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in Esophageal Squamous Cell Carcinoma
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Esophageal squamouscell carcinoma(ESCC) isoneof themost commoncancersworldwideand thefourthmost lethal cancer inChina.How-

ever, althoughgenomic studieshave identifiedsomemutationsassociatedwithESCC,weknowlittleof themutationalprocesses responsible.

To identify genome-widemutational signatures, we performed either whole-genome sequencing (WGS) or whole-exome sequencing (WES)

on104ESCCindividuals andcombinedourdatawith thoseof88previously reportedsamples.AnAPOBEC-mediatedmutational signature in

47% of 192 tumors suggests that APOBEC-catalyzed deamination provides a source of DNA damage in ESCC. Moreover, PIK3CA hotspot

mutations (c.1624G>A [p.Glu542Lys] and c.1633G>A [p.Glu545Lys]) were enriched in APOBEC-signature tumors, and no smoking-

associated signature was observed in ESCC. In the samples analyzed by WGS, we identified focal (<100 kb) amplifications of CBX4 and

CBX8. Inourcombinedcohort,we identified frequent inactivatingmutations inAJUBA,ZNF750, andPTCH1and thechromatin-remodeling

genes CREBBP and BAP1, in addition to known mutations. Functional analyses suggest roles for several genes (CBX4, CBX8, AJUBA, and

ZNF750) in ESCC. Notably, high activity of hedgehog signaling and the PI3K pathway in approximately 60% of 104 ESCC tumors

indicates that therapies targeting these pathways might be particularly promising strategies for ESCC. Collectively, our data provide

comprehensive insights into the mutational signatures of ESCC and identify markers for early diagnosis and potential therapeutic targets.
Introduction

Esophageal carcinoma (EC) is the eighth most common

and the sixth most lethal cancer worldwide. It tends to

have a very poor prognosis as a result of the limited clinical

approaches for early diagnosis1—the 5-year survival rate

ranges from 10% to 25%.1 Clinically, this heterogeneous

disease is categorized into two subtypes: esophageal adeno-

carcinoma (EAC) and esophageal squamous cell carcinoma

(ESCC).1 Approximately 70% of the worldwide cases of

ESCC occur in China, where the highest incidences are

in the Taihang Mountains of north-central China.1 The
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risk of developing ESCC in China has been linked to fac-

tors such as dietary habits (e.g., hot food and betelnut

chewing) and family history.2 Alcohol abuse and tobacco

consumption explain nearly 90% of ESCC cases inWestern

countries but represent minor factors in China.2

The processes of DNA damage and repair, which produce

the somatic mutations in a cancer genome, leave a signa-

ture of mutation.3 Recent analyses of comprehensivemuta-

tional catalogs from a malignant melanoma and a lung

cancer revealed the characteristic mutational patterns of

UV light and tobacco carcinogens, respectively.4,5 Exome-

wide investigations have characterized somatic point
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mutations in ESCC and identified the ESCC-associated

genes ZNF750 (MIM 610226), FAT1 (MIM 600976), FAT2

(MIM 604269), and FAM135B,6,7 and point mutations in

genes such as PLCE1 (MIM 608414), XPF (MIM 133520),

ALDH2 (MIM 100650), and MTHFR (MIM 607093) show

different signatures between smokers and non-smokers

with ESCC.8–10 However, such studies have been limited

to a few genes, and it is unclear how representative these

findings are of mutational processes operative in ESCC

across the whole genome. In this study, we performed

whole-genome sequencing (WGS) of 14 and whole-exome

sequencing (WES) of 90 ESCC tumors and adjacent normal

tissue from individuals recruited from the Taihang Moun-

tains of north-central China and combined our data with

those of 88 previously reported samples to extract the

mutational signatures that cause somatic mutations in

ESCC and identify driver genes or pathways contributing

to this highly fetal disease in Chinese individuals.
Material and Methods

Samples and Clinical Data
Tumor samples and adjacent, histologically normal tissues were

obtained from 104 ESCC-affected individuals recruited from the

Taihang Mountains of north-central China. All individuals gave

their informed consent, and all samples were obtained before

treatment according to the guidelines of the institutional review

board of Shanxi Medical University (approval no. 2009029) and

the ethics committee of Henan Cancer Hospital (approval no.

2009xjs12). The tumor samples of all affected individuals had at

least 40%–50% of tumor cell content. This study was approved

by the ethics committees of the Shanxi Medical University and

Henan Cancer Hospital. The ESCC individuals collected for this

study were staged according to the Cancer Staging Standards of

the American Joint Committee on Cancer (seventh edition,

2010). The cohort of 104 ESCC individuals included 96 smoking

and 8 non-smoking individuals. Different subsets of individuals

were assayed on each platform: 14 tumors and 14matched normal

samples had data available on WGS (653 coverage), and 90 sam-

ples had data available on WES (1323 coverage); in addition, 96

of the 104 samples had target capture deep resequencing (3653

coverage). A detailed description of the clinical characteristics of

the analyzed samples is presented in Table S1. We also analyzed

our previously published ESCC mutation dataset6 of 17 WGS

and 71 WES samples recruited from the Chaoshan District of

Gongdong Province, another area of high ESCC prevalence in

China. This cohort included 57 smoking and 31 non-smoking in-

dividuals.6 The summary of next-generation sequencing analyses

in this study is shown in Figure S1.
Sequencing
For WGS, genomic DNAs extracted from 14 tumors and matched

normal tissues were randomly fragmented and purified. Standard

paired-end adaptors were ligated according to the manufacturer’s

(Illumina) protocol. Adaptor-ligated fragments were purified

with preparatory gel electrophoresis, and identical bands were

excised, resulting in two libraries per sample with inserts averaging

500 bp. Four lanes of each of the resultingWGS libraries were sub-

jected to WGS on an Illumina HiSeq 2000. Target depth (653 for
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tumors and normal samples) and at least 303 haploid coverage

were achieved in all samples.

For WES, the qualified genomic DNAs from 90 tumors and

matched normal tissues were randomly fragmented by Covaris,

ligated to Illumina sequenced adapters, and selected for lengths

from 150 to 200 bp. Extracted DNAs (150–200 bp) were then

amplified by ligation-mediated PCR (LM-PCR), purified, and hy-

bridized to the NimbleGen SeqCap EZ Exome (44M) array for

enrichment. Hybridized fragments were bound to the streptavidin

beads, whereas non-hybridized fragments were washed out after

24 hr.We then subjected captured LM-PCR products to the Agilent

2100 Bioanalyzer to estimate the magnitude of enrichment. We

independently loaded each captured library from the process

described above on three lanes of an Illumina HiSeq 2000 platform

with 90-bp paired-end reads for high-throughput sequencing to

ensure that each samplemet the desired average coverage. Raw im-

age files were processed by Illumina base-calling software (v.1.7)

with default parameters. The mean coverage achieved was 1303

in tumors and 1333 in normal tissue. A detailed description is pre-

sented in Table S2.
Mutation Detection
For detection of somatic point mutations, sequencing reads from a

Illumina HiSeq 2000 were aligned to the human reference genome

(UCSC Genome Browser hg19) with the Burrows-Wheeler Aligner.

After duplicate reads (redundant information produced by PCR)

were removed with SAMtools, an in-house pipeline was used

to call somatic mutations. In brief, we implemented SAMtools

(v.0.1.18) and VarScan (v.2.2.5) to call somatic variants. We

required a minimum depth of 103 and variant frequency of

10% for both normal and tumor samples in order to call a specific

variant at that locus. A single-nucleotide variant (SNV) was labeled

highly confident if it met the following requirements: (1) the locus

was not enriched with reads of lowmapping quality, (2) reads that

supported the SNVwere not significantly overrepresented with ba-

ses of low quality, (3) reads that supported the SNV showed no bias

toward the read end, (4) no gaps were found near the SNV locus,

and (5) the SNV was not encompassed in short repeat regions.

The indel-calling step was performed by the Genome Analysis

Toolkit SomaticIndel Detector with default parameters. The highly

confident indels were identified by an in-house pipeline and

further annotated as germline or somatic on the basis of whether

any evidence of the event at the same locus was observed in the

normal data. Finally, highly confident SNVs were annotated

with ANNOVAR and used in follow-up analysis. A full list of muta-

tion events is presented in Table S3.
Analysis of DNA Copy Number
To detect DNA copy-number alterations (CNAs), we performed

SegSeq11 to infer somatic CNA in ESCC genomes on the basis of

WGS reads. Copy numbers % 1.5 were considered to indicate de-

letions, and those R 2.5 were considered amplifications. To infer

recurrently amplified or deleted genomic regions, we re-imple-

mented the GISTIC algorithm12 by using copy numbers in 1-kb

windows as markers instead of SNP array probes. G-scores were

calculated for genomic and gene-coding regions on the basis of

the frequency and amplitude of amplification or deletion affecting

each gene. A significant CNA region was defined as having ampli-

fication or deletion with a G-score > 0.1, corresponding to a p

value threshold of 0.05 from the permutation-derived null distri-

bution. A full list of CNAs is presented in Table S4.
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Identification of Significantly Mutated Genes
To analyzemutation data and identify significantly mutated genes

(SMGs), we applied the analytical methodology MutSigCV (muta-

tion significancewith covariates) to facilitate the significance anal-

ysis with default parameters.

Pathway-Enrichment Analysis
We extended our significance analysis beyond single genes by

looking at gene sets. Pathway-enrichment analyses of genes with

non-synonymous mutations were performed with KEGG (Kyoto

Encyclopedia of Genes and Genomes) enrichment. In brief, we

performed the pathway-enrichment analysis with the Database

for Annotation, Visualization, and Integrated Discovery (v.6.7)

by examining the distribution of the non-synonymously mutated

genes identified within KEGG. Significantly altered pathways were

determined by p values calculated on the basis of hypergenometric

distribution with Benjamini correction.

Cell Lines
Normal esophageal epithelium cell lines SHEE and HEEPIC and

the following ESCC lines were used in this study: EC9706,

Eca109, TE1, TE12, TE13, Caes17, KYSE2, KYSE30, KYSE140,

KYSE150, KYSE410, KYSE510, KYSE450, and KYSE680. All were

tested and found to be free of mycoplasma contamination.

HEK293T cells were used as a packaging cell line to produce virus.

All cells were grown in DMEM with nutrient mixture F-12

(DMEM/F-12) supplemented with 10% fetal bovine serum at

37�C in 5% CO2. Endogenous products encoded by the genes of

interest were detected through real-time PCR and/or immunoblot-

ting analyses. For functional analysis of special genes, the ESCC

lines with high endogenous gene expression were used for knock-

down experiments, and ESCC lines with low gene expression were

used for forced-expression experiments.

Knockdown and Overexpression of Genes of Interest

in ESCC Lines
Lentiviral vector pLKO.1-puro and its packaging plasmids

pMD2.G and psPAX2 were obtained from Addgene. Knockdown

experiments of the special genes were performed in at least two

ESCC lines with high endogenous protein levels. Two indepen-

dent short hairpin RNAs (shRNAs) were cloned into the pLKO.1-

puro vector as described previously.13 Specifically, to produce virus

production, titration, and infection lentiviruses, we transfected

HEK293Tcells with the packaging plasmids along with the lentivi-

ral shRNA vector by using Lipofectamine 2000 reagent (Invitro-

gen) according to the manufacturer’s instructions, and we

changed the medium after 6 hr. Virus was harvested 24 hr after

transfection, passed through 0.22-mm filters, and used fresh for

shRNA infection. To perform lentiviral infections, we plated the

target ESCC cells at 40%–50% confluence and incubated them

overnight (16 hr). On the day of infections, the culture medium

was replaced with the appropriately titered viral supernatant

(1.5 ml/well) and incubated at 37�C for 24 hr; afterward, the viral

supernatant was replaced with fresh media. Forty-eight hours

later, infected cell populations were selected in puromycin

(2 mg/ml). After 5 days of selection, shRNA-knockdown efficiency

was determined by immunoblot analysis for the respective pro-

teins with the use of specific antibodies. For knockdown of special

genes in ESCC cells, two independent shRNA constructs that had

been cloned into the pLKO.1-puro vector were used (Table S5). A

non-specific targeting shRNA was also cloned into the pLKO.1-
The Am
puro vector with the use of a scrambled control (SCR). Relative

amounts of special gene product were normalized to b-actin levels.

pMSCV-puro empty vector and wild-type pMSCV-puro-ZNF750

were generous gifts from Paul A. Khavari (Stanford University).

pcDNA3-RFP empty vector and wild-type pcDNA3-RFP-AJUBA

(MIM 609066) were generous gifts from Alejandra Garcia-Catta-

neo (National Heart and Lung Institute, Imperial College Lon-

don). The wild-type versions of these genes of interest were

cloned into the pLV-EGFP(2A)-puro-GFP vector and validated by

sequencing. For overexpression experiments, we used the pLV-

EGFP(2A)-puro-GFP vector as a control. Viruses were produced

as previously described. ESCC cells with low endogenous protein

levels were infected with viruses as previously described.14

Twenty-four hours after infection, cells were subjected to subse-

quent experiments. The mutants of genes of interest were gener-

ated with the QuikChange II Site-Directed Mutagenesis Kit

(Agilent).
Fluorescence In Situ Hybridization Analysis
Tumor and matched normal tissues of ESCC individuals were cut

into pieces in PBS, swollen in 65 mmol/l KCl for 5 min at 37�C,
fixed in cold acetic acid and methanol for 5 min at 4�C, dropped
onto slides, and dried at room temperature. For interphase fluores-

cence in situ hybridization (FISH) analysis, slides were stained

with Cytocell enumeration probes against chromosomal region

5q, CBX8 (chr17: 77,768,175–77,770,915), or CBX4 (MIM

603079; chr17: 77,806,954–77,813,213). These probes were conju-

gated with fluorescein isothiocyanate (FITC) or Cy3.5 (Rainbow

Scientific). Probes against chromosomal region 5q or TMC8

(MIM 605829; located near the CBX4 and CBX8 regions) were

used as controls for verification of focal CNAs of CBX4 or CBX8.

Staining was carried out according to the manufacturer’s protocol.

FISH samples were viewed with a fully automated, upright Zeiss

Axio-ImagerZ.1 microscope with a 203 objective and DAPI,

FITC, and Rhodamine filter cubes. Images were produced with

the AxioCamMRmCCD camera and the Axiovision v.4.5 software

suite. p values were calculated with a two-sample test for equality

of proportions with continuity correction.
qPCR Copy-Number Analysis
CBX4 and CBX8 copy number was assessed in seven frozen tumor

samples and matched normal tissues. Copy numbers were deter-

mined by real-time PCR with DNA binding dye SYBR Green I

with the use of specific primer pairs that flanked coding exons of

each gene. In a final volume of 25 ml, 20 ng DNA was amplified

with SYBR Green PCR Master Mix (QIAGEN) in triplicate. RPPH1

(ribonuclease P RNA component H1 [MIM 608513]; Life Technol-

ogies, 4403328) was used as a diploid control, and TMC8 (chr17:

76,126,858–76,139,049) was used as a control located in the re-

gion near genes CBX4 and CBX8. Data were analyzed via the

comparative (delta-Ct) Ct method.
Immunoblotting
Cells were lysed for 30 min in Triton buffer (1% Triton X-100,

50 mM Tris-HCl, pH 7.6, 150 mMNaCl, 1% sodium deoxycholate,

and 0.1% SDS) supplemented with protease and phosphatase in-

hibitors (1 mM PMSF, 2 mM sodium pyrophosphate, 2 mM so-

diumbetaglycerophosphate, 1mM sodiumfluoride, 1mM sodium

orthovanadate, 10 mg/ml leupeptin, and 10 mg/ml aprotinin). Ly-

sates were cleared by centrifugation at 15,000 3 g at 4�C for

15 min, and protein concentrations were determined by the
erican Journal of Human Genetics 96, 597–611, April 2, 2015 599



Bradford method. Fifty micrograms of protein was separated by

SDS-PAGE and transferred onto Immobilon-P membranes. Pro-

teins were detected with special antibodies. Antibody binding

was detected with horseradish-peroxidase-labeled anti-mouse

(Sigma) or anti-rabbit (Cell Signaling) antibodies, and chemilumi-

nescence was detected with a LAS4000 device (Fuji). Equal protein

loading was confirmed with antibodies against b-actin (Transgen).

Detailed information on antibodies is shown in Table S5.

MTT Assay
A total of 43 103 cells were seeded in 96-well plates and incubated

in normal conditions for 24 hr. Cells were treated with 100 ml of

5 mg/ml of MTT (Invitrogen) solution for 4 hr at 37�C until crys-

tals were formed. MTT solution was removed from each well, and

100 ml of DMSOwas added to eachwell to dissolve the crystals. Co-

lor intensity was measured by Microplate Reader (Bio-Rad) at

490 nm. Each experiment consisted of four replications, and at

least three independent experiments were carried out. For cell-

death analysis, cells were treated, in duplicate, with BKM120

(10 mM), GANT61 (20 mM) or both for up to 72 hr prior to flow

cytometric analysis for determining the extent of cell death by

Annexin V/PI staining.

Migration and Invasion Assays
Migration and invasion assays were performed in 16-well CIM

plates in an xCELLigence RTCA DP System (ACEA Biosciences)

with Matrigel Basement Membrane Matrix (BD) for real-time

cell-migration analysis as described previously.15 In brief, 30,000

cells per well were seeded as five duplicates in serum-free medium

at the upper compartment of the CIM plates coated with or

without Matrigel. Serum-complemented medium was added to

the lower compartment of the chamber, and then measurement

began in the xCELLigence RTCA DP system. We analyzed the

cell-index curves to determine cell-invasion activity. For negative

controls, we added serum-free medium at both upper and bottom

chambers. The cell index representing the amount of migrated

cells was calculated with RTCA Software from ACEA Biosciences.

At least three independent experiments were carried out; for

each independent experiment, five duplicates were performed

for each group.

Colony-Formation Assay
The assay was performed as described previously.16 In brief, cells

were seeded at 300–500 cells per well in 6-well plates containing

complete DMEM/F-12 on day 0 and incubated at 37�C and 5%

CO2 for 10 days. On day 10, cells were fixed with 4% polyformal-

dehyde for 15 min and stained with 1% crystal violet before quan-

tification. The experiments were triplicated, and the numbers

of colonies containing more than 50 cells were microscopically

counted.

Real-Time qPCR
Real-time qPCR was used for measuring expression levels of genes

of interest in a subset of tumor samples or ESCC lines. The probes

or kits used in this study are shown in Table S5. All qPCR reactions

were performed in triplicate with an Applied Biosystems StepOne-

Plus. The relative expression of genes of interest was determined

by normalization to GAPDH expression via a standard-curve

method with ten serial dilutions according to the manufacturer’s

instructions. All real-time PCR experiments included a no-tem-

plate control and were done in triplicate.
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Immunohistochemistry Analysis
Immunohistochemistry was performed as previously described.17

In brief, sections were incubated with special antibody at an ideal

dilution for 14 hr at 4�C and then detected with PV8000 (Zhong-

shan) and the DAB detection kit (Maixin), producing a dark-brown

precipitate. Slides were counterstained with hematoxylin. All im-

ages were captured at 1003. The nuclear amount of the protein

of interest was analyzed with Aperio Nuclear v.9 software, and

the cytoplasmic protein amount was quantified with Aperio Cyto-

plasma 2.0 software. Statistical analyses were performed with

GraphPad Prism 5.0. The staining intensity was scored as 0 (nega-

tive), 1 (weak), 2 (moderate), or 3 (strong). The immunoreactive

score (IRS) was determined by the product of the extent score

and the intensity score. IRS values ranged from 0 to 9, which

were graded as follows: 0 (negative), 1–3 (weak), 4–6 (moderate),

and 7–9 (strong). Themedian IRSwas chosen to define the individ-

uals, and the ratio of tumor to matched normal tissue (TIRS/NIRS)

was used to compare the protein of interest with significantly

high amounts (TIRS/NIRS > 2), high amounts (1 < TIRS/NIRS < 2),

low amounts (TIRS/NIRS < 1), or no change (TIRS/NIRS ¼ 1) in tumor

tissue to that in matched normal tissue. All antibodies used in this

study are shown in Table S5.
Mouse Xenograft Assay and Immunohistochemistry
To determine the effects of ZNF750 on tumorigenesis in vivo,

we used a mouse xenograft assay with 12- to 14-week-old

BALB/c nude female mice. We injected 2 3 106 KYSE150 cells sta-

bly depleted of ZNF750, scrambled control vector, wild-type

ZNF750, or p.Ser70* ZNF750 into nude mice (n ¼ 6 mice/group).

The growth rates of xenograft tumors were measured for 4 weeks,

after which mice were sacrificed. After 28 days, tumors were

removed, snap frozen in liquid nitrogen, and stored at –80�C. Tu-
mor size was measured with calipers. Additionally, formalin-fixed

paraffin-embedded xenograft tumors were immunohistochemi-

cally stained with a monoclonal mouse Ki-67 antibody (Zhong-

shan). In brief, sections were incubated with the Ki67 antibody

working dilution for 14 hr at 4�C and then detected with

PV8000 (Zhongshan) and the DAB detection kit (Maixin), produc-

ing a dark-brown precipitate. Slides were counterstained with he-

matoxylin. All images were captured at 203. The nuclear amount

of Ki-67 was analyzed with Aperio Nuclear v.9 software. Statistical

analyses were performed with GraphPad Prism 5.0.
Statistical Analysis
The SPSS Statistics 17.0 package was employed to correlate clinical

and biological variables by means of Fisher’s test or a non-para-

metric test when necessary. Experiments were performed in tripli-

cate, and data were presented as mean 5 SD. Student’s t test was

used for statistical analysis, and data from more than two groups

were analyzed by one-way ANOVA in SPSS Statistics 19.0 and

a subsequent Fisher’s least significant difference t test. Results

were considered significant when p < 0.05. Association tests on

ZNF750 genotype and levels were performed on log-transformed

expression values by linear regression or t test.
Results

Mutational Signatures of ESCC

To extract the mutational signatures that cause somatic

mutations in ESCC and identify driver genes or pathways
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Figure 1. Three Mutational Signatures
Identified in ESCC and Their Incidence
across the 192 Tumor Samples
(A) Ninety-six substitution classifications
from WGS or WES data derived from the
192 pairs of ESCC samples, including 88
samples from Song et al.6 Mutation types
are displayed in different colors on the hor-
izontal axis. The vertical axis depicts the
percentage of mutations attributed to a
specific mutation type.
(B) The contributions of mutational signa-
tures to individual tumors. Each bar repre-
sents a sample, and samples are ordered
by the proportion of signature A found in
them. The three mutational signatures
are represented by the different colors
shown in (A). For signature A, a significant
number of mutations in a sample is
defined as more than 100 substitutions in
total or more than 25% of all mutations
in that sample. Red or black triangles in-
dicate samples harboring the PIK3CA
c.1624G>A (p.Glu542Lys) or c.1633G>A
(p.Glu545Lys) mutation, respectively.
(C) Boxplot of the proportion of C>A
transversions in individuals with or
without a smoking history. Each dot repre-
sents the proportion of C>A mutations
in one individual; Student’s t test was
used to compare the difference between
the two groups. Data represent the
mean 5 SD.
contributing to ESCC inChinese individuals, we sequenced

the genome of 104 ESCC tumors and matched adjacent

normal tissues from individuals recruited from the Tai-

hang Mountains in north-central China (Table S1). WGS

(median coverage of 653) of 14 tumors and WES (me-

dian coverage of 1323) of 90 tumors were performed

(Figure S1). The average mutation rate was 3.9 coding mu-

tations/Mb in WGS samples and 2.4 non-silent mutations/
The American Journal of Huma
Mb in WES samples (Table S2). This

rate is consistent with recently pub-

lished mutation rates in ESCC.6 A

high frequency of C>T transitions

was identified in the overall dataset18

(Figure S2A), and C>G transversions

occurred more frequently in ESCC

than in EAC19 (Figure S2B). We

selected candidate non-silent muta-

tions identified in 96 tumors for

validation by using the deep target

capture system (at least 3653). Valida-

tion rates were 97.8% for identified

SNVs and 58% for indels. We also

analyzed our previously published

ESCC mutation dataset6 of 17 WGS

and 71 WES samples recruited from

the Chaoshan District of Gongdong

Province, another area of high ESCC

prevalence in China (Figure S1E).
To identify the mutational signatures within ESCC ge-

nomes, we applied the non-negative matrix-factorization

method20 to a combined mutation set of 192 ESCC tumors

(14WGS and 90WES samples from this study and 88 from

Song et al.6) and uncovered three mutational signatures

(Figure 1 and Figure S3). Signature A was characterized by

C>G, C>T, and C>A mutations at TpCpX trinucleotides

(suggesting collateral damage following DNA-element
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retrotransposition or exogenous viruses) and was associ-

ated with mutations in the APOBEC family of cytidine de-

aminases.21–25 Moreover, hotspot mutations (c.1624G>A

[p.Glu542Lys] and c.1633G>A [p.Glu545Lys]) on the

SMG PIK3CA (MIM 171834) were significantly enriched

in ESCC tumors that had an APOBEC signature (p ¼
0.0028, Fisher’s exact test, one-sided), implicating APOBEC

activity as a key driver of PIK3CA mutagenesis in ESCC.

Signature B was characterized by an enrichment of C>T

mutations at XpCpG trinucleotides as a result of an

elevated rate of spontaneous 5-methyl-cytosine deami-

nation.26 The elevated C>T mutation rate at XpCpG

trinucleotides is a well-recognized mutational mechanism

probably due to deamination to thymine ofmethylated cy-

tosines, which are usually at XpCpGs.26 Signature C was

represented by types that, to our knowledge, are not yet

known.

Tobacco smoking is consistently reported as an impor-

tant risk factor for esophageal cancer, especially for

squamous cell carcinoma27 and gastric cancer.28 The com-

bined cohort of 192 ESCC individuals (104 from this

study and 88 from Song et al.6) included 153 smoking

and 39 non-smoking individuals (Table S1). Notably,

we observed no smoking-associated signature character-

ized by C>A mutations, which was defined by Alexandrov

et al.,29 within ESCC genomes. Furthermore, we com-

pared the proportion of C>A transversions between

smoking and non-smoking individuals and observed

no statistically significant difference (p ¼ 0.687, Fig-

ure 1C). Additionally, we found no smoking-associated

signature in 149 EACs (at least 49 of 149 individuals

with a history of smoking) from a pan-cancer study.19,29

These results indicate that the smoking-associated signa-

ture of C>A mutations is limited in EC. Considering

that epidemiological studies suggest that tobacco con-

sumption might be associated with EC,30 we speculate

that other smoking-associated signatures that have

not been recognized might contribute to malignancy of

ESCC.

CNAs of ESCC

To investigate somatic CNAs in ESCC, we applied a modi-

fied GISTIC method to profile genome segments with

CNAs in the 14 WGS tumors (Figure S4A). This analysis

yielded 126 significantly altered regions (Table S4). One

of the most significantly altered regions, 3q26.1–q29,

contains SOX2 (MIM 184429), encoding a member of the

SRY-related HMG-box family of transcription factors in-

volved in embryonic development regulation and in cell-

fate determination.31 This gene is overexpressed in ESCC

and associated with chemoresistance. Downregulation of

SOX2 might inhibit ESCC tumorigenesis and increase

sensitivity to chemotherapy.32 Notably, of the nine tumors

harboring SOX2 amplifications, we observed one focal

(defined as <100 kb) CNA containing only SOX2

(Figure S5), indicating that SOX2 is the most likely target

of 3q26 amplification in ESCC.
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Focal CNAs are more likely to contain driver genes that

confer clonal advantage, are causally implicated in onco-

genesis, and have been positively selected during the

evolution of the cancer.33 Therefore, to identify genes

affected by recurrent CNAs, we used the Integrative Geno-

mics Viewer to manually inspect the 126 significantly

altered regions. This approach identified recurrent focal

CNAs, including amplified chromosomal segments con-

taining CBX4 and CBX834,35 (Figure S4B). Amplification

of these genes was validated by FISH and qPCR copy-

number assay (Figure 2A). Of the 104 ESCC specimens,

39% and 51% of tumors had an immunoreactivity score

for CBX4 and CBX8 levels, respectively, which is at least

double that of matched normal tissue (TIRS/NIRS > 2;

Figure 2B). Moreover, silencing CBX4 and CBX8 in

KYSE2 and KYSE510 cells (which harbor high endoge-

nous expression) significantly inhibited cell proliferation,

colony formation, and cell invasion (Figures 2C–2E;

Figure S6). These results suggest that CBX4 and CBX8

amplification and the resultant protein upregulation

contribute to the development of ESCC and that they

might thus serve as potential drug targets for ESCC

treatment.

SMGs

We next applied the MutSigCV method36 to identify

SMGs in the combined 192 ESCC tumors (Figure S1E)

and discovered nine such genes driven by point muta-

tions (false discovery rate, q < 0.1) and six further genes

with p < 0.01 (Figure 3A). Eleven of these 15 genes—

including AJUBA, ZNF750, FAT1, FBXW7 (MIM 606278),

and PTCH1 (MIM 601309) and the chromatin-remodeling

genes CREBBP (MIM 600140) and BAP1 (MIM 603089)—

harbored frequent inactivating mutations. Although

AJUBA, ZNF750, FAT1, and FBXW7 were recently impli-

cated as tumor suppressors in ESCC,7,37 their roles in

mice models and the mechanisms by which they function

as tumor suppressors are limited. As in other cancers,38,39

particularly EAC,19 this analysis also identified well-known

cancer-associated genes, such as TP53 (MIM 191170),

PIK3CA, and CDKN2A (MIM 600160), as SMGs in ESCC,

thus providing evidence of common dysfunctions in cell-

cycle control and apoptotic signaling.

AJUBA, which encodes a LIM domain protein, in-

hibits the ATR-dependent DNA-damage response and is

involved in several cellular processes, such as cell-fate

determination, cytoskeletal organization, transcriptional

repression, mitotic commitment, cell-cell adhesion, and

migration.40 Along with LIMD1 (MIM 604543), AJUBA

has been proposed to be a major component of the

miRNA-mediated gene-silencing machinery and might

have a tumor-suppressive function.41 However, the bio-

logical functions of AJUBA in ESCC tumorigenesis have

never been reported. The following AJUBA mutations

were identified and verified in four tumor samples:

two stop-gain mutations (c.985G>T [p.Glu329*] and

c.1057C>T [p.Gln353*]) and two frameshift indels
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Figure 2. Amplified Genes Identified in ESCC by GISTIC
(A) CBX4 and CBX8were amplified in ESCC tumors. Left panel: immunofluorescence images show signals produced from FISH analyses
using probes specific to chromosomal region 5q (red, control) and CBX4 or CBX8 (green) in ESCC samples 3N09 and 3T09. Scale bars
represent 5 mm. Right panel: CBX4 and CBX8 copy number was assayed by qPCR in 3N09 and 3T09. RPPH1 was used as a normal refer-
ence, and TMC8 (located near this region) was used as a focal CNA control. Data represent the mean5 SD. All assays were performed in
triplicate.
(B) The amounts of CBX4 and CBX8 were increased in ESCC tumors. Representative immunohistochemistry images show CBX4 or
CBX8 levels in the same tumor. The bar graph shows the percentage of indicated individuals with different CBX4 or CBX8 levels in
the 104-individual ESCC cohort. CBX4 or CBX8 levels were based on subjective assessment of immunohistochemical staining intensity
(see Material and Methods). Scale bars represent 400 mm.
(C–E) Depletion of CBX8 in KYSE2 and KYSE510 cells significantly inhibited cell proliferation, as measured by MTT assay (C), colony-
formation assays (D), and cell invasion (E). Knockdown ofCBX8 is demonstrated by immunoblotting (bottomof C); b-actinwas used as a
loading control. Data represent the mean5 SD. At least three independent experiments were performed in triplicate. Statistical analysis
was performed with a two-sided t test. **p < 0.01, *p < 0.05.
(c.790_791insT [p.Val264fs*] and c.152delG [p.Gly51fs*])

in the 104-individual cohort and one frameshift insertion

(c.1249_1250insA [p.Ala417fs*]) and one splice-site muta-

tion in two individuals from our previous cohort6

(Figure 3B; Figure S7A; Table S3). These mutational events

result in truncated or disrupted protein products that lack

proper LIM domains, indicating that they are loss-of-func-

tion mutations, and these mutations in AJUBA, encoding

the truncated or disrupted protein, are expected to pro-

mote ESCC oncogenesis. In support of this possibility,

immunoblot analysis showed the presence of truncated

AJUBA in ESCC tumors (Figure 4A). AJUBA knockdown

in KYSE140 and KYSE510 cells led to increased cell

growth, colony formation, cell migration, and cell inva-

sion (Figure S8). Moreover, exogenous levels of wild-type

AJUBA in KYSE30 and KYSE150 cells with low endoge-

nous AJUBA levels suppressed cell growth, cell migration,

and cell invasion; these effects were abrogated by AJUBA

alterations (p.Gln353* and p.Val264fs*; Figures 4B–4F).

Together with our genetic observations, these functional

data indicate that AJUBA might act as a tumor suppressor
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in ESCC and that the AJUBA mutations observed in ESCC

abrogate its tumor-suppressive function.

Mutations in ZNF750, a tumor-associated gene located at

17q25,7 were identified in 6% of ESCC tumors. We identi-

fied 11 somatic mutations, of which we verified (via

Sanger sequencing) six, including two nonsense mutations

(c.620G>A [p.Trp207*] and c.209C>A [p.Ser70*]), one indel

(c.108_111del [p.Glu37Lysfs*]), and three missense muta-

tions (c.96T>A [p.Phe32Leu], c.1520A>C [p.Asp507Ala],

and c.1508C>G [p.Ser503Cys]) in ZNF750 in the 104-indi-

vidual cohort. In addition, five (c.414C>A [p.Cys138*],

c.770C>A [p.Ser257*], c.85C>T [p.Gln29*], c.625_626in-

sAA [p.Ala209fs*], and c.1621G>A [p.Ala541Thr]) out of

11 somatic mutations were verified by Sanger sequencing

in our previous cohort6 (n ¼ 88; Figure 3B). Sixty-four

percent of themutations identified inZNF750 are inactivat-

ing. Additionally, ZNF750 deletions, but no somatic muta-

tions, were observed in 3 out of 14 tumor samples in the

WGS set (21%, G-score > 0.23) and validated with a qPCR

copy-number assay. The qPCR copy-number assay also

determined that four out of six tumor samples harboring
erican Journal of Human Genetics 96, 597–611, April 2, 2015 603



Figure 3. Somatic Mutations of Candidate Cancer-Associated Genes, Ranked by Significance across 192 Tumors
(A) Candidate driver genes were identified via MutSigCV significance analysis. The gray histogram at the top shows the number of mu-
tations per megabase in each sample, and each rectangle represents 1 Mb. Themain section shows each mutation type for every sample,
including the total number of mutated samples per gene; mutation subtypes are denoted by color. If multiple mutations were observed
within a gene in a single sample, only one is shown. The candidate cancer-associated genes are shown on the left: genes marked by an
asterisk have a q value of <0.1. The bottom three rows indicate smoking status, drinking status, and family history. NA means that the
condition remains unknown, and ‘‘positive’’ means that the individual has the condition shown on the left. The full list of mutated
genes is provided in Table S3.
(B) A schematic representation of the domain structure of proteins (ZNF750, AJUBA, FAT1, NFE2L2, PTCH1, SUFU, CREBBP, and BAP1)
encoded by SMGs shows the location of somatic variants identified in ESCC tumors. DNAmutations and amino acid changes are shown.
The C-terminal nuclear localization sequence (NLS) of ZNF750 is shown in black.
ZNF750mutations or indels in the 90-sampleWES set were

affected bydeletions, indicating that inactivationof both al-

leles had occurred in these individuals (Figures S9A–S9C).

Notably, frequent loss of heterozygosity at 17q25.3 has

been previously reported in ESCC,42 but no gene at or near

the 17q25.3 regionwas identified.Our genetic data strongly

indicate that ZNF750 is the missing piece of this puzzle.

We next used the immunohistochemical method to

determine whether a correlation exists between these ge-

netic changes and the amount of ZNF750. As expected,

ZNF750, a nuclear factor, was strongly stained in the

nuclei of normal esophageal epithelial cells. Surprisingly,
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though, it was dramatically upregulated in the cytoplasm

of ESCC tumor cells in comparison to that of normal

tissue cells. Moreover, individuals with tumors harboring

ZNF750 mutations had higher cytoplasmic expres-

sion levels than did those lacking ZNF750 mutations

(Figure 5A). Mislocalization of a truncated (p.Ser70*)

ZNF750 (Figure 5B) indicated that cytoplasm transloca-

tion was partly caused by loss of the C-terminal nuclear

localization sequence. ZNF750 regulates the gene pro-

gram controlling terminal epidermal differentiation.43

For investigating a function for ZNF750 in tumorigenesis,

shRNA-mediated stable ZNF750 depletion was followed
015



Figure 4. AJUBA Acts as a Tumor Suppressor in ESCC
(A) Immunoblotting validation of truncated AJUBA proteins in two identified ESCC tumors.
(B–F) The effect of wild-type and altered AJUBA on cell growth, cell migration, and cell invasion, as monitored byMTTassay (C), colony-
formation assay (D), and cell-migration and cell-invasion assays in an xCELLigence RTCADP system (E and F). The presence of wild-type
AJUBA or AJUBA altered by p.Gln353* (p.Q353X) or p.Val264fs* (p.V264fs) in KYSE30 and KYSE150 cells was confirmed by immuno-
blotting with anti-AJUBA antibody, which recognizes the N terminus of AJUBA (B). These cell lines all have a low level of endogenous
AJUBA.
Data represent the mean 5 SD; three independent experiments were performed in triplicate. Statistical analysis was performed with a
two-sided t test. **p < 0.01, *p < 0.05.
by transfection with wild-type or altered (p.Ser70* or

p.Trp207*) ZNF750 in KYSE150 and KYSE140 cells.

ZNF750 knockdown strongly promoted KYSE150 and

KYSE140 cell proliferation, migration, and invasion.

Moreover, functional studies demonstrated that wild-

type ZNF750 inhibited cell growth, migration, and inva-

sion, and this effect was abrogated by altered (p.Ser70*

or p.Trp207*) ZNF750 (Figure 5C; Figures S9D and S9E).

Finally, ZNF750 depletion and p.Ser70* ZNF750 mar-

kedly increased tumor size in the xenograft system in
The Am
mice, whereas wild-type ZNF750 significantly decreased

it (Figure 5D). Our genetic observations and functional

data therefore suggest that ZNF750 acts as a tumor sup-

pressor in ESCC.

FAT1, which encodes a cadherin-like protein commonly

expressed in epithelial tissues,44 was mutated in 15%

of ESCC tumors. Notably, 13 mutations (77%) were trun-

cating (stop-gain and frameshift) (Table S3). FAT1 is

reported to regulate cell-cell adhesion and other cell

behavior by controlling actin polymerization.44 Recently,
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Figure 5. ZNF750 Acts as a Tumor Suppressor in ESCC
(A) Immunohistochemical analysis shows ZNF750 staining in esophageal tissues and matched normal tissue of ESCC-affected individ-
uals harboringwild-type ZNF750 (ZNF750-WT, second row) or nonsynonymous alterations (ZNF750-nonsynonmyous, third row). Nega-
tive and positive controls are normal skin samples (first row). Graphs (right) show nuclear (top) and cytoplasmic (bottom) amounts of
ZNF750 in ESCC and normal esophageal tissue on the basis of a subjective assessment of immunohistochemical staining intensity (see
Material and Methods, c2 test, **p < 0.01, *p < 0.05). Scale bars represent 400 mm.

(legend continued on next page)
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Morris et al. reported that FAT1 suppresses cancer cell

growth by binding b-catenin and preventing nuclear local-

ization.44 FAT1 inactivation, via mutations that affect

the cytoplasmic domain, leads to aberrant Wnt/b-catenin

signaling in multiple cancer types.45 In our cohort, we

discovered mutations affecting cadherin repeats and lami-

nin G domains but nomutations affecting the cytoplasmic

domain. This observation indicates that mutations

affecting FAT1 extracellular domains might disrupt cell-

cell associations and increase invasiveness and thus

potentially contribute to ESCC tumorigenesis. FBXW7mu-

tations were observed in eight ESCC tumors in our cohort:

these included two nonsense mutations (c.1005T>A

[p.Cys335*] and c.409G>T [p.Glu137*]), one frameshift

deletion (c.736_739del [p.Gly247Profs*] and inactivating

mutations), and five missense mutations predicted to be

deleterious by SIFT and PolyPhen-2 analyses (Table S3).46

FBXW7 mutations and copy-number loss and a subse-

quent decreased FBXW7 level have been observed in

various cancer types.46,47 Decreased amounts of FBXW7

are reported to correlate with poor prognosis;47 however,

we observed no correlation between FBXW7 mutations

and prognosis in our cohort.

Inactivating mutations in several chromatin-remodeling

genes, including CREBBP and BAP1, frequently occurred in

our 104 ESCC samples. CREBBP and EP300 (MIM 602700)

mutations occurred in 11/104 ESCC tumors (Table S3).

Inactivating CREBBP and EP300 mutations have been

reported in various human cancer types.6,48 We also

identifiedmutations in BAP1, which encodes a nuclear deu-

biquitinase involved in chromatin remodeling.49 BAP1mu-

tations have been reported in renal carcinoma and uveal

melanoma,49 but not in ESCC to date. Moreover, frequent

truncating mutations were observed in the chromatin-

remodeling genes KMT2D (MLL2 [MIM 602113]) and

KMT2C (MLL3 [MIM 606833]) (14% together) and KDM6A

(MIM 300128) (3%) (Table S3). At least one chromatin-re-

modeling gene was altered in 33/104 ESCC tumors.

Altered Pathways in ESCC

In our screen, SMGswere enriched in four pathways known

to be important in cancer, including the cell cycle,

NOTCH signaling, PI3K signaling, and cell adhesion. In

addition, analyses of theKEGGpathway revealed overrepre-

sented mutations of hedgehog (Hh) signaling and MAPK

signaling, and a high percentage of truncating mutations
(B) Immunofluorescence of FLAG-tagged wild-type ZNF750 (ZNF750-
ond and fourth rows) in KYSE150 (top) and KYSE140 (bottom) cells.
(C) Endogenous ZNF750 was stably knocked down in KYSE150 and
ZNF750 (ZNF750-WT) or the p.Ser70* (ZNF750-S70X) or p.Trp207* (
ony-formation assay. SCR indicates scramble control. The data repr
formed in triplicate. Data were statistically analyzed by a two-sided t
(D) Tumor xenografts show significant growth inhibition of cells ov
(from top to bottom) the SCR vector control, ZNF750 knockdown (ZN
(ZNF750-S70X) (n ¼ 6 per group). The graph at the bottom left sho
also shown (in the images on the right [the scale bar represents 2
mean 5 SD. **p < 0.01, *p < 0.05.
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were observed in chromatin-remodeling genes (Figure 6A).

Eleven recurrent mutated genes involving the cell-cycle

regulatory pathway were identified, and TP53, CDKN2A,

and RB1 (MIM 614041) accounted for 88%, 8%, and 2%,

respectively (Table S3). Moreover, frequent truncating

mutations were observed in KMT2D and KMT2C (14%),

CREBBP and EP300 (13%), and KDM6A (3%). Genes

involved in the PI3K-AKT-mTOR pathway were mutated in

29% of 104 tumors, and PIK3CAwas the most significantly

altered gene (17%). Immunohistochemical analysis con-

firmed the presence of PIK3CA, AKT1, and GLI1 in tumors

(comparedwithmatched normal tissue) in the 104-individ-

ual WGS and WES cohorts (Figure 6B). Hence, these data

shed light on the essential role of dysregulation of these

critical pathways in tumorigenesis of ESCC.
Discussion

In this study, we report the detailed, next-generation anal-

ysis of mutational processes underlying ESCC. By com-

bining our findings with a previous dataset, we found three

genome-wide mutational signatures for ESCC. Notably, an

APOBEC-mediated mutational signature indicates that

the APOBEC family might get access to the nucleus and

cause ESCC-associated genomic damage or mutation. The

APOBEC family can deaminate cytosine to uracil within

DNA, leading to mutation clusters in various types of can-

cer.22 Several APOBEC family members have access to the

nuclear compartment and can impede the cell cycle,

most likely through DNA deamination and the ensuing

DNA-damage response. Such genomic damage might

contribute to carcinogenesis.23,24 APOBEC3B, acting on

lentiviral replication intermediates constituting an innate

pathway of antiretroviral defense,24,25 was reported to be

present in high amounts in ESCC,7 suggesting that it

might be an attractive candidate for the mechanisms un-

derlying mutation signature A in ESCC. In our cohort

and that from Song et al.,6 at least 47% of ESCC tumors

had an APOBEC signature, suggesting that APOBEC-cata-

lyzed genomic uracil lesions are responsible for a large pro-

portion ofmutations in ESCC. Thus, the APOBEC signature

might be a potential oncogenic pathway underlying muta-

tional mechanisms in ESCC development.

Moreover, we identified several significantly amplified

focal CNAs containing two ESCC-associated genes (CBX4
WT, first and third rows) and p.Ser70* ZNF750 (ZNF750-S70X, sec-
DAPI labels the nucleus. Scale bars represent 10 mm.
KYSE140 cells and then forced to encode FLAG-tagged wild-type
ZNF750-W207X) variant. Cell proliferation was monitored by col-
esent the mean 5 SD; three independent experiments were per-
test. **p < 0.01, *p < 0.05.
erexpressing WT ZNF750. Five representative tumors are shown:
F750-si), wild-type ZNF750 (ZNF750-WT), and the p.Ser70* variant
ws tumor volumes. Immunohistochemical analyses of Ki-67 are
00 mm] and the graph at the bottom right). Data represent the
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Figure 6. Altered Pathways in ESCC
(A) Key cancer pathway components altered in ESCC. ESCC potential driver genes and their mutation frequencies were mapped to the
followingmajor groups: NOTCH signaling, PI3K pathway, p53 pathway, Hh pathway, MAPK pathway, chromatin remodeling, and regu-
lation of cell adhesion. Alteration frequencies are shown as a percentage of those in all samples; genes identified as SMGs by the Mut-
SigCV analytical method are colored in red. Excitatory (arrows) and inhibitory (black lines) interactions were taken from the KEGG
pathway database.
(B) Representative immunohistochemistry images show PIK3CA, AKT1, or GLI1 levels in tumors and matched normal tissues. The bar
graph shows PIK3CA, AKT1, or GLI1 levels on the basis of a subjective assessment of immunohistochemical staining intensity. Scale bars
represent 400 mm.
and CBX8) not previously observed in ESCC. CBX4 and

CBX8 are major transcriptional repressors that epigeneti-

cally modify chromatin and exert important functions in

cell-cycle regulation, DNA repair, cell differentiation, cell

senescence, and cell death.34 CBX4 and CBX8 expression

has been demonstrated to be upregulated in certain types

of human cancer.35 However, their amplification and bio-

logical roles have not previously been reported in ESCC.
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Our functional and clinical analyses indicate that these

genes might act as oncogenes in ESCC and thus represent

potential therapeutic targets.

In addition to identifying the well-defined cancer-associ-

ated genes TP53, NOTCH1 (MIM 190198), PIK3CA, RB1,

CDKN2A, and FBXW7, we identified recently implicated

ESCC-associated genes AJUBA, ZNF750, and FAT1 in our

combined cohort. Recently, pan-cancer studies across 21
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cancer types predicted that AJUBA and ZNF750, two SMGs

in our cohort, are associated with some types of cancer.50

Using functional studies, we found that AJUBA and

ZNF750 (previously known but with unknown function

in ESCC) act as tumor suppressors and that mutations in

these genes abrogated their tumor-suppressive effects.

Therefore, AJUBA and ZNF750 mutations encoding trun-

cated or disrupted proteins might contribute to ESCC

tumorigenesis.

Our previously published paper identified TP53, RB1,

CDKN2A, PIK3CA, NOTCH1, NFE2L2 (MIM 600492),

ADAM29 (MIM 604778), and FAM135B as SMGs on the ba-

sis of the dataset of WGS in 17 ESCC individuals and WES

in 71 individuals recruited from the Chaoshan District of

Guangdong Province, an area of high ESCC prevalence

in southern China.6 In this study, in addition to identi-

fying TP53, PIK3CA, NOTCH1, and CDKN2A, which have

been implicated previously, we further identified FBXW7,

FAT1, AJUBA, and ZNF750 as SMGs from the dataset of

WGS in 14 ESCC individuals andWES in 90 individuals re-

cruited from Shanxi and Henan provinces in the Taihang

Mountains, an area of high ESCC prevalence in northern

China. When we combined these two cohorts, we identi-

fied more SMGs, including PTCH1 and the chromatin-re-

modeling genes CREBBP and BAP1. Of these SMGs, AJUBA,

ZNF750, FAT1, and FBXW7 were identified in ESCC indi-

viduals recruited from northern China, but not in those

from southern China, which was confirmed in the cohorts

from Lin et al.7 and Gao et al.37 (individuals in their co-

horts were from the Cancer Institute and Hospital of the

Chinese Academy of Medical Sciences, where individuals

are mostly from northern China). Epidemiologic studies

have shown that in addition to smoking, alcohol con-

sumption, and family history, the known risk factors for

ESCC were thought to be hot food and N-nitroso com-

pounds in northern China, whereas chewing of fermented

areca nut has been shown to be independently associated

with ESCC in southern China.1,2 We speculate that the

different environmental carcinogens (e.g., dietary and life-

style patterns) between northern and southern China

might cause genetic diversity in ESCC individuals.

In summary, we used genomics data to pinpoint the

predominant underlying mutational processes linked to

ESCC. A signature attributed to the APOBEC family of cyti-

dine deaminases was predominant in ESCC individuals,

reflecting that this gene family contributes to cytosine mu-

tation clusters in ESCC and cancer susceptibility through

APOBEC-dependent mutational processes. Unlike the situ-

ation with lung cancer, smoking tobacco was not strongly

associated with ESCC in the Chinese population, giving in-

sights into the mutational burden not associated with this

lifestyle choice. Furthermore, we have provided functional

evidence of inactivating mutations in AJUBA and ZNF750,

amplification of CBX4 and CBX8, and genomic aberrations

targeting the cell cycle and NOTCH, PI3K, and Hh sig-

naling pathways. These results highlight the substantial

genetic alterations contributing to ESCC tumorigenesis
The Am
and provide a set of potential therapeutic targets toward

its prevention and chemotherapies. Further studies are

required to explore how APOBEC family members and

oncogenic ZNF750, AJUBA, CBX4, and CBX8 contribute

to mutagenesis in ESCC, whether these genes are prom-

ising for drug discovery, and whether the therapies target-

ing PI3K and/or Hh signaling pathways are particularly

promising strategies for ESCC.
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Figure S1. Fold coverage of whole genome and exome in the sequenced normal and tumor 

samples in 104 ESCC cohort. (A) the box plot depicts the distribution of mean coverage in 

whole-genome sequencing set. (B) the box plot depicts the distribution of fraction of bases 

covered by at least 1 reads, 4 reads, 10 reads and 20 reads across the sequencing samples in 

whole-genome sequencing set. N, normal samples; T, tumor samples. (C) the box plot depicts 
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the distribution of mean coverage in whole-exome sequencing set. (D) the box plot depicts the 

distribution of fraction of bases covered by at least 1 reads, 4 reads, 10 reads and 20 reads 

across the sequencing samples in whole-exome sequencing set. All samples were calculated 

with an average estimated tumor content of 40-50%. (E) Sequencing and analytical pipeline 

for determining somatic mutations in this study. 
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Figure S2. Mutation spectrum in 104 ESCC patients. (A) Detailed spectrum of coding-region 

mutation subtypes in ESCC. Base substitutions are divided into six categories represented by a 

different color. The entire set (n=104) shows a predominance of spontaneous deamination in C>T 

(red). (B) Comparison of mutation spectrum between EAC and ESCC (Student’s t-Test). 

Mutations were from coding regions of 16 EAC and 14 ESCC determined by WGS. Left box 

represents EAC and right one represents ESCC for each color.  

  



Figure S3. Identifying the number of process operative in 192 ESCC genomes (104 from this 

study and 88 from ref.6) based on reproducibility of signatures and low error for reconstructing 

the original catalogs. 
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Figure S4. Identified copy number alterations in WGS set. (A) Copy-number profiles in 

whole-genome sequencing set of 14 ESCCs. Copy number amplification (red) and depletion (blue) 

are plotted as a function distance along the normal genome. (B) One significant, focally amplified 

(red) region viewed by IGV is plotted along the chromosome. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S5. Amplifications of SOX2 gene identified by IGV. Focal amplification in 3T06, marked 

with red star, only contains SOX2 gene. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6. Amplified genes identified using GISTIC in ESCC. Knockdown of CBX4 in KYSE2 

and KYSE510 cells significantly inhibited cell proliferation, as measured by MTT assay (A), 

colony formation assays (B), and cell invasion (C). Knockdown of CBX4 is demonstrated by 

western blotting (bottom of a); β-actin was used as a loading control. 
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Figure S7. Validation of mutations via Sanger sequencing. (A) Sanger sequencing of tumors 

harboring AJUBA somatic mutations. Alignment of AJUBA mutation (152delG) from IGV 

(Intergative Genomics Viewer) are shown. (B) Sanger sequencing of tumors harboring ZNF750 

somatic mutations. Alignment of ZNF750 mutation (S503C) from IGV (Intergative Genomics 

Viewer) are shown. S503C was identified in 3N52-VS-3T52 patient whose tumor genomic DNA 

was unavailable for Sanger sequencing validation. (C) Sanger sequencing of tumors harboring 

PTCH1 somatic mutations. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S8. The effect on cell proliferation (MTT assay, A), colony formation (B), migration (C), 

and invasion (D) of AJUBA knockdown in KYSE140 and KYSE510 cells. These cell lines harbor 

higher level of endogenous AJUBA expression. Data represent the mean ± SD; three independent 

experiments were done; each experiment was performed in triplicate. Statistical analysis was done 

using a two-sided t-test. **P<0.01, *P<0.05. WT or mutant AJUBA expression (bottom of A) was 

confirmed by western blotting using an anti-AJUBA antibody recognizing the N-terminus of the 

AJUBA protein. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S9. ZNF750 copy number deletion and its function. (A) Copy number loss in ZNF750 

locus viewed by IGV. (B) Focal deletions at the ZNF750 locus (17q25.3) in three tumors are 

shown from IGV. Copy number was shown in Y axis. (C) ZNF750 copy number was assayed by 

qPCR in seven tumors (blue) identified harboring deletions in 14 WGS or 90 WES set. The RNase 

P gene was used as reference normal (red). Data are mean ± SD. Red asterisks indicate tumors 

also harbor ZNF750 mutations. Three primers were used to for validation of ZNF750 copy number 

deletion and all assays were performed in triplicate. (D, E) Effects on cell proliferation (MTT 

assay, D) and cell migration (E) of stable knockdown of endogenous ZNF750 followed by over 

expression of ZNF750 wild-type or ZNF750-S70X (p.Ser70*), ZNF750-W207X (p.Trp207*) 

mutants in KYSE150 (left) and KYSE140 (right) cells. ZNF750 knockdown was demonstrated by 

western blotting using an anti-ZNF750 antibody recognizing the ZNF750 C-terminus (left blot 

below D). Expression of ZNF750 mutants was confirmed using an anti-Flag antibody (right blot 

below D). β-actin was used as the loading control. Data represent the mean ± SD; three 



independent experiments were done; each experiment was performed in triplicate. Statistical 

analysis was done using a two-sided t-test. **P<0.01, *P<0.05. 
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