
Redox Biology 4 (2015) 296–307
Contents lists available at ScienceDirect
Redox Biology
http://d
2213-23

Abbre
Speck-li
chronic
patterns
IAPP, am
substrat
Muckle–
Nlrp3-d
domain
recepto
1, thior

n Corr
Paris 6,

E-m
journal homepage: www.elsevier.com/locate/redox
Review Article
NLRP3 inflammasome: From a danger signal sensor to a regulatory
node of oxidative stress and inflammatory diseases

Amna Abderrazak a,b,c, Tatiana Syrovets d, Dominique Couchie a,b,c, Khadija El Hadri a,b,c,
Bertrand Friguet a,b,c, Thomas Simmet d, Mustapha Rouis a,b,c,n

a Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, Biological Adaptation and Ageing - IBPS, F-75005 Paris, France
b CNRS-UMR 8256, F-75005 Paris, France
c Inserm U1164, F-75005 Paris, France
d Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, D-89081 Ulm, Germany
a r t i c l e i n f o

Article history:
Received 2 December 2014
Received in revised form
11 January 2015
Accepted 12 January 2015
Available online 14 January 2015

Keywords:
NLRP3 inflammasome (PDB id: Q96P20)
IL-1β (PDB id: P01584, P10749)
IL-18 (PDB id: Q14116)
Obesity
Cardiovascular diseases
x.doi.org/10.1016/j.redox.2015.01.008
17/& 2015 The Authors. Published by Elsevier

viations: Alum, aluminum hydroxide; ATMs,
ke protein containing a Caspase-recruitment
infantile neurological cutaneous articular syn
; DD, death domains; FCAS, familial cold autoi
yloid-containing amylin—islet amyloid polyp
e-1; LDL, low density lipoprotein; LDLR, LDL re
Wells syndrome; NBD, nucleotide-binding do
eficient mice3; NLRs, receptors; NOMID, neon
; oxLDL, oxidized LDL; PAMPs, pathogen-asso
rs; PYD, pyrin domain; RLRs, RIG-1-like helicas
edoxin-1; TXNIP, thioredoxin-interacting P; T2
esponding author at: Institute of Biology Par
7, quai Saint Bernard, Bât A - 6ème étage - C
ail address: mustapha.rouis@upmc.fr (M. Roui
a b s t r a c t

IL-1β production is critically regulated by cytosolic molecular complexes, termed inflammasomes. Dif-
ferent inflammasome complexes have been described to date.

While all inflammasomes recognize certain pathogens, it is the distinctive feature of NLRP3 in-
flammasome to be activated by many and diverse stimuli making NLRP3 the most versatile, and im-
portantly also the most clinically implicated inflammasome. However, NLRP3 activation has remained
the most enigmatic. It is not plausible that the intracellular NLRP3 receptor is able to detect all of its
many and diverse triggers through direct interactions; instead, it is discussed that NLRP3 is responding to
certain generic cellular stress-signals induced by the multitude of molecules that trigger its activation.

An ever increasing number of studies link the sensing of cellular stress signals to a direct pathophysiological
role of NLRP3 activation in a wide range of autoinflammatory and autoimmune disorders, and thus provide a
novel mechanistic rational, on howmolecules trigger and support sterile inflammatory diseases. A vast interest
has created to unravel how NLRP3 becomes activated, since mechanistic insight is the prerequisite for a
knowledge-based development of therapeutic intervention strategies that specifically target the NLRP3 trig-
gered IL-1β production. In this review, we have updated knowledge on NLRP3 inflammasome assembly and
activation and on the pyrin domain in NLRP3 that could represent a drug target to treat sterile inflammatory
diseases. We have reported mutations in NLRP3 that were found to be associated with certain diseases. In
addition, we have reviewed the functional link between NLRP3 inflammasome, the regulator of cellular redox
status Trx/TXNIP complex, endoplasmic reticulum stress and the pathogenesis of diseases such as type 2 dia-
betes. Finally, we have provided data on NLRP3 inflammasome, as a critical regulator involved in the patho-
genesis of obesity and cardiovascular diseases.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Vertebrates evolved two different systems to recognize and
eliminate pathogens: the innate and the adaptive immune sys-
tems. The innate immune system is the first one to be activated
and can sense a wide range of pathogenic microbes through a
limited number of receptors, called pattern-recognition receptors
(PRRs), by recognizing conserved microbial signatures, named
pathogen-associated molecular patterns (PAMPs) [1]. PRRs are
expressed by many cell types (macrophages, monocytes, neu-
trophils, and others), allowing the detection of pathogens to take
place directly at the site of infection. Once activated, the innate
immune system initiates the inflammatory response by secreting
cytokines and chemokines. This leads to the expression of adhe-
sion and co-stimulatory molecules able to recruit immune cells
and to stimulate the adaptive immune response. Because of the
need to distinguish between pathogenic and non-pathogenic or
commensal microbes, it has been proposed that the innate im-
mune system is activated by the recognition of an antigen, but
only in presence of danger signals released by cells (danger-asso-
ciated molecular patterns or DAMPs) [2].

The NOD-like receptors (NLRs) are a family of PRRs mostly
expressed in the cytosol and able therefore to detect signs of in-
tracellular invaders [3]. Some of the NLRs can also sense non-mi-
crobial danger signals and form large cytoplasmic complexes
called inflammasomes, responsible for the activation of caspase-1
and -5, which ultimately leads to the proteolytic activation of the
proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-
18 (IL-18) [4].

Secretion of the key inflammatory cytokine IL-1β (and its family
member IL-18) is a consequence of phagocyte activation and
promotes a multitude of metabolic, physiologic, inflammatory,
hematologic and immunologic effects. Excessive or prolonged IL-
1β generation can cause widespread tissue damage and is a well-
documented phenomenon of, and is associated with numerous
acute and chronic inflammatory human diseases, many of which
are autoinflammatory or autoimmune pathologies (for detailed
reviews see [5–7]). IL-1β production is critically regulated by cy-
tosolic molecular complexes, termed inflammasomes [8]. Several
different inflammasome complexes have been described to date.
All of them specialize in pattern recognition of danger signals, and
subsequently instruct general defense mechanisms of the human
immune system.

While all inflammasomes recognize certain PAMPs or DAMPs, it
is the distinctive feature of NLRP3 (NLRP3: nucleotide-binding
domain, leucine-rich-containing family, pyrin domain-containing-
3 OR Nod-like receptor protein 3) to be activated by unusually
many and diverse stimuli making NLRP3 the most versatile, and
importantly also the most clinically implicated inflammasome. At
the same time NLRP3 activation has remained the most enigmatic.
It is not plausible that the intracellular NLRP3 receptor is able to
detect all of its many and diverse triggers through direct interac-
tions; instead, it is discussed that NLRP3 is responding to certain
generic cellular stress-signals induced by the multitude of PAMPs
and DAMPs that trigger its activation.

An ever increasing number of studies link the sensing of cel-
lular stress signals to a direct pathophysiological role of NLRP3
activation in a wide range of autoinflammatory and autoimmune
disorders, and thus provide a novel mechanistic rational, on how
DAMPs trigger and support sterile inflammatory diseases. Several
of these pathologies related to undue NLRP3 activation, like, e.g.
gout and pseudogout, obesity, atherosclerosis, Alzheimer's disease
or type 2 diabetes mellitus (T2DM) [6], have an immense impact
on our society. This has created vast interest to unravel how NLRP3
becomes activated, since mechanistic insight is the prerequisite for
a knowledge-based development of therapeutic intervention
strategies that specifically target the NLRP3 triggered IL-1β
production.

To this end, many studies have contributed very valuable in-
sights. It is known that only stimulated cells activate NLRP3, which
has a tripartite structure consisting of a pyrin domain (PYD), a
nucleotide-binding domain (NBD) and a leucine-rich-repeat (LRR)
domain [9]. Upon activation, NLRP3 associates with the adaptor
protein ASC, which comprises a caspase recruitment domain
(CARD) and a pyrin domain, that are held together solely by a
semi-flexible linker [10] allowing both domains to engage freely
with other partners. The NLRP3:ASC complex oligomerizes and
binds the enzyme caspase 1, thus forming active inflammasome
complexes (NLRP3, ASC, and caspase-1) that produce IL1-β [11]
(Fig. 1).

It is well established that the recruitment of ASC by NLRP3 is an
absolute prerequisite in this process. If ASC recruitment fails, the
NLRP3 inflammasome complex does not assemble. Formation of
the ASC:NLRP3 complex is established between two pyrin do-
mains, one each in ASC and NLRP3. The presence of both pyrin
domains is sufficient and necessary to promote the bimolecular
interaction between ASC and NLRP3 [12]. To this end, it is also
worth to note that both, host cells (to regulate) and pathogens (to
evade immune response) produce PYD-only proteins (POP) that
interfere with PYD-driven assembly of inflammasomes indicating
the central role of PYD interactions in regulating IL-1β production.
In contrast to this pivotal role that the pyrin domain association
plays in the formation of the NLRP3 inflammasome, the mechan-
isms that prevent this binding event during quiescent cellular
states are not known (Fig. 2A). However, it has been elucidated
that over 90 disease-associated mutations in human NLRP3, which
map mainly to the NBD and its vicinity, render the protein con-
stitutively active [7] and allow continuous inflammasome activa-
tion, e.g. by association of the NLRP3's pyrin domain with its
adaptor protein ASC, despite the absence of PAMP or DAMP stimuli
[12] (Fig. 2B). Furthermore, the deletion of the LRR domain pro-
motes NLRP3's association with its adaptor ASC via their pyrin



Fig. 1. NLRP3 inflammasome assembly. CARD, caspase recruitment domain; LRR, leucine-rich repeat; NACHT/NBD, nucleotide binding domain; PYD, pyrin domain; CAP1,
caspase-1.
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domains [12] (Fig. 2C).
As described above, the NLRP3 inflammasome is formed by

NLRP3 (NACHT, LRR and PYD domains-containing protein 3, also
called cryopyrin, NLRP3, PYPAF1, CIAS1 and CLR1.1), the adaptor
protein Apoptosis-associated Speck-like protein containing a CARD
(ASC) and the inflammatory caspase-1 (cysteine-dependent as-
partate-directed protease-1).

The current model of inflammasome activation has been de-
veloped in analogy to mammalian toll-like receptors (TLRs) and
plant disease resistance gene products (R proteins). When the LRR
domain recognizes an activating stimulus, the autorepression state
of NLRP3 (probably mediated by the LRR domain itself) is relieved.
As a consequence, the PYD and NBD domains are exposed, thus
allowing for NLRP3 oligomerization by homotypic NBD domain
interaction (most likely upon ATP binding) and recruitment of the
adaptor protein ASC, which in turn recruits caspase-1 (see Fig. 1
above). Finally, caspase-1 clustering leads to its activation via au-
toprocessing, allowing the proteolytic cleavage of pro-IL-1β and
other cellular targets [11].

ASC is composed of the two death domains (DD), PYD and
caspase recruitment domain (CARD), and acts as an adaptor mo-
lecule not only in inflammation [4], but also in apoptosis [12,13].
ASC binds to other pyrin-containing proteins via its own pyrin
domain [14] and recruits members of the caspase family via CARD/
CARD interaction [15–17]. It has been shown that ASC can also
oligomerize into functional complexes, like the pyroptosome, a
potent caspase-1 activator responsible for pyroptosis [18], and
serves as scaffold for other supramolecular platforms involved in
caspase activation [4].
Fig. 2. NLRP3 domain structure and its influence on interactions of its pyrin domain. (A)
pyrin domain in ASC in non-activated NLRP3. (B) Disease-associated mutations in NLRP3
(C) Biochemical deletion of the LRR-domain in NLRP3 unmasks the pyrin domain and t
Caspases are a family of cysteine proteases that play essential
roles in apoptosis, necrosis and inflammation. They are formed by
a CARD domain followed by a domain containing a catalytic cy-
steine and are synthesized as inactive zymogens that are activated
upon proteolytic processing [19]. Inflammasomes activate a class
of caspases known as inflammatory caspases [20,21], that are so
called because the main substrates of their representative mem-
ber, caspase-1, are cytokines (IL-1β, IL-18 and possibly IL-33),
which are crucial mediators of the inflammatory response. In
mammals, inflammatory caspases include human and murine
caspase-1 and -12, murine caspase-11, and the two caspase-1-re-
lated human caspase-4 and -5 [22,23]. In order to be activated,
pro-caspase-1 needs to undergo autoproteolysis, which requires
clustering of pro-caspase-1 on oligomerized NLRP3.
The pyrin domain in NLRP3 assembly

As detailed above, the NLRP3 inflammasome assembly critically
relies on the PYD/PYD interaction between NLRP3 and ASC. Both
pyrin domains belong to the DD superfamily and share a common
structural feature (i.e. a six-helical bundle fold). Almost all known
protein–protein interactions in the DD superfamily are formed
either by self-association or homotypic interactions with other
members of the same subfamily (e.g. the PYD/PYD interaction
between NLRP3 and ASC). However the members of the DD su-
perfamily often display entirely different surface features from
other proteins of the same fold, which may account for their
specificity in protein–protein interactions [24]. In contrast to the
It is unresolved how the pyrin domains shielded from engaging the readily available
were shown to promote pyrin–pyrin domain engagement between NLRP3 and ASC.
hus facilitates its binding to ASC's pyrin domain.
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CARD/CARD interaction, which has already been characterized
structurally [25], the structural binding mode of PYD/PYD inter-
actions is currently still unknown. Recently, Vajjhala et al. used a
mutagenesis approach combined with coimmunoprecipitation to
investigate residues in ASC that govern PYD/PYD mediated self-
association or NLRP3-binding of ASC [26]. Available high resolu-
tion structures of ASC [10], ASC-PYD [27] and NLRP3-PYD [28]
exist and were used as a template for the structural mapping of
the analyzed mutants as well as for building a model of the oli-
gomerization of NLRP3's adaptor protein, ASC. Five specific amino
acids were shown to be responsible for both, ASC self-association
and NLRP3 recruitment. However, self-association of ASC did not
compete with NLRP3 binding, but to the contrary promoted
binding of NLRP3-PYD. Vajjhala et al. reconciled these data by
constructing a model that describes how an ASC-PYD homodimer
can interact with two NLRP3-PYDs. They further propose that ASC
combines its ability to self-associate with simultaneous interac-
tions with NLRP3-PYD to form higher order structures, which
build the basis for caspase-1 recruitment and activation. The de-
tailed mapping of interaction sites on NLRP3-PYD is necessary to
critically evaluate this model, since in contrast to ASC, critical
amino acids in NLRP3's pyrin domain responsible for its interac-
tion with ASC remain undiscovered. Moreover, it is not understood
how the NLRP3's PYD is masked in non-activated cellular states
(see above). Therefore, the structure–function relationship which
mediates the PYD-triggered NLRP3 inflammasome assembly is
unavailable, which impedes the knowledge-based design of in-
hibitors that specifically target the NLRP3 inflammasome.
The pyrin domain in NLRP3 as a drug target for sterile
inflammatory diseases

Successful strategies of inhibiting PYD/PYD interactions are
already in place in nature. Since prolonged inflammation beyond
eradication of endogenous DAMPs or foreign PAMPs can lead to
excessive tissue damage, host cells have an arsenal of inflamma-
some inhibitors available, which cells produce to conclude a suc-
cessful inflammatory insult [29,30]. One example of these in-
flammasome regulators are the POPs, which function as en-
dogenous dominant negative proteins that modulate inflamma-
some activity. POP1 shares a sequence identity of 64% with ASC-
PYD. It interacts with ASC in a PYD-dependent manner, thus in-
terfering with the recruitment of several NLRPs by ASC [31]. A
recent study, however, raises some questions in regard to the so-
lidity of this mechanism [26]. From a biological viewpoint, a broad
shutdown of signals from all NLRPs, which utilize the adaptor
protein ASC, seems favorable in cases when cells aim to conclude
an inflammatory insult. Contrary to POP1, POP2 interacts only
weakly with ASC-PYD, but binds more specifically to the PYD of
NLRP2. This way, POP2 is more selective and mainly affects NLRP2-
specific danger sensing [32] without interfering much with the
pattern-recognition activities of other members of the NLR family.
Certain pathogens have copied some of the host's own strategies
to control inflammasome assembly in order to evade the host's
immune surveillance system. Members of the family of poxviruses
encode viral POP proteins, which target the PYD of ASC [29], thus
interfering with the host's ability to produce IL-1β via any PYD-
containing pattern recognition receptors [33].

While it is useful for pathogens to broadly block the host's
immune mechanisms, for therapeutic intervention, selective in-
hibition of the specific pathway in question is superior. In regards
to treatment strategies for the sterile inflammatory im-
munopathologies that are associated with NLRP3 activation, spe-
cific targeting of the PYD in NLRP3 (as opposed to the PYD in ASC)
promises a better safety profile. By specific targeting of NLRP3-PYD
pattern recognition and signaling, functions of all other in-
flammasome complexes that rely on recruitment of the adaptor
protein ASC (i.>e. AIM2 and 14, NLRP3 inflammasomes [9,34])
remain in place to support the host immune surveillance.
Elusive mechanism of NLRP3 activation

Overall, the mechanism leading to NLRP3 inflammasome acti-
vation is poorly understood. Differently from other inflamma-
somes, which only respond to few specific PAMPs, the NLRP3 in-
flammasome can be activated by an increasing number of physi-
cally and chemically diverse triggers. Among them: (i) exogenous
microbial stimuli, including lipopolysaccharide (LPS) [35–37], li-
pooligosaccharide [38], nucleic acids [35,36,39,40], muramyl di-
peptide (MDP) [41], and certain pore-forming toxins, like pneu-
molysin [42], nigericin and maitotoxin [43]; (ii) environmental
large inorganic crystalline structures, such as asbestos and silica
[44,45], nanoparticles [46], adjuvants, like aluminum hydroxide
(alum) [45,47], commonly used to boost vaccine responses and
ultraviolet irradiation [48]; (iii) endogenous danger signals such as
extracellular adenosine triphosphate (ATP) [43], uric acid crystals
(MSU) [49], hyaluronan and heparan sulfate [50], and amyloid-β
fibrils [51]. The NLRP3 inflammasome is also activated by necrotic,
but not apoptotic cells, leading to release of IL-1β and IL-18, which
contribute to the so-called sterile inflammation response [52].
Sensing of necrosis is mediated via Ca-sensing mechanism of
NLRP3 [53,54].

Given the high number of very different NLRP3 activators, it is
unlikely that each of them binds directly to the inflammasome.
Therefore it has been suggested that a common molecule or
pathway must be responsible for the activation of the inflamma-
some. Several studies have indicated three possible pathways. The
first hypothesis is that reactive oxygen species (ROS) are proximal
signals for NLRP3 inflammasome activation. ROS are ancient and
highly evolutionarily conserved danger signals and elevated ROS
production is observed upon treatment with many NLRP3 activa-
tors tested to date [44,55,56]. The second model suggests that a
drop in intracellular potassium (Kþ) concentration, through en-
dogenous ion channels or pore-forming bacterial toxins, causes
inflammasome activation [57]. Consistently with these two hy-
potheses, both sequestration of ROS and blockade of Kþ efflux
induced by NLRP3 activators suppress inflammasome activation,
with a consequent reduction in caspase-1 activation and IL-1β
maturation [44,55–59]. Furthermore, ROS generation is often as-
sociated with Kþ efflux [60], although the interplay between these
two pathways is currently unclear. A third model proposes that the
disruption of the lysosomal membrane, as a consequence of the
phagocytosis of particulate or live pathogens, causes the release of
a putative NLRP3-activating molecule into the cytosol, most likely
cathepsin B or a protein modified by cathepsin B [45,51]. This
hypothesis is supported by the efficacy of phagocytosis inhibitors
in blocking inflammasome activation by particulates. Interestingly,
Shimada et al. propose a unifying theory of the three potential
NLRP3 activating mechanisms, where potassium efflux, lysosomal
damage, and ROS signals all converge to induce release of oxidized
mitochondrial DNA that then activates NLRP3 [61].

Analyzing all of the triggers that induce inflammasome acti-
vation to date (including those causing channel formation and
lysosome rupture), the production of ROS certainly seems to be the
most prominent trigger. However, ROS-triggered NLRP3 activation
has also an impressive track record of controversies in the field, as
reviewed by Rubartelli et al. [62]. These arise from the study de-
sign, which relies on differently cultured sets (or subsets) of pri-
mary cells or various immortalized cell cultures. Both, cell origin
and culture conditions have a tremendous impact on the delicate
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cellular redox balance and thus, variation in experimental assays
may result in starkly different or even opposing outcomes [62]. A
further reason is that the vast majority of interaction studies are
restricted to a single experimental design: overexpression of de-
sired analytes in cell cultures followed by interaction analysis of
cell lysates by the use of coimmunoprecipitation.
NLRP3 activation by redox-proteins – the controversy around
TXNIP and potential involvement of another intracellular re-
dox-protein

In a recent study, Zhou et al. demonstrate that an increase in
ROS concentration following cellular stress leads to dissociation of
thioredoxin-interacting protein (TXNIP also called VDUP1) from
oxidized thioredoxin-1 (Trx-1), subsequent association of TXNIP
with NLRP3 (via its NBD and/or LRR domain) and NLRP3 activation
[63]. It is interesting to note that TXNIP knockout or knockdown
impairs caspase-1 activation, yet not completely, thus indicating
that other regulators of the inflammasome activity or other
pathways might function together with ROS production to initiate
the inflammatory response. Furthermore, many stimuli that in-
duce generation of ROS are not able to activate the NLRP3 in-
flammasome (such as tumor necrosis factor, TNF), suggesting ei-
ther that a specific type or subcellular location of ROS is required,
or that ROS are necessary, but not sufficient, for NLRP3 in-
flammasome activation. However, the direct involvement of TXNIP
in NLRP3 binding and activation has been challenged by another
report by Masters et al. [64], which was unable to reproduce a
selection of experiments, which involve TXNIP-triggered NLRP3
activation. Recently, Lunov et al. reported that specifically func-
tionalized nanoparticles activate NLRP3 [46]. These findings de-
monstrate that all of the following processes, accumulation of ROS,
thioredoxin oxidation and TXNIP recruitment of NLRP3, happen in
the same time frame as the secretion of IL-1β.
Disease-associated mutations in NLRP3

Mutations in the gene coding for NLRP3 have been associated with
several disorders belonging to the family of so-called autoin-
flammatory diseases. Hereditary periodic fevers (HPFs), or cryopyrin-
associated periodic syndrome (CAPS) [65], are heritable diseases
characterized by unexplained and recurrent episodes of fever and
severe inflammation. These cryopyrinopathies were once thought to
be distinct conditions but considering the overlapping characteristics
and the fact that they form a clinical continuum, the different HPFs are
now used to describe disease severity [66], which seems to correlate
well with the total amount of IL-1β produced [66]. Patients suffering
from familial cold autoinflammatory syndrome (FCAS), also called fa-
milial cold urticaria (FCU), have less severe symptoms that generally
include fever (often triggered by exposure to cold), arthralgia and
recurrent urticaria. Muckle–Wells syndrome (MWS) patients display
the same symptoms and may, in addition, develop renal amyloidosis
together with deafness [67]. Patients affected by chronic infantile
neurological cutaneous articular syndrome (CINCA), also termed
neonatal-onset multisystem inflammatory disease (NOMID), show the
most severe symptoms. These include arthropathy, chronic urticaria,
and central nervous system involvement ranging from hearing loss to
chronic aseptic meningitis and mental retardation [68].

HPFs are all caused by mutations in the third exon of NLRP3
[69,70]. The disease-associated mutations in FCAS, MWS and
NOMID cause hyperactivity of the inflammasome and constitutive
IL-1β production [71,72], suggesting that these mutations lead to a
constitutively active NLRP3. This model is supported by clinical
studies showing that treatment of patients with an inhibitor of IL-
1β leads to a very striking and dramatic improvement of symp-
toms in all three conditions [73–75].

An aberrant activation of the NLRP3 inflammasome has also
been observed in the case of other autoinflammatory diseases such
as gout, pseudogout, silicosis, and asbestosis. In these cases, the
aberrant activation is not caused by an inherited mutation but by
chronic exposure to inflammasome activators such as MSU
(causing gout), calcium pyrophosphate dihydrate (CPPD, re-
sponsible for pseudogout), or inflammation-inducing dust [76].

The majority of the over 90 disease-associated mutations causing
HPFs reside in the NBD domain of NLRP3, but not in residues pre-
dicted to directly interact with nucleotides. By using the structure of
the N-terminal ATPase domain of Cdc6 (PDB code: 1FNN) [77] as
template to model the NBD domain of NLRP3, Albrecht et al. showed
that almost all of the disease-associated mutations comprised in the
aligned sequence (V200-L371) cluster in the proximity of the nu-
cleotide-binding region. Although none of the mutations maps to re-
sidues considered essential for the activity of most NTPases, such as
the so-called Walker A-motif (corresponding to residues G226, G231,
K232, and T233 in NLRP3) or the Mg2þ-anchoring aspartate in the
Walker B-motif (D302 in NLRP3), the different variants could still
disturb the NTP-binding and -hydrolysis activity by causing unfavor-
able structural changes near the active site.

Alternatively, the disease-associated mutations could interfere
with domain–domain interactions within the same protein or
between two proteins or in dimer formation [78]. Both ATP-
binding and NLRP3 oligomerization are essential for the NLRP3
inflammasome activation and loss of one of these functions could
explain constitutive NLRP3 activation [79]. Additionally, another
report shows that cAMP negatively regulates the NLRP3 activation
and that selected disease-associated mutations have less sensi-
tivity for cAMP regulation, which also could explain the con-
stitutive activity [54]. To complicate things further, yet, another
report could not detect a dependency between cAMP levels and
inflammasome activation [53]. Some of the disease-associated
mutations might very well interfere with ATP or cAMP binding.
However, it is difficult to imagine that all 90 plus mutations shown
to cause constitutive NLRP3 activation, can be explained by alter-
ing the relatively small binding pockets for ATP or cAMP.

A more likely explanation is that these mutations disrupt the in-
teraction between NLRP3 and an unknown regulator or between two
domains, which normally keeps the whole protein in an inactive form,
potentially by shielding NLRP3's PYD from binding ASC. In support of
this is the finding that the deletion of the LRR domain renders NLRP3
constitutively active. Similarly, in NLRP1, the oligomerization of the
NBD becomes independent of the activation stimulus (muramyl di-
peptide) once the LRR domain has been removed [80].

Treatment of the CAPS, is currently restricted to targeting the
extracellular IL-1β by three different biopharmaceutical drugs
(reviewed in 66): anakinra, a recombinant form of a naturally
occurring IL-1β receptor antagonist [81], rilonacept, a dimeric fu-
sion protein consisting of the extracellular domain of human in-
terleukin-1β receptor and the Fc domain of human IgG1 [82], and
canakinumab, an anti-IL-1β monoclonal antibody [83]. The suc-
cessful use of anti-IL-1β treatments in the afore-mentioned dis-
eases and ongoing clinical trials have boosted enormous efforts to
discover and develop small-molecule approaches to specifically
inhibit inflammasome activation [9].
NLRP3 inflammasome in diabetes and obesity

T2DM and obesity represent major public health problems with
steadily increasing prevalence worldwide. Chronic metaflammation
‘metabolic inflammation’ [84] is the hallmark of obesity causing in-
sulin resistance and T2DM [85]. Activation of inflammasome proteins
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Fig. 3. The NLRP3 inflammasome is a key mediator of metabolic inflammation and
disorder. In ATM, saturated free fatty acids, but not unsaturated free fatty acids,
inhibit regulation of energy storage and cell lipid metabolism by decreasing AMP-
activated kinase activity, which normally leads to degradation and recycling of
mitochondrial components. When mitophagy is inhibited, the accumulation of
dysfunctional mitochondria promotes, (i) mitochondrial generation of ROS and (ii)
mitochondrial release of DNA into the cytosol, which combined activate the NLRP3
inflammasome and cleave pro-IL-1β into the active form IL1-1β. This proin-
flammatory state leads to deterioration of the metabolism. IL1-β enhances insulin-
resistance through serine phosphorylation of insulin receptor substrate-1 (IRS-1)
that impairs engagement of the insulin receptor (IR) with IRS-1. It also triggers a
direct-insulin resistance by promoting expression of TNF-α. Absence of caspase-1
improves adipogenesis and increases fat oxidation rate. Other unknown in-
flammasome sensors might regulate adipocyte differenciation/maturation and
control the cellular energy metabolism through the enzyme caspase-1.
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and caspase-1 are drastically increased in cellular compartments of
adipose and liver tissue of obese humans and mice. Total body weight
loss in obese T2DM individuals is associated with diminished NLRP3
and IL-1β expression in subcutaneous adipose tissue. Hence, expres-
sion rates of inflammasome components and caspase-1 are sig-
nificantly correlated with disease severity of T2DM-obese subjects
[86,87]. The influx of macrophages, T and B cells into adipose tissue,
adipocyte hypertrophy, total body weight gain and circulating adipo-
kine levels are dependent on the NLRP3 inflammasome activation
[88]. Many authors investigated the role of the inflammasome com-
plex proteins such as caspase-1 and ASC protein in the development of
high-fat diet (HFD)-induced obesity. Deficiency in NLRP3 inflamma-
some and adaptor ASC protein in obese mice improves glucose tol-
erance and ameliorates insulin signaling pathways [89]. Nlrp3�/�

mice fed an HFD for a long period are protected from pancreatic β-cells
apoptosis as well as a significant enlargement of Langerhans islets
[89]. Compared with wild-type, ASC� /� mice are protected from liver
steatosis, adipocyte hypertrophy and the HFD-induced insulin re-
sistance [88]. These findings underline the importance of the NLRP3
inflammasome in the development of insulin resistance and T2DM
progression. More interestingly, NLRP3 in adipocytes may play im-
portant roles in the context of obesity [9]. A high activity of in-
flammasome proteins especially caspase-1, IL-1β and IL-18 has been
detected in white adipose tissue of obese mice [87]. Compared with
wild-type precursor cells, caspase-1-deficient precursor cells differ-
entiate more efficiently into mature adipocytes with a higher level of
oxidation [87]. This suggests a direct role of inflammasome in the
control of adipocyte developmental programs [90], with adipocyte-
specific proteins possibly serving as substrates for the caspase-1 en-
zyme [9]. Thus, leakage of caspase-1 is well correlated with decreased
insulin resistance, presence of smaller adipocytes in adipose tissue and
lower percentage of total fat mass [87]. Nutritional excess of HFD leads
to the infiltration of M1 macrophages into the adipose tissue [91]. Free
fatty acids are elevated in plasma and probably scavenged by adipose
tissue macrophages (ATMs) leading to generation of lipotoxic cer-
amide molecules composed from sphingoside and fatty acid [92,93].
At higher concentration, ceramide and palmitate act as endogenous
danger signals responsible for activation of adipose-tissue infiltrating
macrophages that in addition to proinflammatory cytokines, pre-
ferentially express Nlrp3, ASC, and caspase-1 proteins. In the case of
obesity, the NLRP3 inflammasome is activated through a pathway
involving reduction of the AMP-protein kinase (AMPK) activity leading
to defective autophagy of mitochondria, the so-called mitophagy. This
leads to greater ROS generation by mitochondria. ROS has been sug-
gested to activate NLRP3 and hence could increase the release of the
active form of IL1-β and IL-18 [86,94]. The increased circulating levels
of the potent proinflammatory cytokine IL1-β directly inhibits the
insulin signaling cascade via serine phosphorylation of the insulin
receptor substrate 1 and indirectly promotes production of tumor
necrosis-factor-α, known as an inducer of insulin-resistance. The IL1-β-
and IL-18-mediated promotion of the infiltration of the effector adi-
pose type 1 CD4 T helper cells infiltrate into adipose tissues, is the
second deleterious consequence of inflammasome activation [86].
Evidence showing that the deficiency of the NLRP3 inflammasome
reduces but does not abrogate the caspase-1 pathway signaling in the
pathophysiology of obesity [9], leaves room for numerous questions
and speculations about the role of other metabolic sensor subtypes,
the nature of their stimuli and mechanisms required for caspase-1
activation in liver and adipose tissue. The current view on the role of
NLRP3 activation in insulin resistance and T2DM development is il-
lustrated in Fig. 3.

Elevated levels of IL-1β in the circulation and in pancreatic is-
lets are associated with an increased risk for developing T2DM
[95]. Chronic hyperglycemia induced upon peripheral insulin re-
sistance inhibits β-cell insulin secretion and contributes to islet
dysfunction and destruction in an IL-1β-dependent manner
[96,97]. Chronic exposure to elevated glucose triggers, mitochon-
drial dysfunction and oxidative stress in rat pancreatic islets and a
β-cell line [98]. Upon increased glycolysis, ROS are generated by
increasing the activity of the mitochondrial electron transport
chain [99]. Elevated intracellular ROS may dissociate the Trx-1/
TXNIP complex. Free Trx-1 and TXNIP act respectively as a ROS
scavenger and NLRP3 inflammasome activator, leading to the
subsequent secretion of IL-1β [100]. In fact, TXNIP exerts multiple
deleterious effects on β-cells and glucose metabolism. In addition
to the inhibition of the anti-oxidative effect of Trx-1; TXNIP re-
presses cellular glucose uptake directly by binding to the glucose
transporter, Glut1, and indirectly by reducing the level of Glut1
mRNA. The TXNIP knocking down, increases glucose uptake in
peripheral tissues in both insulin-dependent and independent
manners [101]. It has been shown that chronic hyperglycemia of
rat pancreatic islets induced ER stress leading to cellular oxidative
stress. ER stress causes activation of the NLRP3 inflammasome and
IL-1β induction by cleavage of caspase-1. The resultant release of
IL-1β is necessary for the initiation of inflammation and mi-
tochondrial cell death. ER stress activates NLRP3 inflammasome,
independently of the classical unfolded protein response (UPR) but
required the production of ROS and Kþ efflux. Genetic deletion of
TXNIP suppressed IL-1β release from islet cells and prevented ER
stress-induced β-cell death. These findings highlight the role of
TXNIP as a functional link between ER stress, NLRP3 inflamma-
some activation and inflammation related to T2DM [102].

AMPK is an energy sensor characterized by numerous protective
metabolic effects including anti-inflammatory activity and main-
tenance of metabolic homeostasis. A low cellular energy status acti-
vates AMPK, leading to the phosphorylation of a host of key cellular
proteins in order to suppress ATP consumption and increase ATP
production to restore energy homeostasis [103,104]. It has been
shown that, AMPK regulates chREBP/Mlx activity by phosphorylation-
dependent nuclear translocation and indirectly regulates TXNIP pro-
tein level [105]. Indeed, AMPK, phosphorylates TXNIP leading to its
rapid degradation [101].
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While extensive study regarding the important role of TXNIP
during hyperglycemia was reported; the role of TXNIP in in-
flammasome NLRP3 activation and IL-1β release requires further
investigations to clearly highlight its implication. It has been
shown that IL-1β signals in an autocrine and/or paracrine manner
triggering β-cells dysfunction. Furthermore, it aggravates the local
inflammatory environment through the secretion of other proin-
flammatory cytokines and chemotactic factors that drive infiltra-
tion of immune cells into pancreatic islets [106]. Elevated levels of
glucose induce expression of TXNIP leading to an enhanced pro-
duction of IL-1β in pancreatic islets [100] as well as human and
mouse adipose tissue [107], but not in macrophages [100]. The role
of the NLRP3 inflammasome in β-cell dysfunction is illustrated in
Fig. 4.

Islet amyloid polypeptide (IAPP) also known as amylin, is de-
posited in the islet interstitium of T2DM individuals and is tightly
correlated with the disease severity and β-cell function [108]. The
37-amino-acid polypeptide amylin is a hormone co-secreted with
insulin [108], which requires ROS to trigger β-cell apoptosis [109].
It has recently been reported that IAPP triggers the activation of
the NLRP3 inflammasome when mouse pancreatic macrophages
were primed by minimally oxidized low-density lipoprotein
(mmLDL) [64], which warrants the NF-κB-dependent induction of
pro-IL-1β. Under those circumstances, the activation of the in-
flammasome and the subsequent cleavage of pro-IL-1β into its
active form, IL-1β, is based on the phagolysosomal disruption by
IAPP amyloid, provided sufficient glucose was present during the
priming phase [110].
Inflammasome in cardiovascular diseases

Over the last two decades, the incidence of cardiovascular
diseases (CVD) has greatly increased and CVD remain the leading
Fig. 4. Inflammasome is a central player in the induction of β-cell death and T2DM prog
promotes TXNIP expression, endoplasmic reticulum stress and accumulation of dysfuncti
NLRP3 activation in a TXNIP-dependent manner. However, ER activation pathway(s) r
macrophages. 1. mmLDL primes cells through TLR4 signaling and 2. IAPP specifically act
proinflammatory environment through activation of other chemotactic factors and imm
cause of morbidity and mortality [111] with more than 80% of
deaths occurring in low- and middle-income countries [112,113].
The cardiovascular system, especially the endothelial tissue, is
highly exposed to pathogens and is the first barrier to react with
PAMPs through activation of cytokines, chemokines and dilator
hormones [114]. Vascular smooth muscle cells [115], cardiomyo-
cytes and heart resident fibroblasts play also a major role in con-
trolling PAMPs leading to injury and cardiovascular dysfunction
[116] via TLRs and/or nucleotide-binding domain and NLRs
[117,118].

Hypertension is the most common risk factor for the devel-
opment of cerebrovascular and cardiovascular diseases. In the year
2000, 26% of all adults worldwide (972 million) were suffering
from hypertension and the disease is expected to hit 29.2% of the
adult population, i.e. 1.56 billion, in 2025 [119]. Chronic in-
flammation and oxidative stress are crucial factors in vascular re-
modeling of large and small arteries [120–123], which is important
for both the development and the subsequent complications of
hypertension [124,125]. As to oxidative stress, polymorphonuclear
leukocytes (PMNL) have been identified as the main producers of
ROS in both, hypertensive human subjects as well as in animal
models of hypertension [126,127]. As a complex disease, hy-
pertension may have different reasons, but it is nevertheless the
predominant underlying risk factor for the metabolic syndrome
[128]. Indeed, in patients suffering from hypertension, the NLRP3
gene is frequently mutated, which could explain the high corre-
lation of hypertension with the development of insulin resistance
in T2DM [129].

Fibrinogen is essential for the maintenance of hemostasis [130]
and high plasma fibrinogen concentrations are a risk factor for
cardiovascular disease. Of note, single nucleotide polymorphisms
in the inflammatory NLRP3 gene locus are highly concordant with
the fibrinogen phenotype [131]. IL-1β and IL-18 are major media-
tors of ischemia/reperfusion (I/R)-induced human myocardial
ression. Chronic exposure of pancreatic β-cells to elevated concentrations of glucose
onal mitochondria leading to intracellular ROS accumulation. ROS generation drives
emain poorly understood. IAPP is deposited in pancreas and quickly taken up by
ivates NLRP3 inflammasome and pro-IL-1β cleavage. IL1-β signaling induces a local
une cell infiltration that aggravates β-cell failure.
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injury [132]. Their levels are drastically increased in response to
several mediators relevant to injury such as host-derived DNA,
RNA or particles and under activation of NLRP3 [132]. Therefore,
the NLRP3 inflammasome is considered as an initial sensor for
danger signal(s) in myocardial I/R injury. Indeed, the inflamma-
some activator ASC is markedly overexpressed in mononuclear
cells and neutrophils infiltrated into myocardial tissues of patients
that have developed myocardial infarction. As compared to wild-
type controls, ASC�/� and caspase-1� /� mice exhibited a sig-
nificantly lower heart/body weight ratio, less inflammatory re-
sponses, and less cardiac myopathies such as myocardial fibrosis,
and less dysfunction after myocardial ischemia and reperfusion (I/
R) injury as well as development of myocardial infarction. A pi-
votal role in the early injuries occurring after myocardial I/R has
been established for infiltrating leukocytes, but likewise for the
activation of the NLRP3 inflammasome in cardiac fibroblasts. The
activation of the NLRP3 inflammasome in this setting is dependent
on ROS production [133]. In analogy to the situation after myo-
cardial I/R, Nlrp3� /� mice subjected to renal I/R are similarly
protected from injury and retain their renal function independent
from ASC and caspase-1 proteins [134]. Besides myocardial and
kidney I/R injury, NLRP3 signaling is causally involved in hepatic I/
R damage and NLRP3 gene silencing prevents this injury based on
down-regulation of caspase-1 activation and NF-κB activity [135].

The majority of cardiovascular diseases results from complica-
tions of atherosclerosis [136,137], a complex and multifactorial
disease implicated in 50% of deaths occurring in developed
countries [138]. For a long time, atherosclerosis has been merely
considered as a result of lipid accumulation that obstructs arterial
vessel wall [139]. Two centuries ago, Virchow has highlighted in-
flammation as a central cause of atherosclerosis that has been
described as endarteritis deformans [140]. After that and through
the discovery of various inflammatory markers, Ross has proposed
the concept of inflammation as a response to vascular injury
[136,141]. Hence, atherosclerosis is now defined as a chronic in-
flammatory disorder [142], in which inflammation characterizes
all phases of the pathogenic process including formation, pro-
gression and rupture of atherosclerotic plaques [143,144]. Immune
cells (macrophages and T cells), foam cells, vascular endothelial
cells, smooth muscle cells (SMCs), platelets, extracellular matrix
and a lipid rich core with extensive necrosis and fibrosis of sur-
rounding tissues constitute the basic elements of atherosclerotic
plaques [136,137].

Oxidation of low density lipoprotein (oxLDL) is a central step
contributing to the progression of atherosclerosis and endothelial
dysfunction [145] through an array of pro-atherogenic and
proinflammatory properties [146,147]. Endothelial cells, SMCs and
macrophages are the sources of oxidants implicated in the oxi-
dative modification of phospholipids [148]. The atherogenic pro-
cess is initiated by recruitment of LDL cholesterol into the arterial
wall leading to inflammatory injury and the excess of cholesterol is
partially deposited as cholesterol crystals [149,150]. Crystal-
lographic studies revealed that cholesterol monohydrate is the
predominant cholesterol species in human atherosclerotic plaques
[151]. An abundance of large extracellular cholesterol crystals can
be detected as ‘cholesterol crystal clefts’ in advanced athero-
sclerotic lesions. In addition to these tissue clefts, smaller choles-
terol crystals are frequently observed inside immune cells and in
the extracellular space [152,153]. By using confocal reflection mi-
croscopy, Rajamaki et al. showed that, in vitro, human macro-
phages are able to fully internalize the crystals by phagocytosis
despite their relatively large size. This phagocytosis leads to ac-
cumulation of cellular cholesteryl esters in macrophages [154].
Due to the intimate relationship between IL-18 [155,156] and IL-1β
[157,158] levels and atherosclerosis severity, cholesterol crystals
activate the NLRP3 inflammasome through a mechanism that
involves potassium efflux and phago-lysosomal damage [154]. In
human [154] and murine immune cells [159], the activation of the
NLRP3 inflammasome requires a priming step probably provided
by a modified form of LDL [64,159], which stimulates an NF-κB
dependent proinflammatory cascade through a receptor complex
involving either TLR4/6 homodimer and CD14 [159], or numerous
scavenger receptors like CD36 and scavenger receptor A [160,161].

Myeloid differentiation primary response protein 88 and the
kinase activity of IL-1β receptor-associated kinase-4 have also been
implicated in the NLRP3 activation mechanism [162,163]. Choles-
terol crystals phagocytosed by macrophages induce lysosomal
damage [154] leading to translocation of phago-lysosomal content
into the cytosol. The mechanism of NLRP3 activation involves
leakage of cathepsin B and L into the cytoplasm [159], lowering
intracellular potassium concentrations [154] and/or ROS formation
[44]. These intermediate steps seem to be important to activate
the NLRP3 receptor by as yet unknown processes [164,165]. In
murine primary macrophages, Menu et al. have shown that
7-ketocholesterol (oxidative cholesterol derivative) is the major
component of oxLDL present in atherosclerotic plaques that en-
hances expression of the processed form of caspase-1 in an NLRP3
inflammasome-dependent manner.

The role of ER stress in cardiovascular diseases has not been
extensively studied. However, there is increasing evidence sug-
gesting that ER stress impairs endothelial dysfunction through
initiation of oxidative stress, inflammation and endothelium
apoptosis. Therefore, ER stress appears to be important in the
pathogenesis of atherosclerosis and myocardium ischemia–re-
perfusion [166]. Recent data suggest that TXNIP is required for
NLRP3 inflammasome activation and the release of IL-1β in en-
dothelial cells in mice fed an HFD causing oxidative and in-
flammatory stress, obesity and retinal microvascular degeneration
[167]. Although TXNIP/NLRP3 inflammasome activation implicated
in the endothelial dysfunction, is regulated by AMPK activity. This
anti-inflammatory factor is highly implicated in the maintenance
of endothelial homeostasis, the activation of endothelial nitric
oxide synthase, the induction of endothelial NO production and
the protection of endothelial function against oxidative stress
[168]. It has been shown that AMPK acts as an ER stress suppressor
and its resulting inflammation in vascular endothelium. Indeed,
AMPK inhibits TXNIP activity by promoting its degradation [101]
leading to the maintenance of endothelial homeostasis and
the setting of ER stress. Regarding these findings, TXNIP appears
to play a key molecule linking ER stress with endothelium
dysfunction event, leading to inflammatory cells infiltration
and atherosclerosis initiation. In vivo studies based on double
deficient-mice ApoE�/�/Nlrp3� /� , ApoE�/�/Asc� /� and
ApoE� /�/caspase-1� /� , have shown no differences between
double knockouts and wild-type mice in the abundance of cho-
lesterol crystals in plaques, plaque macrophage infiltration,
atherosclerosis progression and plaque stability [169]. Thus, no
influence has been detected of Nlrp3, ASC or caspase-1 deficiency
on the atherogenic process in the ApoE mouse model. Compared
with ApoE� /�/IL-1βþ /þ , ApoE� /�/IL-1β�/� mice showed a sig-
nificant decrease in the size of atherosclerotic lesions in the aortic
sinus and in the percentage of the atherosclerotic area to total
aortic area up to a 30% [170]. In addition, lacking both ApoE and IL-
18 in atherosclerosis mouse models reduced the lesion size as-
sessed in the aortic root of the offspring [171] and exogenous IL-18
administration to ApoE�/� mice promoted a 2-fold increase in the
lesion size in both the ascending aorta and the aortic arch [172].
These data point to an important role of the NLRP3 activation for
the development of atherosclerosis.

Compared to wild-type, in C57BL/6 IL-1α� /� and C57BL/6
IL-1β� /� mice, the lesion area in aortic sinus was decreased on
average by 56% and 50%, respectively. In addition, aortic sinus
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lesion area in mice transplanted with IL-1α�/� bone marrow cells
was 59% lower than IL-1α/βþ /þ transplanted mice. However the
difference in lesion area between IL-1β�/� and IL-1α/βþ /þ trans-
planted mice was not statistically significant [173]. Thus, the active
IL-1α form, which is synthetized through an NLRP3 inflamma-
some-independent manner via a calpain-mediated mechanism
contributed mostly to the pathogenesis of atherosclerosis in
ApoE� /� mice [174].

According to Duewell et al., the NLRP3 inflammasome activation by
bone marrow derived cells presents the major contributor to murine
atherosclerosis. Indeed, irradiated LDL Receptor (LDLR)�/� mice
transplanted with bone marrow cells from Nlrp3� /� , Asc�/� or
IL-1β� /�/IL-1α� /� mice displayed significantly reduced plasma IL-18
levels as well as decreased total lesion size at the aortic sinus (69%)
compared to LDLR� /� mice reconstituted with wild type bone mar-
row [159]. The discrepant results obtained in these two studies, are
not quite surprising. In fact, it has been reported that ApoE� /� mice
are more hypercholesterolemic than LDLR�/� mice, even when given
the same atherogenic diet [169]. Thus, besides the specific genetic
modification of the mouse model, the development of atherosclerosis
is also influenced by the choice and the duration of the high-fat diet
[175]. Another difference between the two studies is deficiency of the
NLRP3 inflammasome components only in bone marrow cells versus
whole body double knockout of the inflammasome components [159].

Another study implicated the oxidative stress-responsive
transcription factor NF-E2-related 2 (Nrf2) in NRLP3 activation
and atherosclerosis development in ApoE�/� mice [176]. In this
model, atherosclerotic lesion size was about 50% lower in
Nrf2�/�/ApoE� /� mice than in heterogzygous Nrf2þ /�/ApoE� /�

mice. In addition, expression of bioactive IL-1α and IL-1β pro-in-
flammatory cytokines was completely abrogated after exposure of
Nrf2-deficient macrophages to cholesterol crystals. Taken together,
cholesterol crystals act as an endogenous pro-atherogenic danger
signal that triggers and sustains vascular inflammation in Nrf2-
dependent pathway. Induction of the Nrf2 signaling is required to
initiate the atherogenic effects of IL-1β and IL-1α in an NLRP3/
caspase-1-dependent as well as -independent manner [176].

Thus, although the NLRP3 inflammasome is an important
source of the active form of IL-1β and IL-18, other NLRP3-in-
dependent processes yielding those cytokines have also been im-
plicated in the pathogenesis of atherosclerosis [169]. Evidently,
further researches are needed to clarify the exact implications of
the inflammasome activation and the associated production of the
proinflammatory cytokines IL-1β/IL-18 for the atherogenic process.

In summary, despite the increased knowledge gained over the
past decade, many aspects of the biology of the host response to
danger signals via the NLRP3 inflammasome are still not well
defined or even completely unknown. Therefore, a thorough in-
vestigation of the molecular mechanisms underlying the NLRP3
inflammasome assembly and activation will be crucial to elucidate
these aspects. In addition, given the implications of NLRP3 in
several sterile immunopathologies, design and development of
novel anti-inflammatory drugs specifically targeting the NLRP3
inflammasome is highly desirable and anxiously awaited.
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