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ABSTRACT

MicroRNAs (miRNAs) are important post-
transcriptional regulators of gene expression
and play vital roles in various biological processes.
It has been reported that aberrant regulation of
miRNAs was associated with the development and
progression of various diseases, but the underlying
mechanisms are not fully deciphered. Here, we
described our updated TransmiR v2.0 database for
more comprehensive information about transcrip-
tion factor (TF)-miRNA regulations. 3730 TF–miRNA
regulations among 19 species from 1349 reports
were manually curated by surveying >8000 publi-
cations, and more than 1.7 million tissue-specific
TF–miRNA regulations were further incorporated
based on ChIP-seq data. Besides, we constructed a
‘Predict’ module to query the predicted TF–miRNA
regulations in human based on binding motifs
of TFs. To facilitate the community, we provided a
‘Network’ module to visualize TF–miRNA regulations
for each TF and miRNA, or for a specific disease. An
‘Enrichment analysis’ module was also included to
predict TFs that are likely to regulate a miRNA list of
interest. In conclusion, with improved data coverage
and webserver functionalities, TransmiR v2.0 would
be a useful resource for investigating the regulation
of miRNAs. TransmiR v2.0 is freely accessible at
http://www.cuilab.cn/transmir.

INTRODUCTION

MicroRNAs (miRNAs) are one class of endogenous short
non-coding RNAs (∼22 nt) that typically mediate target
mRNA degradation or translation inhibition by binding
to the 3′-untranslated regions (3′-UTRs) (1). As important
regulators of gene expression, miRNAs play crucial roles
in a variety of biological processes, such as development,
cell proliferation, differentiation, apoptosis and cellular sig-
naling (2,3). In recent years, abundant evidence has shown
that the deregulation of specific miRNA is associated with

various diseases like cancers (2,4), cardiovascular diseases
(5,6), and psychiatric disorders (7,8). However, the underly-
ing mechanism of miRNA deregulation often remains elu-
sive.

Comprehensive transcriptional networks of regulation
between transcription factors (TFs) and miRNAs are nec-
essary for understanding the deregulation of gene expres-
sion in different physiological and disease conditions (9–
12). Although there exist abundant resources for miRNA
target and transcriptomic profiling data, the knowledge-
base for TF–miRNA regulations is far from sufficient. The
reasons are two-folded. On the one hand, there are dif-
ficulties to gain accurate locations of miRNA gene tran-
scription start sites (TSSs) and therefore the locations of
miRNA promoters, because the 5′ end of primary miRNA
transcript is often rapidly sliced by Drosha in the nucleus
(13). Indeed, substantial efforts have been made to deci-
pher TF–miRNA regulations by algorithms that combine
ChIP-seq data, TF binding motifs and transcriptome pro-
files (14–18). For example, ChIPBase (15) provides regu-
latory relationships between TFs and non-coding RNAs
by parsing ChIP-seq data. CircuitDB (19) predicted tran-
scriptional regulatory circuits for human and mouse based
on motif scanning analysis. Nonetheless, without accu-
rate miRNA TSSs, it is hard to tell whether the parsed
TF–miRNA regulations are truly functional. Thanks to
the recent development of high-throughput deepCAGE se-
quencing technique, genome-wide accurate identification
of miRNA TSSs has become possible (20). As the result,
DIANA-miRGen (17) and mirTrans (16) were recently es-
tablished to incorporate comprehensive knowledge about
cell-specific miRNA TSSs and TF–miRNA regulations for
human and/or mouse.

On the other hand, however, literature-derived TF–
miRNA regulation data remain limited. Such data are criti-
cal for species where the genome-wide miRNA TSS data are
not available (i.e. actually, all species other than human and
mouse). In 2010, we established TransmiR v1.0 (21), one of
the first TF–miRNA regulation databases, based on man-
ual literature curation. Subsequently, several rounds of up-
dates have been performed to the database. Here, we present
the v2.0 version of TransmiR. With extensive manual cu-
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ration, the literature-derived TF–miRNA regulation data
from TransmiR v2.0 show 15-fold increase in comparison
with TransmiR v1.0. Besides, by combining experimentally
supported (for human, mouse and Caenorhabditis elegans)
and predicted miRNA TSSs with the comprehensive ChIP-
seq datasets, >1 million putative TF–miRNA regulations
are further included for five species. The TF–miRNA regu-
lations derived from ChIP-seq data were classified into level
1 (predicted) and level 2 (supported by high-throughput ex-
perimental data) according to the reliability of TSS anno-
tations. Finally, multiple new functional modules like net-
work visualization, TF–miRNA regulation prediction and
enrichment analysis for TF regulations are provided in the
updated web interface of the database, which will be de-
scribed in the following sections.

DATABASE CONSTRUCTION

Literature-curated TF–miRNA regulation data

When building TransmiR v2.0, we started our manual cu-
ration procedure on the basis of TransmiR v1.2, which
was launched in 2013. Therefore, we first searched PubMed
records during 2013–2017 with the keyword ‘Transcrip-
tion factor AND microRNA’ and retrieved >8000 records.
Then, we manually surveyed all of these papers and curated
TF–miRNA regulations that were supported by promoter-
related experiments (e.g. ChIP and luciferase report assays
detecting the activity of promoters). For each literature-
curated TF–miRNA regulation record, we included the
TF–miRNA regulation pair, type of regulation (i.e. activa-
tion or repression), PubMed ID and species information.
Since TFs regulate miRNAs at the transcriptional level,
we tried to map the TF–miRNA regulation annotations
to the miRNA genes. In some special cases, one miRNA
could be encoded by multiple miRNA genes, but the origi-
nal publication did not specify the miRNA gene from which
the miRNA was derived. We kept the literature-reported
miRNA names for such special cases. Besides, the names of
TFs were also standardized as official gene symbols. Fur-
thermore, we incorporated external annotations, such as
their functions and related diseases, for both the TFs and
the miRNAs. The TFs were annotated with the following
four items: Entrez gene ID, Ensembl gene ID, gene asso-
ciated diseases (from DisGeNET database (22)), and can-
cer prognostic association data (from Human Protein Atlas
database (23)). For TFs in non-human species, we tried to
map the annotations according to their human orthologs
recorded in OMA database (24). Each miRNA annota-
tion entry includes the following four external items: miR-
Base ID, genome context of this miRNA gene, miRNA as-
sociated diseases from HMDD v2.0 database (25) and a
link to miRBase database. Finally, experimentally validated
miRNA-TF feedback regulations derived from miRNA tar-
get databases (TarBase (26) and miRTarBase (27)) were also
included in TransmiR v2.0 for more comprehensive anno-
tations.

ChIP data-derived TF–miRNA regulations

According to the reliability of TSS annotations, the TF–
miRNA regulations derived from ChIP-seq data were clas-

sified into level 1 (predicted) and level 2 (supported by high-
throughput experimental data) regulations. For the level 1
records, we first downloaded all miRNA genome coordi-
nate information from miRBase v22 (28) for five species,
including Homo sapiens, Mus musculus, Rattus norvegicus,
Drosophila melanogaster and C. elegans. A group of miR-
NAs that are located within 1kb of distance on the same
genomic strand were defined as a miRNA cluster. For in-
tergenic miRNAs, we chose 5′-end of the pre-miRNA or
that of the first member in the miRNA cluster as the pu-
tative TSS. For intragenic miRNAs, we retrieved miRNA
host genes from UCSC RefGene dataset (29), and 5′-end
of the host gene was considered as the putative TSS. Next,
a window from 5 kb upstream to 1 kb downstream of
the miRNA TSS was identified as the putative promoter
based on previous studies (18,30). Apparently, this defini-
tion could cover most of miRNAs, but suffered from sub-
stantial false positives. Therefore, for the level 2 records, the
miRNA TSSs which were supported by high-throughput
experiments (31,32) were firstly identified. And the 300 bp
upstream to 100 bp downstream of each miRNA TSS was
identified as the putative promoter (33). Due to the limita-
tion of current high throughput data, the level 2 regulation
records are only available for human, mouse and C. elegans.
Finally, all promoter annotations were converted to the lat-
est genome assemblies using UCSC liftOver tool, and re-
gions that failed to be transferred were discarded.

To decode TF–miRNA regulations from ChIP-seq data,
we first downloaded tissue-specific ChIP-seq data from
the ChIP-Atlas database (http://chip-atlas.org/) with signif-
icance score threshold of 200 for the aforementioned five
species. The ChIP-Atlas database has shown excellent cov-
erage and acceptable accuracy in a recent evaluation (34).
Genome coordinates of the ChIP-seq peaks were converted
to be consistent with miRBase v22 with UCSC liftOver tool.
BEDTools (35) was used to find the overlaps between ChIP-
seq peak regions of TF binding and the miRNA promot-
ers, and finally identify the putative TF–miRNA regulations
from high-throughput data.

Predicting TF–miRNA regulations based on TF binding mo-
tifs

To gain a more comprehensive information of TF–miRNA
regulations in human, predicted TF–miRNA regulations
based on TF binding motifs were also provided. We first
downloaded the highly conservative TF binding motif data
from UCSC genome browser and scanned the miRNA
promoters in human genome to obtain the predicted TF–
miRNA regulations. The raw score and the normalized Z-
score of the predicted TF binding site were obtained accord-
ing to previous protocol (36). The predicted TF–miRNA
regulation data were classified and annotated based on the
pipeline described above.

Construction of disease-specific TF–miRNA regulatory net-
works

Based on experimentally supported TF-disease associations
and miRNA-disease associations, we tried to construct
disease-specific TF–miRNA regulatory networks. Because

http://chip-atlas.org/
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diseases recorded in HMDD v2.0 and DisGeNET database
used different disease vocabularies, we first mapped the
disease names to the MeSH terms. As the result, 45 dis-
eases which had both disease-associated TF and disease-
associated miRNA information were retained. For 24 of
them, there were sufficient regulatory relationship records
between the TFs and miRNAs in our database. Therefore,
we constructed disease-specific TF–miRNA regulatory net-
works for these diseases.

Collection of miRNA sets and enrichment analysis

MiRNA sets are defined as groups of miRNAs that have
shared functional associations. Here, miRNA sets were as-
sembled according to the regulating TFs. Based on the clas-
sification of ChIP-seq derived TF–miRNA regulation data,
we provided two types of miRNA sets, i.e. ‘Set level 1′
and ‘Set level 2′. The ‘Set level 2′ are limited to literature-
curated TF–miRNA regulations and the level 2 ChIP-seq
derived TF–miRNA regulations described above, while the
‘Set level 1′ contains all TF–miRNA regulation data. Fi-
nally, hypergeometric test (37) was used to determine the
overrepresented miRNA sets (i.e. the overrepresented reg-
ulating TFs) among a miRNA list of interest. And the P-
values for all miRNA sets were adjusted by Bonferroni and
FDR corrections, respectively.

Database implementation

In TransmiR v2.0, all of the data tables were organized
with SQLite, a lightweight database management system.
The website was developed based on Django, a Python-
originated framework. D3.JS was used to visualize the TF–
miRNA regulatory networks. The database is available at
http://www.cuilab.cn/transmir.

DATABASE OVERVIEW AND USAGE

Overview of TransmiR v2.0 database

In this major update to TransmiR v2.0, we manually cu-
rated 2852 TF–miRNA regulations from 1045 publica-
tions during 2013–2017 and included ChIP-seq derived TF–
miRNA regulation records. Currently, TransmiR v2.0 con-
tains 3730 literature-curated TF–miRNA regulations, cov-
ering 623 TFs, 785 miRNAs, 19 organisms and 1349 publi-
cations. Besides, we also provide >1.7 million TF–miRNA
regulations derived from ChIP-seq evidence in five species
(H. sapiens, M. musculus, R. norvegicus, D. melanogaster
and C. elegans). Based on the reliability of the miRNA
promoter annotations used, we further classified the TF–
miRNA regulations derived from ChIP-seq data into level
1 and level 2 regulations (the level 2 promoter is supported
by high-throughput experimental data, see more details in
the ’Database Construction’ section). The distribution of
TF–miRNA regulation data at different levels of evidence
is shown in Figure 1A. The low confidence, level 1 reg-
ulation records are more than twelve times as many as
the higher confidence, level 2 records (1 651 502 versus
134 496). The literature-curated TF–miRNA regulations
are orders of magnitude less than the ChIP-seq derived data
for all species (Figure 1B). Nevertheless, when compared

to the previous TransmiR v1.0, TransmiR v1.2 and mir-
Trans databases, the updated TransmiR v2.0 provides the
most abundant resource for literature-curated TF–miRNA
regulations (Figure 1C), with >10-fold growth of non-
redundant TF–miRNA regulations compared to TransmiR
v1.0. The quality of TF–miRNA annotations is also im-
proved in comparison with the previous versions. First,
heterogeneous TF and miRNA names from literatures are
standardized as the gene official symbols in NCBI and the
miRNA names in miRBase v22, respectively. Second, ex-
ternal annotations such as miRNA/gene–disease associa-
tions, cancer prognostic associations and miRNA-TF feed-
back regulation data are included. Third, for the ChIP-
seq derived TF–miRNA regulations and the predicted TF–
miRNA regulations based on binding motif matrices of hu-
man TFs, the genome locations and sequences of TF bind-
ing sites are also provided.

Database usage

The workflow of TransmiR v2.0 is shown in Figure 1D. De-
pending on the input, TransmiR v2.0 provides three ma-
jor functionalities: (i) database query, (ii) network visualiza-
tion and (iii) enrichment analysis. First, if users input single
miRNA or TF name, we provide a ‘fuzzy search’ function
to search the database by the full or partial names of TFs
or miRNAs in the ‘Search’ page. Each entry of search result
contains nine items, which are TF official symbol, miRNA
name, TSS location, TF binding site, action type (activat-
ing, repressing or non-specified regulation, with/without
feedback regulation), SRAID/PMID, evidence, tissue and
species (Figure 2A). The search result can also be down-
loaded by clicking the hyperlink below the entry table. The
predicted TF–miRNA regulations can be queried in a sim-
ilar way from the ‘Predict’ page. Each entry of the search
result contains eight items, which are TF official symbol,
miRNA name, TSS location, TF binding site, action type
(non-specified regulation only, with/without feedback regu-
lation), evidence, raw score and normalized Z-score. For the
results from both the ‘Search’ page and the ‘Predict’ page,
the TF binding site sequences can be obtained through the
hyperlinks on the genome locations of TF binding sites.
Second, the TF–miRNA regulation data related one TF,
one miRNA or one disease can also be graphically visual-
ized in the ‘Network’ page (Figure 2B). In disease-specific
TF–miRNA regulatory networks, all regulations between
the TFs and the miRNAs that are related to the same dis-
ease are depicted. One may intuitively infer key regula-
tors and regulatory interactions from such disease-specific
TF–miRNA regulatory networks. For example, in the TF–
miRNA regulatory network of diabetes mellitus, we found
all of the TFs (FOS, PPARG, HNF1B) with high degree
centralities were validated to be associated with diabetes
mellitus in related publications (38–40). Abundant evidence
has suggested that hsa-mir-21 was up-regulated in diabetic
patients (41). According to the TransmiR v2.0 record, it
could be transcriptionally activated by c-Fos. Interestingly,
previous reports suggested that insulin stimulation could
markedly increase c-Fos messenger RNA level in adipose
and muscle tissue of diabetic animals (38,42). Therefore, one
could infer that the activation of hsa-mir-21 may partly by

http://www.cuilab.cn/transmir
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Figure 1. The overview of TransmiR v2.0 database. (A) The composition of transcriptional regulation data in TransmiR v2.0 database. (B) The distribution
of literature-curated TF–miRNA regulation data and all evidence level TF-miRNA regulation data among different species. (C) The comparison of non-
redundant numbers of the literature-curated TF–miRNA regulations and the related publications, across different databases. (D) The workflow of TransmiR
v2.0 database. TransmiR v2.0 database website provides three major functionalities: (i) database query; (ii) network visualization and (iii) enrichment
analysis.

Figure 2. The sample results of TransmiR v2.0 database. (A) The sample database query (by TF or miRNA) result. (B) The sample network view of
TF–miRNA regulations. (C) The sample tabular view of enrichment analysis result (sorted by FDR).

the increased amount of c-Fos in diabetic patients. And this
regulation may play an important role in insulin signaling.
For example, the defects of PPAR-gamma were suggested
to be associated with increased risk of type 2 diabetes (43),
but the underlying mechanism was unclear. We noted that
PPAR-gamma is capable to decrease the transcriptional ac-
tivity of c-Fos (44). Therefore, one plausible mechanism
would be that the defects of PPAR-gamma might cause the

activation of c-Fos and then up-regulation of hsa-mir-21,
which might finally result in increased diabetes risk. Third,
if users input a list of miRNAs, an enrichment (overrepre-
sentation) analysis of TF regulations can be performed via
the ‘Enrichment analysis’ page. Users can browse the re-
sult of enrichment analysis in a new tabular view, where the
miRNA set name (i.e. the regulating TF) and the associated
statistics (P-value, Bonferroni and FDR) are shown (Fig-
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ure 2C). To exemplify the usage, we manually collected the
de-regulated miRNAs in hepatocellular carcinoma from the
previous study (45), which were validated by qRT-PCR and
The Cancer Genome Atlas (TCGA) dataset. Then, we kept
‘size of miRNA category’ setting as default and chose ‘Set
level 1′ as the background sets to perform the enrichment
analysis. We found all the significant TFs with FDR < 0.05
(i.e. TGFB1, KLF2, MKL1), were closely related to hepato-
cellular carcinoma (46–48), supporting the predictions from
the enrichment analysis. Finally, the more detailed tutorial
for the usage of TransmiR v2.0 is available in the ‘Help’ page
of the website.

CONCLUSION

Here, we present TransmiR v2.0 database. To our knowl-
edge, TransmiR v2.0 provides the most abundant resource
for literature-curated TF–miRNA regulation data, which
covers a variety of species. TransmiR v2.0 database also in-
cludes the ChIP-seq derived TF–miRNA regulations and
the predicted TF–miRNA regulations based on the bind-
ing motif matrices of human TFs, which greatly expands
our knowledge of TF–miRNA regulations. Furthermore,
TransmiR v2.0 provides more additional functionalities,
‘Network visualization’ and ‘Enrichment analysis’, which
enable better applications of our datasets for hypothesis
generation and result interpretation. For example, users
may infer potential key regulators and regulatory relation-
ships in the disease-specific TF–miRNA regulatory net-
works. And if users have a list of de-regulated miRNAs in
one specific disease condition, the potential disease-related
regulating TFs could be identified by the enrichment anal-
ysis. Finally, all the data in TransmiR v2.0 database are
freely available for academic usage. Users can download the
datasets for further analysis.

However, there are still some limitations in TransmiR
v2.0 database. First, our definition of miRNA gene TSSs
suffers from inaccuracy of high-throughput data. More im-
portantly, the experimentally supported miRNA gene TSSs
data are still limited and not always tissue-specific. Some
other related databases may complement this weak point.
For example, mirTrans includes computational annotations
of cell-specific miRNA gene TSSs based on H3K4me3 and
DHS data. And DIANA-miRGen v3.0 provides accurate
cell-line-specific miRNA gene TSSs based on RNA-seq,
ChIP-seq and DNase-seq datasets. Second, the ChIP-seq
derived TF–miRNA regulations and the predicted TF–
miRNA regulations based on the binding motif matrices
of human TFs do not specify the action type (i.e. activa-
tion or repression). One alternative solution for this prob-
lem is to integrate our TF–miRNA regulation data with
specific transcriptome dataset to compute the expression
correlations between the TF and miRNA pairs. Third, al-
though the PubMed IDs and regulatory types are supplied
for our literature-curated TF–miRNA regulations, there is
no benchmarking standard to evaluate the confidence of
the regulations. In the future, more detailed information of
literature-curated TF–miRNA regulations will be included,
which will make our manually surveyed regulation data
more reliable and enable better applications of this dataset
for bioinformatics analysis.

With the development of experimental and computa-
tional methodology, we will continue to improve and ex-
pand our literature-curated dataset and regulatory datasets
derived from ChIP-seq data. We believe that TransmiR v2.0
database will provide more helpful resources to the commu-
nity as it integrates more high-quality datasets and more
powerful tools in the future.
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