	min equivalents	Hexane	Booting rice extract (MR1)		
	0	15	15		
	16	18	26		
	32	19	39		
	48	21	42		
	64	24	50		
	80	16	50		
Suppl. Fig. 1b	min equivalents	Hexane	Booting rice extract (MR3)		
	0	15	15		
	16	19	21		
	32	25	42		
	48	22	50		
	64	16	48		
	80	20	65		
Suppl. Fig. 1c	min equivalents	Hexane	Tillering rice extract (MR1)		
	0	15	15		
	16	23	28		
	32	25	40		
	48	17	34		
	64	21	46		
	80	14	59 T:11i		
Suppl. Fig. 1d	min equivalents	Hexane	rice extract (MR3)		
	0	15	15		
	16	20	32		
	32	22	39		
	48	17	44		
	64	18	50		
	80	20	61		

Supplementary Table 1: Number of gravid *Anopheles arabiensis* responding in the attraction assay to extracts of rice cultivars at different phenological stages.

Attraction response					
Figure	Dose	Control	Test		
Suppl. Fig. 1e	min equivalents	Hexane	Flowering rice extract (MR1)		
	0	15	15		
	16	22	26		
	32	21	34		
	48	18	47		
	64	18	53		
	80	17	59		
Suppl. Fig. 1f	min equivalents	Hexane	Flowering rice extract (MR3)		
	0	15	15		
	16	19	28		
	32	19	39		
	48	19	50		
	64	18	52		
	80	16	49		

Attraction response					
Figure	Dose	Control	Test		
Suppl. Fig. 2a	min equivalents	Extract of breeding water	Booting rice extract (MR1)		
	0 16 32 48 64 80	13 17 23 24 18 20	11 26 37 51 51 61		
Suppl. Fig. 2b	min equivalents	Extract of breeding water	Booting rice extract (MR3)		
	0 16 32 48 64 80	13 19 25 22 16 17	11 21 42 50 48 70		
Suppl. Fig. 2c	min equivalents	Extract of breeding water	Tillering rice extract (MR1)		
	0 16 32 48 64 80	13 19 25 22 16 17	11 21 42 50 48 48		
Suppl. Fig. 2d	min equivalents	Extract of breeding water	Tillering rice extract (MR3)		
	0 16 32 48 64 80	13 21 22 21 14 13	11 28 36 44 49 68		

Supplementary Table 2: Number of gravid *Anopheles arabiensis* responding in the attraction assay to extracts of rice cultivars at different phenological stages.

Attraction response					
Figure	Dose	Control	Test		
Suppl. Fig. 2e		Extract of breeding water	Flowering rice extract (MR1)		
	0	13	11		
	16	23	34		
	32	17	38		
	48	18	48		
	64	18	50		
	80	21	62		
Suppl. Fig. 2f	min equivalents	Extract of breeding water	Flowering rice extract (MR3)		
	0	13	11		
	16	20	31		
	32	18	47		
	48	21	53		
	64	19	53		
	80	20	56		

Oviposition response					
Figure	Dose	Control	Test		
			Booting		
Suppl. Fig. 3a	min	Hexane	rice		
Suppl: 1 18. 54	equivalents	memune	extract		
	0	2720	(MRI)		
	0	3/38	3811		
	16	5339	4396		
	32	3624	5514		
	48	3396	5920		
	64	3506	6456		
	80	3273	6595		
			Booting		
Suppl. Fig. 3b	min	Hexane	rice		
	equivalents		extract		
	0	3738	3811		
	16	4092	5419		
	32	4570	6129		
	18	4200	5837		
	48 64	3638	6570		
	04 80	2816	6601		
	80	2010	Tillering		
	min		rice		
Suppl. Fig. 3c	eauivalents	Hexane	extract		
	1		(MR1)		
	0	3738	3811		
	16	4076	5668		
	32	4130	5581		
	48	3647	6172		
	64	3365	5780		
	80	3037	6855		
			Tillering		
Suppl Fig 3d	min	Horano	rice		
Suppi. Pig. Su	equivalents	Пелине	extract		
		2=20	(MR3)		
	0	3738	3811		
	16	3675	6106		
	32	3079	6722		
	48	3271	5888		
	64	2831	6129		
	80	2404	7048		

Supplementary Table 3: Number of eggs laid in the oviposition assay by gravid *Anopheles arabiensis* to extracts of rice cultivars at different phenological stages.

Oviposition response				
Dose	Control	Test		
min equivalents	Hexane	Flowering rice extract (MR1)		
0 16 32 48 64	3738 4900 3883 3955 3486	3811 5062 5711 6304 6379		
80	3270	6201		
min equivalents	Hexane	Flowering rice extract (MR3)		
0 16 32 48	3738 5200 3777 3247	3811 5111 6391 6298		
	Oviposition r Dosemin equivalents0 16 32 48 64 800 16 32 480 16 32 48 64	Oviposition $csponseControlDoseControlminequivalentsHexane03738164900323883483955643486803270minequivalentsHexane03738165200323777483247$		

Oviposition response					
Figure	Dose	Control	Test		
Suppl. Fig. 4a	min equivalents	Extract of breeding water	Booting rice extract (MR1)		
	0 16 32 48 64 80	4902 4962 4378 4142 3613 3658	4669 5137 5475 5922 6497 6633		
Suppl. Fig. 4b	min equivalents	Extract of breeding water	Booting rice extract (MR3)		
	0 16 32 48 64 80	4902 4315 3986 3795 3378 3294	4669 5626 6201 6466 6501 6344		
Suppl. Fig. 4c	min equivalents	Extract of breeding water	Tillering rice extract (MR1)		
	0 16 32 48 64 80	4902 5350 4377 3896 3895 3824	4669 4672 6002 6353 6333 6450		
Suppl. Fig. 4d	min equivalents	Extract of breeding water	Tillering rice extract (MR3)		
	0 16 32 48 64 80	4902 5932 4566 4240 4541 4331	4669 5051 6198 6056 6489 6451		

Supplementary Table 4: Number of eggs laid in the oviposition assay by gravid *Anopheles arabiensis* to extracts of rice cultivars at different phenological stages.

Oviposition response				
Figure	Dose	Control	Test	
Suppl. Fig. 4e	min equivalents	Extract of breeding water	Flowering rice extract (MR1)	
	0 16 32 48 64 80	4902 4594 3466 3438 3491 3497	4669 5736 5915 6143 6826 6825	
Suppl. Fig. 4f	min equivalents	Extract of breeding water	Flowering rice extract (MR3)	
	0 16 32 48 64 80	4902 4400 3746 3687 3731 2185	4669 5473 5978 6427 6325 (700	

Supplementary Table 5: Number of gravid *Anopheles arabiensis* and eggs counted in the attraction and oviposition assays in response to the pooled rice headspace extracts of cultivars MR1 and MR3.

Attraction response			Oviposition	response			
Figure	Dose	Control	Test	Figure	Dose	Control	Test
Fig. 1c	min equivalents	Hexane	Pooled rice extract (MR1)	Fig. 1d	min equivalents	Hexane	Pooled rice extract (MR1)
	0	15	15		0	3738	3811
	16	14	24		16	3975	6106
	32	18	39		32	3979	6522
	48	19	52		48	3448	5888
	64	17	49		64	2831	6129
	80	11	54		80	2604	7248
Fig. 1e	min equivalents	Hexane	Pooled rice extract (MR3)	Fig. 1f	min equivalents	Hexane	Pooled rice extract (MR3)
	0	15	15		0	3738	3811
	16	14	23		16	4077	5125
	32	22	39		32	3726	6131
	48	20	35		48	3272	5883
	64	17	52		64	2688	6280
	80	16	49		80	2884	6988
Fig. 1g	min equivalents	Pooled rice extract (MR1)	Pooled rice extract (MR3)	Fig. 1h	min equivalents	Pooled rice extract (MR1)	Pooled rice extract (MR3)
	16	20	29		16	4030	5581
	32	24	43		32	3947	5772
	48	23	45		48	3265	6080
	64	26	56		64	3014	6755
	80	14	61		80	2578	5955
Fig. 1k	log (dose(ng))	Full synthetic blend	Pentane	Fig. 11	log (dose(ng))	Full synthetic blend	Pentane
	0.1	26	24		0.1	4435	4297
	0.3	40	21		0.3	4916	3705
	1	59	19		1	5174	3324
	3	38	17		3	5447	2759
	10	36	16		10	4752	2941
	30	18	27		30	4354	4810
	100	9	20		100	2352	5569

Supplementary Table 6: Number of gravid Anopheles arabiensis responding in the
attraction assay to the extracts of pooled rice cultivars MR1 and MR3.

Attraction response				
Figure	Dose	Control	Test	
Suppl. Fig. 5a	min equivalents	Extract of breeding water	Pooled rice extract (MR1)	
	0	21	21	
	16	25	32	
	32	17	28	
	48	21	43	
	64	21	53	
	80	18	56	
Suppl. Fig. 5b	min equivalents	Extract of breeding water	Pooled rice extract (MR3)	
	0	21	21	
	16	22	36	
	32	21	44	
	48	21	45	
	64	18	59	
	80	15	53	

Oviposition response					
Figure	Dose	Control	Test		
Suppl. Fig. 6a	min equivalents	Extract of breeding water	Pooled rice extract (MR1)		
	0	5532	5051		
	16	4556	5177		
	32	3877	5802		
	48	3792	5802		
	64	3696	6353		
	80	3044	6298		
Suppl. Fig. 6b		Extract of breeding water	Pooled rice extract (MR3)		
	0	5532	5051		
	16	4415	5371		
	32	4366	6198		
	48	4141	6489		
	64	3831	6451		
	80	3557	6182		
		Pooled	Pooled		
Suppl. Fig. 6c		rice	rice		
11 0		extract (MR1)	extract (MR3)		
	16	4132	4751		
	32	3849	5300		
	48	3458	6032		
	64	3421	6534		
	80	3301	6311		

Supplementary Table 7: Number of gravid *Anopheles arabiensis* responding in the oviposition assay to the headspace extracts of pooled rice cultivars MR1 and MR3.

Supplementary Table 8: Number of gravid *Anopheles arabiensis* responding in the attraction assay to synthetic full and subtractive blends.

Attraction response				
Figure	Synthetic blend	Control (Pentane)	Test (synthetic blend)	
Suppl. Fig. 8	Full blend	19	59	
	Reduced a-pinene	14	30	
	Reduced β -pinene	18	42	
	Reduced 3-carene	16	31	
	Reduced limonene	14	39	
	Reduced sulcatone	14	38	
	Reduced nonanal	28	28	
	Reduced decanal	19	45	
	Reduced β-caryophyllene	14	29	
	Only nonanal	26	35	

Supplementary Table 9: Number of eggs laid by gravid *Anopheles arabiensis* in the oviposition assay to the full and subtractive synthetic blends.

Oviposition response				
Figures	Synthetic blend	Control (Pentane)	Test (synthetic blend)	
Suppl. Fig. 9	Full blend	3324	6474	
	Reduced a-pinene	5027	3996	
	Reduced β -pinene	5595	3828	
	Reduced 3-carene	5054	3758	
	Reduced limonene	5268	3778	
	Reduced sulcatone	5260	3969	
	Reduced nonanal	4335	5107	
	Reduced decanal	5296	3807	
	Reduced β-caryophyllene	5210	3872	
	Only nonanal	4667	3869	