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Supplementary Discussion 
 
Viral glycoside hydrolases  

The 14 identified “bacteria- or archaea-like” viral glycoside hydrolases 
(GHs) had 100% Phyre2 confidence scores to bacterial and archaeal GHs in 9 
CAZy (Carbohydrate-Active Enzyme) families1, including: GH2 (β-galactosidases, 
β-glucuronidases, β-mannosidases), GH5 (endoglucanases, endomannanases), 
GH13 (α-amylases), GH16 (β-1,4/β-1,3 glucanases), GH29 (α-fucosidases), 
GH42 (β-galactosidases), GH43 (β-D-xylosidases, α-L-arabinanases, α-L-
arabinofuranosidase), GH71 (endo-1,3-α-glucosidases), and GH92 (α-
mannosidases). Of the 12 of these proteins for which catalytic residues were 
known, at least 50% of the catalytic residues were present in all but one of the 
viral GHs, with six proteins containing all necessary residues for catalysis (one α-
mannosidase, two α-fucosidases, one β-1,4-glucanase, one endo-β-1,4-
mannosidase, and one β-galactosidase) (Supplementary Table 14). One GH5 
representative was biochemically characterized in detail and exhibited hydrolysis 
of β-1,4 mannose linkages found in various substrates that include storage 
polysaccharides in plant roots and structural components of plant cell walls, 
including Sphagnum mosses indigenous to Stordalen Mire and particularly 
abundant in the bog habitat (Supplementary Fig. 10)2. Of the CAZy families 
sampled here, there were no prior viral representatives in the CAZy database for 
GH2, GH42, GH29, GH71, GH92, or GH13. Moreover, only three viral 
representatives out of ~9,000 GH5-affiliated sequences have been deposited, 
none of which had the enzymatic or structural characterization or the predicted 
mannanase activity identified here, and for GH16, there was only one viral 
representative with activity data in the CAZy database3.  

Our 14 viral GHs were found on 13 viral contigs, each from a different viral 
cluster (VC, approximately genus-level taxonomy4), suggesting no obvious signal 
for viral lineage conservation. Viral populations containing these GHs were 
detected in 34 of the 201 Stordalen Mire samples (6 palsa, 13 bog, and 15 fen), 
with coverages indicating the detection of a total of 272 genome copies for these 
viruses (73 in palsa, 100 in bog, and 99 in fen). We also searched for these GH 
PFAMs in two publicly available, large-scale viral datasets (the full Earth’s virome 



dataset5, not to be confused with the soil-associated subset of this dataset used 
elsewhere in the manuscript, and global ocean viruses (GOV)6) and detected all 
but one of the GH PFAMs in Earth’s virome but only two in GOV, perhaps 
suggesting that most of the identified GHs may be environment-specific, or at 
least uncommon in the oceans. Similar to our findings, a prior metagenomic 
study from switchgrass compost recovered a circular viral genome with a single 
GH437. 

The Stordalen Mire viruses encoding most of these GHs had unidentified 
hosts (n = 9), but one virus with a GH was predicted to infect a member of the 
Betaproteobacteria, and three viruses (encoding four GHs) were predicted to 
infect Acidobacteria. The Acidobacteria are among the most abundant microbial 
lineages in Stordalen Mire, with a variety of complex carbon degradation 
capacities, so infection by GH-containing viruses could be consistent with 
supporting host metabolism throughout the infection cycle, analogous to 
photosynthesis genes in cyanophage (see below)8. 

With cyanophage photosynthesis genes as the classic example, "auxiliary 
metabolic genes" (AMGs) are virus-encoded genes with predicted functions in 
host metabolic pathways that are not directly related to virus-specific structures 
or functions. For instance, AMGs are generally not involved in host cell 
attachment and entry, viral replication, or viral structures6, 9-13. In the oceans, 
AMGs are generally predicted (and, in some cases, have been experimentally 
shown14) to keep their hosts healthy enough through the infection cycle to 
produce more viruses13, 15. These AMGs encode essential host metabolic genes 
that could be bottlenecks in host biochemical pathways15. However, the GHs 
encoded by Stordalen Mire viruses are generally predicted to degrade complex 
carbon commonly found in indigenous plant biomass, so, compared to marine 
AMGs, these viral GHs would not seem to have the same immediate effect on 
the infected host. We hypothesize that the Stordalen Mire viral GHs could do one 
or more of the following, all of which would have the effect of breaking down 
environmental or cell surface complex carbon into simple sugars:  

1) serve to prime hosts in the immediate vicinity for the imminent "burst" of 
new viruses into the environment (i.e., break down localized complex carbon 
to yield simple sugar substrates for nearby hosts to keep those hosts healthy 
for impending viral infections). Predicted Stordalen Mire viral GH activities 
included hydrolysis of mannan (confirmed biochemically), xyloglucan, α-
arabinan, and pectin polymers, all of which are commonly found in 
nonvascular mosses (Bryophytes)16, similar to those that dominate the 
vegetation at Stordalen Mire17, 18. We consider this scenario possible, given 
the predicted and demonstrated functional congruence between the viral GH 
target substrates and the available complex polymers in the sample site. 

2) serve as a mechanism for bringing new functionality to the microbial 
hosts (i.e., viruses would be conduits for transferring GH genes from host to 
host). Viruses are known agents of horizontal gene transfer and have been 
hypothesized to move other types of GHs from host to host19. 



3) serve the virus just prior to infection, for example, viral GHs have 
previously been hypothesized to function in biofilm degradation20 and may 
increase host accessibility. 

4) be part of host cell recognition, attachment, entry, and/or virion release 
(e.g., via host capsule lipopolysaccharide and/or cell wall degradation)21-23. 
This explanation is consistent with prior studies that have shown that viruses 
encode GH genes for host entry and/or virion release, e.g., 
lysozymes/endolysins and chitinases, and genes for peptidoglycan 
degradation23-26. Novel cell-entry functions for Stordalen Mire viral GHs may 
include GH43 and/or GH42 representatives that possibly target 
arabinogalactan in the cell walls of Mycobacteria (Actinobacteria)27, or exo-
acting α-fucosidases (GH29) that target terminal fucose-containing 
capsules28. However, the compositional polysaccharide knowledge of these 
host features are lacking, impeding specific linkages to these viral GHs. 

  
Other putative AMGs 

We also attempted to identify other putative AMGs in both the initial 
VirSorter-derived PFAM annotation and the newer annotation (see Methods), 
similar to previous manual annotation scans for microbial metabolic genes in viral 
genomic data6, 29. However, results were inconclusive (i.e., putative functions 
could have been viral or may have been on regions of contigs that could not be 
unambiguously identified to be of viral origin). 

 
Advantages of partial least squares (PLS) regression analyses 

While standard regression assumes no error in predictor (X) variables, 
PLS regression (PLSR) may be considered a Type-II regression model, in that it 
does not assume zero error in predictor variables. A number of references that 
developed PLSR or advocate for its use30-33 highlight the allowance for error in 
predictor variables as one of its positive features. For example, the PLSR tutorial 
of Geladi & Kowalski (1986) emphasizes that “measured data are never noise 
free”30 and Wold et al. 2001 say that “the assumptions underlying PLS—
correlations among the X’s, noise in X, model errors—are more realistic than the 
MLR [multiple linear regression] assumptions of independent and error free 
X’s”.33 
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Supplementary Figure 1: Metagenomic and metatranscriptomic sampling locations
Aerial view of metagenomic (both yellow and pink outlines) and metatranscriptomic (pink outlines only) 
sampling locations at Stordalen Mire near Abisko, Sweden. Metagenomic samples are color-coded by 
habitat (palsa = brown, bog = green, fen = blue). Bulk soil metagenomes used for ecological and statistical 
analyses are indicated by circles (both yellow and pink outlines). Other metagenomes (rhombuses and 
squares) were used only to improve the database of viral populations that could have been detected in the 
bulk soil metagenomes. The underlying image was collected via drone and extensively manually curated 
for GPS accuracy. Sampling locations were mapped onto this image based on their GPS coordinates, as in 
Supplementary Table 1. Bulk = bulk soil, metagen. = metagenomes, metatrans. = metatranscriptomes, small 
size-fraction enriched = small size-fraction enriched metagenomes, virome = viral size-fraction 
metagenomes.

 25 m



Sequencing reads from 214 Stordalen Mire bulk soil 
metagenomes mapped to unique contigs,

average coverage depths obtained via BamM “tpmean”

Dereplication (95% nt identity)

17,434 unique contigs

22,767 contigs

6,211 contigs detected, then retained ≥ 10 kb and/or circular contigs 
with PFAM annotation consistent with viral origin (manual curation)

OTU table of viral abundances across 201 bulk soil 
metagenomes for ecological and statistical analyses

vContact and network analysis for viral taxonomy and 
comparisons to viruses in public databases

1,907 viral contigs ≥ 10 kb and/or circular 
detected in 201 of the 214 bulk soil metagenomes
(72 palsa, 64 bog, 65 fen bulk soil metagenomes)

1,575 bacterial and 
archaeal viral genomes

from NCBI’s RefSeq database
(Pruitt et al., 2009)

Initial Database of Viral Contigs and Genomes 

Viruses linked to host bacterial and archaeal 
population genomes for virus-host analyses

(host genomes from Woodcroft et al., in press)

7,093 VirSorter-recovered viral contigs
from 178 Stordalen Mire bulk soil 

metagenomes (collected 2010-2012)
53 VirSorter-recovered contigs
from 7 Stordalen Mire viromes

(collected 2014)

401 VirSorter-recovered viral contigs
from 12 Stordalen Mire small size-fraction 

enriched metagenomes (collected 2014)

12,498 VirSorter-recovered viral contigs
from  publicly available bacterial and 
archaeal genomes (Roux et al., 2015)

Mapping requirements:
≥ 70% of the contig with ≥ 1x coverage depth
≥ 95% nt identity across ≥ 90% of each read

1,147 bacterial and archaeal viral genomes 
and genome fragments in NCBI’s GenBank 
but not RefSeq Database (Roux et al., 2016)

Supplementary Figure 2: Overview of Bioinformatic Processing

Reads from initial 178 + 36 new 
 = 214 bulk soil metagenomes

Assembly + VirSorter for 
Stordalen Mire metagenomes

Viral activity assessed 
by mapping

 metatranscriptomic reads
 from 21 samples to viral 

population sequences
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Supplementary Figure 3: Accumulation curves for Stordalen Mire viral populations 
separated by habitat
Accumulation curve of viral populations. Teal traces represent 200 iterations (sample 
order randomizations), and red points are means. A. Palsa samples (n=72), B. Bog 
samples (n=65), and C. Fen samples (n=64).



Supplementary Figure 4: Viral clusters within and across datasets
Venn diagram of 1,972 viral clusters (VCs) within and across four datasets: Stordalen Mire (this study), RefSeq (prokaryotic 
viral genome sequences from NCBI’s RefSeq v75), Roux (soil-associated viral contigs >10 kb from a dataset of viral contigs 
mined from microbial isolate genomes), and Paez-Espino (soil-associated viral contigs >10 kb from a dataset of viral contigs 
mined from bulk metagenomes); VCs represent approximately genus-level taxonomy and are groups of genomes and 
contigs clustered based on shared predicted protein content. Numbers and percentages represent the total number and 
percent, respectively, of VCs shared among the dataset(s) in a given section of the diagram.



Supplementary Figure 5: Viral populations detected in metatranscriptomes
Principal coordinates analysis (PCoA) of “active” viral community composition, as 
estimated from metatranscriptomic read mapping to viral population 
sequences and Bray-Curtis dissimilarities (calculated for viral populations 
detected in at least 2 metatranscriptomes (n = 665 of 1,907)); each point is one 
sample (n=21), and the proximity of points indicates similarity in “active” viral 
community composition; ANOSIM statistics indicate the extent to which “active” 
viral community composition di�ers by habitat. 
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Supplementary Figure 6: Viral populations detected in each habitat
Euler diagram depicting unique and shared viral populations (n=1,907) across the three 
habitats (palsa, bog, and fen), based on populations detected (presence-absence) in each 
sample (n=201) through metagenomic read mapping to viral contigs; the stress value 
indicates the extent to which the diagrammatic representation recapitulates the data, 
with a stress of 0% indicating no distortion of data in the diagram.
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Supplementary Figure 7: Viral community composition within habitats by depth
Principal coordinates analysis (PCoA) of viral community composition, as derived from 
read mapping to viral contigs (n=1,907) and Bray-Curtis dissimilarities; each point is one 
sample, and the proximity of points indicates similarity in viral community composition; 
points are colored by the depth below the surface from which the core sample was 
recovered; Mantel correlation statistics indicate the extent to which viral community 
composition in a given habitat was correlated with depth. A. Palsa samples (n=72), B. Bog 
samples (n=65), and C. Fen samples (n=64).
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Supplementary Figure 8: Relationships between lineage-speci�c virus-host abundances across the thaw 
gradient (previous two pages)
The host lineage is indicated at the top of each plot. Host lineage abundance (x-axis) and the abundance of viruses 
(y-axis) for that host (both calculated as the mean coverage depth from metagenomic read mapping, normalized by 
the number of reads in the sample) are plotted for each sample. Note di�erent axis maxima among graphs. Color-
coded linear regression lines for each habitat are presented (no line for a particular habitat indicates insu�cient data). 
Linear regression and ANOVA statistics for virus-host abundances across the thaw gradient for each host lineage are in 
Table S9. Palsa n=72, bog n= 65, fen n=64.
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Supplementary Figure 9: Correlations of virus and host abundances with geochemical and environmental variables by host lineage
Pearson’s correlation coe�cients for host lineages (tops of boxes) and their viruses (bottoms of boxes), correlated with environmental and geochemical measurements 
(signi�cant when p < 0.05, values appear in Supplementary Table 12). Environmental and geochemical variables are in rows and host lineages are in columns. Pearson’s 
correlation coe�cients from 294 signi�cantly correlated abundances (p < 0.05) are depicted with an “x”; the probability of observing only 53 or more such p < 0.05 
correlations given 840 tests is less than 5% under the null hypothesis.
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Supplementary Figure 10: Viral GH5 mannanase activity characterization
A. Degradation of soluble polysaccharides by the GH5 enzyme, measured as reducing ends 
(mannose equivalents) recovered. Assays were performed in triplicate at 40 °C with 5 mg/ml 
substrate, 20 

represent standard deviations among three replicates, individual values are indicated 

B. Degradation products from soluble mannan polysaccharides by the GH5 enzyme, analyzed
by high-pH anion-exchange chromatography–pulsed amperometric detection (HPAEC-PAD) in 
triplicate. Chromatogram x-axes: retention time (min), y-axes: signal strength (nC). Iden

by blue diamonds. The mean values for KGM, CGM, and GGM were 0.936 mg/ml, 0.810 mg/ml, 
and 0.108 mg/ml, respectively. The three substrates that yielded activity contain β-1,4 mannose 
linkages. No activity was exhibited on cellulose (β-1,4 linked glucose), mixed-linkage glucans
(β-1,4/β-1,3 linked glucose), xyloglucans (β-1,4 linked glucose), or arabinoxylans (β-1,4 linked
xylose).  
 

peaks depicting mannose (M) and -1,4-mannooligosaccha rrides (M2-3) are annotated with their 
degree of polymerization (DP) as subscripts. Assay conditions were as described above, with an

concentration of 0.1M. KGM: Konjac glucomannan; CGM: Carob galactomannan; GGM: Guar
galactomannan. 
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