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Abstract: Due to the growing importance of cellular signaling mediated by reactive 
oxygen species (ROS), proteins that are reversibly modulated by these reactant molecules 
are of high interest. In this context, protein kinases and phosphatases, which act 
coordinately in the regulation of signal transduction through the phosphorylation and 
dephosphorylation of target proteins, have been described to be key elements in  
ROS-mediated signaling events. The major mechanism by which these proteins may be 
modified by oxidation involves the presence of key redox-sensitive cysteine residues. 
Protein kinase C (PKC) is involved in a variety of cellular signaling pathways. These 
proteins have been shown to contain a unique structural feature that is susceptible to 
oxidative modification. A large number of scientific studies have highlighted the 
importance of ROS as a second messenger in numerous cellular processes, including cell 
proliferation, gene expression, adhesion, differentiation, senescence, and apoptosis. In this 
context, the goal of this review is to discuss the mechanisms by which PKCs are modulated 
by ROS and how these processes are involved in the cellular response.  

Keywords: protein kinase C; reactive oxygen species; cell signaling 
 

OPEN ACCESS 



Int. J. Mol. Sci. 2012, 13 10698 
 
1. Introduction 

Phosphorylation, acetylation, ubiquitinylation, and glycosylation are among the most well-known 
post-translational modifications. The concept of protein oxidation as a post-translational modification 
has only recently gained acceptance. Protein oxidation occurs as an outcome of a chemical attack by 
reactive oxygen species (ROS) or reactive nitrogen species (RNS) on susceptible amino acids, such as 
tyrosine, tryptophan, histidine, lysine, methionine, and cysteine [1]. Indeed, it is important to note that 
signal transduction must occur in a coordinated manner in response to a stimulus. The key elements of 
a signaling response are reversibility and specificity [2]. In this way, an oxidation-dependent chain 
reaction may be short and employ only a low concentration of oxidants to avoid irreversible damage to 
cellular components. Thus, proteins that are reversibly modulated by these reactant molecules are of 
high interest. Kinases and phosphatases, which act coordinately in the regulation of signal transduction 
through the phosphorylation and dephosphorylation of target proteins, have been described to be key 
elements in ROS-mediated signaling events [3–6]. The major mechanism by which these proteins are 
modified by oxidation involves the presence of key redox-sensitive cysteine residues [7]. 

The goal of this review is to discuss the mechanisms by which protein kinase Cs (PKCs) can be 
modulated by ROS and how these processes are involved in the cellular response. The review will 
focus on the structural mechanism of action of ROS in the activity of these enzymes, how ROS interact 
with their target molecules, the regulation of these enzymes by oxidants, and finally the major 
consequences of this tightly controlled mechanism on cell signaling.  

2. The Protein Kinase C Family 

The PKC family is composed of serine/threonine protein kinases that are involved in a variety of 
pathways that regulate cell growth, differentiation, apoptosis, transformation and tumorigenicity. Most 
cells express more than one isoform, and each type of PKC mediates different cellular events [8,9]. 
The various PKC isoforms consist of NH2-terminal regulatory domains and COOH-terminal catalytic 
domains [10]. They also have in common the pseudosubstrate site (PS), which keeps the protein in its 
inactive form [11]. However, they differ in their structure, cofactor requirement and substrate 
specificity [11]. Thus, the 10 members of the PKC family have been divided into three major groups: 
the classical PKCs (cPKCs), including the α, βI, βII, and γ isoforms; the novel PKCs (nPKCs), including 
the θ, η, ε, δ isoforms; and the atypical PKCs (aPKCs), including the ζ and ι/λ isoforms [12–14]. The 
cPKC subfamily members possess conserved (C1–C4) and variable (V1–V5) regions, which are 
presented in Figure 1 [11,12]. They require calcium, phosphatidylserine and diacylglycerol (DAG) or 
phorbol esters for activation. The nPKCs differ from cPKCs in that they lack the C2 homologous 
domain and do not require calcium for activation. Finally, aPKCs lack both the C2 and half of the C1 
homologous domains, thus rendering them insensitive to DAG, phorbol esters, and calcium [10,15]. 
Figure 1 depicts the three classes of PKCs and their respective activators. PKCμ and PKCυ isorforms 
are now classified as members of the DAG receptor protein kinase D (PKD), which is a family of 
serine/threonine protein kinases classified as a subfamily of the Ca2+/calmodulin-dependent kinase 
(CaMK) superfamily. For a complete review of PKD see [16,17].  
  



Int. J. Mol. Sci. 2012, 13 10699 
 

Figure 1. Schematic sequence of protein kinase C (PKC) isozymes indicating the domain 
structure of the PKC subfamilies and their respective activators. 

 

2.1. Activation of PKCs  

PKC isoforms require serine/threonine phosphorylation for their activation. There are three distinct 
phosphorylation sites in the catalytic domain; the first and rate-limiting phosphorylation step occurs in 
the activation loop sequence [10,15]. Phosphoinositide-dependent kinase-1 (PDK-1) is the upstream 
kinase that directly phosphorylates the activation loop of many PKCs [10,15,18]. The activation 
cascade differs according to the PKC isoform. PDK-1 directs the activation of aPKCs, such as ζ, in a 
phosphoinositide 3-kinase (PI3K)-dependent manner. In this case, phosphorylation is regulated rather 
than constitutive. The PI3K pathway produces inositol phospholipids containing an additional 
phosphate at the third position, which activate PDK-1 and aPKC [19]. However, the phosphorylation 
at the activation loop of the cPKC and nPKC isozymes does not activate but rather promotes the 
autophosphorylation of two residues at the C-terminus. The first residue has been termed the “turn motif” 
because it is flanked by a proline residue, and the terminal site is called the “hydrophobic motif” because it 
is flanked by hydrophobic amino acid residues. The autophosphorylation produces a mature and fully 
phosphorylated enzyme that is able to respond to lipid second messengers [10,15,18,20].  

Phospholipase C (PLC) is an enzyme that, when activated by growth factor receptors, hydrolyzes 
phosphatidylinositol 4, 5-bisphosphate (PIP2) to generate DAG and inositol trisphosphate (IP3), which 
subsequently mobilize intracellular calcium [21]. In the absence of activating cofactors, such as Ca2+ 
and DAG, PKCs are maintained in an inactive conformation by binding of the PS to the  
substrate-binding cavity [11,20]. The cPKCs are activated by both DAG, which binds to the C1 
domain, and Ca2+, which binds to the C2 domain. After Ca2+ signaling, the binding of DAG to the C1 
domain increases the affinity of PKCs for membrane lipids, inducing conformational changes that lead 
to a catalytically competent form. Phorbol esters bind to the same site as DAG and mimic its  
activation [11,22,23]. Novel PKCs are independent of Ca2+ and activated directly by DAG [11]. 
Recent studies indicate the existence of another model in which cellular stimulation results in inducible 
phosphorylation at some of the three sites in PKCs [24–26]. Generally, activation is characterized by 
the translocation of the PKC from the cytosol to the plasma membrane [27]. However, the isoforms 
have different subcellular localizations, and this simple model cannot be applied for all of them.  
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2.2. PKC Receptors and Localization of Isoenzymes 

PKC isoforms are differentially distributed not only with respect to tissue but also in terms of 
subcellular localization, suggesting that each isoform could have specific functions [10,11]. 
Intracellular receptors for inactivated kinases (RICKs) and intracellular receptors for activated kinases 
(RACKs) are involved in the specific translocation of PKCs from the cytosol to different 
compartments [28,29]. RICKs and RACKs are proteins that bind PKCs in an isozyme-specific and 
saturable manner, and any PKC activator should induce the release of PKC from RICK [29]. The 
interaction of PKCs with RACKs is mediated through the PKC regulatory domain. Moreover, RACKs 
have been shown to be responsible for the different cellular distribution of the same isoform in 
different cell types [11]. 

The α, ζ and δ PKC isoforms are expressed in all tissues [28], while other isoforms are expressed in 
a tissue specific-manner, such as βI in the spleen; βII in the spleen and brain; η in keratinocytes; and θ in 
skeletal muscle, T cells and epidermis [28,30]. Atypical PKCι/λ can be found in the testis and  
insulin-secreting cells [28]. Subcellular localization varies according to organism, tissue, and stimulation. 
Different diets can also affect the expression and localization of PKC isoforms [10,19,28,31–33].  

3. Regulation of Protein Kinase C by Reactive Oxygen Species (ROS) 

Reactive oxygen species (ROS) are produced in the natural course of metabolism. They can 
originate from different sources, including the mitochondrial electron transport chain, xanthine 
oxidase, myeloperoxidase, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox 
enzymes), and lipoxygenase [3,25]. Nox enzymes and lipoxygenase are responsible for the production 
of ROS in response to hormones, growth factors and cytokines [34–36]. Among these oxygen 
metabolites are superoxide anions (O2

−), hydrogen peroxide (H2O2) and hydroxyl radicals (∙OH) [26]. 
These species are not all equally reactive with their prospective targets. Many of them have very short 
half-lives, leading to little relevance in terms of signaling. For example, the •OH is the most unstable 
radical, reflecting its limited ability to transmit signals across any significant distance. In addition, O2

− 
and H2O2 can be considered more stable species, and because of this feature, they may be the most 
favorable ROS to operate as signaling molecules [37]. ROS were once considered a dangerous product 
of cellular metabolism because, in high concentrations, they deleteriously affect DNA, lipids and 
proteins. Currently, these reactant molecules, in lower doses, are thought to act as important mediators 
of cell growth, adhesion, differentiation, senescence, and apoptosis by modifying key elements in 
protein regulatory sites [3,25]. 

In the PKC structure, two pairs of zinc fingers are found within the regulatory domain. They are 
sites of DAG and phorbol ester binding. Each zinc finger is formed by a structure that is composed of 
six cysteine residues and two zinc atoms, as presented in Figure 2. The high levels of cysteine residues 
render the regulatory domain susceptible to redox regulation [11,23]. The oxidants destroy the zinc 
finger conformation [38], and the autoinhibition is relieved, resulting in a PKC form that is 
catalytically active in the absence of Ca2+ or phospholipids. Cysteine residues are also found in the  
C-terminal catalytic domain, but they are uncoordinated in a different manner to those in the regulatory 
domain. Redox modifications at the C-terminal catalytic domain lead to the inactivation of the kinase 
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due to the loss of the free sulfhydryls required for its catalytic activity. Furthermore, the intracellular 
redox state has been shown to affect the distribution of the PKC isoforms [11,23]. Because all PKC 
isoforms possess zinc fingers and high concentration of cysteine residues located in the regulatory 
domain, as well as free sulfhydryls in the catalytic site, it seems that the regulation by oxidation is a 
common feature for this family. However, this signaling mechanism may vary according to the distinct 
isoform and different cell [11]. The aPKCs, for example, lack one of the two cysteine-rich zinc-finger 
regions in the regulatory domain [39]. This characteristic can render aPKCs to a distinct susceptibility 
of oxidative stress. In mouse embryonic fibroblasts, oxidative stress triggers translocation of PKCα, β, 
δ, and ε isoforms from the cytosol to the plasma membrane. Nevertheless, under the same conditions, 
PKCζ translocates to the nucleus [11]. PKCδ selectively regulates the activation of the inducible 
nuclear factor κB (NF-κB) in response to oxidative stress. The activation of the transcription factor 
NF-κB is often observed in cells exposed to oxidative stress [40]. In HeLa cells treated with exogenous 
H2O2 this signaling pathway was shown to be dependent of the activation of PKD by two coordinated 
signaling events: the phosphorylation of Tyr463 mediated by the Src-Abl signaling pathway, which 
then facilitates the second step, the phosphorylation of the PKD activation loop of Ser738/Ser742 by 
the Src-PKCδ pathway, leading to an increase in cell survival exposed to oxidative stress [41,42]. This 
coordinated mechanism seems to be specifically in response to oxidative stress, and relies on the 
activation of PKCδ and not of other PKC isoforms [41]. Later the same group showed that the 
resveratrol-dependent inhibition of PKD Ser738/Ser742 phosphorylation by PKCδ was able to block 
the activation of NF-κB in response to oxidative stress. Resveratrol inhibited NFκB activation by 
avoiding PKD association with IKK complex [40]. The specificity by which ROS may activate 
different PKC isoforms is not well established, but the localization and the intensity of ROS generation 
could contribute to the explanation of such different responses. 

Figure 2. Schematic representation of susceptible sites to oxidation of PKCs. 

 

4. Effect of Mitochondrial ROS Generation on PKC Activity 

In addition to hormones and growth factors, ROS are currently recognized as initiating factors for 
signaling cascades in the cell, as they are involved in numerous physiological signaling pathways and 
cellular functions. Thus, sites of ROS production within the cell, such as mitochondria, or enzymes 
that are capable of one-electron transfer to O2, such as Nox enzymes, xanthine oxidase and cytochrome 
P-450, play important roles in cellular metabolism and signaling [34–36]. 

The main superoxide producer in the cell is the respiratory chain, and the primary factor governing 
mitochondrial ROS generation is the redox state of the respiratory chain [43,44]. In fact, two of the 
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respiratory chain complexes (I and III) have long been recognized for their involvement in O2

− 
production. With respect to complex III, two components were proposed to be auto-oxidizable electron 
donors to oxygen: semiubiquinone and reduced cytochrome b. The other site in the respiratory chain 
that is involved in O2

− formation is complex I. In this large multi-subunit complex, electron transfer 
functions at near equilibrium, and thus, O2

− production may be linked to both forward electron 
transport and reverse electron transport. For a complete review, see Rigoulet et al. 2011 [45]. 

PKCs exist in an inactive form and are activated depending on their subcellular redistribution and 
the availability of the appropriate substrates after a distinct stimulus [46,47]. Currently, much evidence 
supports the direct activation of different PKC isoforms by ROS generation [23,48]. The signaling 
pathway triggered upon PKC activation by ROS depends on the specific isoform, cell type, and the site 
of ROS generation. Thus, depending on the particular condition, this mechanism can be involved in 
either cell protection or death. 

The presence of PKCs in the mitochondria has long been known, but their functions are not well 
defined [47,49]. The activation of PKCδ with phorbol myristate acetate (PMA) or H2O2 stimulates its 
accumulation in the mitochondria, and this fact can be related to apoptosis in different cell types [50–52]. 
On the other hand, accumulation of PKCε in the mitochondria was appointed a cardioprotective 
function [53]. 

In human melanoma cells, mitochondrial ROS were found to have a cytoprotective effect in cells 
treated with the chemotherapeutic silibinin. In a study performed by Jiang and colleagues [54], 
silibinin induced ROS generation in these cancer cells, with O2

− being the major species responsible 
for the activation of PLC-dependent PKCγ, which is part of a pro-survival pathway to protect the cells 
from the cytotoxicity of silibinin [54]. 

PKC activation is also involved in cell damage induced by hyperglycemia. Hyperglycemia results 
in a loss of antioxidant reducing equivalents, which culminates in an overproduction of O2

− and 
Sorbitol, the product resulting from the enzymatic conversion of glucose, can produce fructose by the 
action of sorbitol dehydrogenase. This reaction increases the ratio of NADH/NAD+, enhancing the 
oxidized form of triose phosphates with de novo synthesis of DAG. DAG can then activate several 
PKC isoforms, which can lead to various clinical complications in diabetes [55,56]. In bovine vascular 
endothelial cells, the inhibition of mitochondrial metabolism or the overexpression of uncoupling 
protein-1 (UCP1) or superoxide dismutase (SOD), the enzyme responsible for the dismutation of O2

− 
to H2O2, results in a decrease in mitochondrial ROS production, which prevents PKC activation and 
sorbitol accumulation [57].  

Mitochondrial ROS also have an important role in pulmonary vasoconstriction induced by hypoxic 
conditions. In artery smooth muscle cells that were submitted to an acute hypoxic period, an increase 
in mitochondrial ROS production was shown, followed by the activation of total PKC and PKCε. The 
experiments performed by Rathore and colleagues [58] provided support for the specificity of 
mitochondrial ROS-induced signal transduction pathways in vasoconstriction induced by hypoxia. The 
activation of PKCs in response to hypoxic conditions in pulmonary artery smooth muscle cells is 
remarkable because different responses were seen in mesenteric arteries under the same conditions. 
Moreover, the external addition of H2O2 was able to mimic hypoxic responses in normoxic conditions, 
leading to an increase in PKCε activity in pulmonary arteries. Interestingly, H2O2 also significantly 
activated PKCε in mesenteric arteries although not under hypoxic conditions [58]. These experiments 
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highlight the importance of H2O2 as a second messenger, but the effectiveness of the signal triggered 
by this molecule may also be related to the site of its production, in this case, the mitochondria. In 
hepatocytes, mitochondrial ROS generation after cell exposure to sodium arsenite (NaAsO2) was 
shown to induce PKCδ activation, which in turn activates c-Jun N-terminal kinases (JNK) leading to 
the progression of apoptosis. On the other hand, in the same study, the authors showed that  
treatment of hepatocytes with taurine was able to inhibit PKCδ and JNK activation, thus avoiding  
arsenic-induced ROS generation in the liver, preventing apoptosis [59]. In contrast, PKCδ is involved 
in γ-radiation activated signaling in splenic lymphocytes with a cytoprotective effect. In this case, 
radiotherapy treatment leaded to a decrease in the activities of antioxidant enzymes and an increase in 
cell oxidative damage. This effect was followed by an increase in PKCδ activation and degradation of 
IκBα during the earlier period of treatment. IκBα after degradation is known to release NF-κB, which 
acts in the nucleus as a transcription factor for many anti-apoptotic genes, thus indicating that the cell 
could be entering into a cytoprotective pathway. In this study, pretreatment of irradiated cells with 
curcumin-copper complex was shown to be effective in avoiding radiation-induced damage in these 
cells [60].  

ROS-induced PKC activation also has an important function in the cardioprotective signaling 
cascade. Sevoflurane, an anesthetic with the ability to protect the myocardium from ischemia and 
reperfusion injury, triggers a protective signal transduction cascade [61]. The preconditioning elicited 
by sevoflurane involves the translocation of PKCα towards the mitochondria, which is induced by an 
increase in ROS production [62]. The fundamental role of PKCα in this cardioprotective effect is  
still unclear, but the authors suggest the participation of this enzyme in an anti-apoptotic  
signaling cascade [62]. On the other hand, PKCs can be involved in apoptosis induction through 
mitochondrial ROS generation. Treatment of head and neck squamous carcinoma cells (HNSCC) with 
N-(4-hydroxyphenyl)retinamide (4HPR), a synthetic retinoid effective in cancer chemoprevention and 
therapy was shown to increase mitochondrial ROS generation, which in turns activates PKC and 
MAPK kinases (MKK4,MKK3/6). Downstream of PKC activation is the activation of p38 and ERK, 
resulting in an enhancement of apoptosis via caspase 9 and caspase 3 pathway [63]. 

In addition to interactions between receptors and ligands, other events are involved in mitochondrial 
ROS-induced PKC activation. Several studies implicate that mechanical stretch increases ROS 
production in endothelial cells [64–66]. In bovine pulmonary artery endothelial cells, strain-induced 
perturbation of the plasma membrane is involved in the release of ROS to the cytosol, thus activating 
downstream effectors involved in the mechanotransduction signaling pathway. These signals  
involve the participation of the intact actin cytoskeleton and the phosphorylation of focal adhesion 
kinase (FAK) by PKCα. In this way, PKC activation is preceded by mitochondrial ROS production in 
stretch-induced endothelial cells [67]. 

5. PKC Phosphorylates Nox Subunits for ROS Generation 

Nox enzyme is a complex multi-subunit enzyme that uses NADPH as a substrate to convert 
molecular oxygen into ROS (mainly O2

− with secondary production of H2O2) in a regulated manner in 
response to different stimuli, including growth factors, cytokines and calcium signals [68,69]. The 
prototypical Nox enzyme from phagocytic cells is divided into two parts: a membrane bound 
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component, the flavocytochrome b558, which is composed of two subunits, a large glycosylated 
gp91phox that forms the catalytic subunit and the smaller regulatory subunit p22phox, and a cytosolic 
component formed by four major proteins, the regulatory subunits p47phox, p67phox, and p40phox, 
and the small GTPase RAC [70–73]. To date, seven mammalian isoforms are known (Nox1-5,  
Duox1, 2) to be expressed in a wide variety of tissues, such as vascular smooth muscle, kidney, spleen, 
cerebrum, lungs, colon, ovary and others [74]. When cells are stimulated, the cytosolic components 
migrate almost instantly to the membrane, where they assemble with the flavocytochrome b558 to form 
the active enzyme, a process that is tightly regulated by protein-protein interactions and 
phosphorylation of the p47phox subunit [68,70–73,75].  

PKC isoforms are upstream regulators of Nox. The activity of these enzymes is important for the 
assembly and activation of the Nox1-3 isoforms, which require the phosphorylation-dependent 
assembly of several cytosolic subunits to be catalytically active; this includes p47phox, which is the 
best studied of the phosphorylated Nox enzyme components [76]. The C-terminal sequence of 
p47phox has a basic charge, is rich in serine and arginine residues and has at least one proline-rich 
region (PRR) (amino acids 363–368) [71,77]. In resting cells, p47phox is not phosphorylated and 
possesses a highly basic charge (pI > 9). Upon phosphorylation, its pI shifts to the acidic range, giving 
rise to several phosphorylated isoforms, which correspond to different phosphorylated states [71,78]. 
Different PKC isoforms in various tissues have been described to be efficient in the phosphorylation of 
the p47phox subunit, as summarized in Table 1. On the other hand, both Nox4 and Nox5 do not 
require cytosolic subunits for their activation. Nox4 is a constitutively active enzyme and is bound to 
the integral membrane protein p22phox, whereas Nox5 is primarily regulated by calcium  
levels [79,80]. 

Table 1. Protein kinase C (PKC) isoforms involved in phosphorylation of p47phox subunit. 

PKC group PKC isoform Cell/tissue type References 
Classical PKCα Kidney [81] 

PKCβ Leukemic cells; Neutrophils;  
and Monocytes. 

[46,82–85] 

Novel PKCδ Monocytes; Neuroblastoma; 
Neutrophils; and Fibroblast. 

[75,86–88] 

PKCε Pulmonary artery smooth muscle; 
and Myocytes. 

[89,90] 

Atypical PKCζ Leukocytes; Neurons; Hippocampus 
of mice; and Alveolus. 

[91–94] 

PKC is not the only protein kinase able to phosphorylate p47phox. PKA [95,96], MAPK ERK1/2 
and p38MAPK [97,98], protein casein kinase 2 (CKII) [99], AKT [100,101], p21-activated kinase  
(PAK) [102], a phosphatidic acid-activated kinase [103] and src kinase [104] have also been shown to 
phosphorylate this subunit [71]. 

A growing body of research has shown that the activation of the PKC/Nox signaling complex regulates 
ROS levels and is involved in various pathophysiological conditions, including neurodegenerative 
disorders [105,106], human cardiovascular disease, such as atherosclerosis [95,107–111],  
hypertension [112,113], renal damage [91], diabetes [114–117], and cancer [118]. 
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PKC has been shown to activate O2
− generation by Nox enzymes in several types of cells, including 

phagocytes [46,71], cardiomyocytes [100], aortic endothelial cells [107], platelets [114], and renal 
mesangial cells [119].  

The interaction between ligand and receptor is crucial to trigger the signaling pathways that involve 
the PKC and Nox enzymes. The response is different in each cell and involves distinct PKC and Nox 
isoforms. In vascular smooth muscle cells (VSMC), for example, three isoforms of Nox enzymes are 
present, Nox1, Nox2, and Nox4. They are thought to have different functions and subcellular 
localization. It seems that Nox1, when activated, is present on the cell surface and co-localizes with 
caveolins, while Nox2 can be located intracellularly or in the cell membrane. Nox4 is localized in focal 
adhesions and in nuclei [120–122]. In this model, Nox4 plays an important role in the constitutive 
production of ROS, while Nox1 would be necessary during pathological development [122–124]. 
Recently studies showed that Nox1 expression is involved in the hypertrophy of VSMCs induced by 
aldosterone and prostaglandin F2α. In both cases, the up-regulation of Nox1 may occur through the 
activation of PKCδ and the activating transcription factor 1 (ATF1) [122,125,126].  

PKC can also activate Nox2. In human monocytes and murine macrophages PI3K and PKC 
pathways are involved in Nox2 stimulation in response to insulin. This mechanism triggers ERK1/2, 
p38MAPK and NFκB, which culminates in the activation of monocytes and proliferation of 
macrophages [127]. PKC-dependent Nox2 activation was also shown in coronary artery disease. 
Despite the concomitant expression of Nox2 and Nox4 in these arteries, Nox2 represents the main 
source of superoxide production in the disease, and this was related in part by an increase in 
monocyte/macrophage infiltration, which reflects the presence of inflammatory cells. On the other 
hand, Nox4 seems to be related to smooth muscles cells or myofibroblasts and is independent of the 
pathological condition [128]. 

Several studies demonstrate that Nox4 is inducible and can generate H2O2 in response to various 
hormone stimuli. Generation of H2O2 by Nox4 after insulin stimulation of differentiated adipocytes 
was shown to be important in both early and late events in insulin signal transduction, which includes 
the activation of insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation, and the activation of 
downstream serine kinases and glucose uptake [129]. Similar results were found in preadipocytes, 
where Nox4 acts indirectly to facilitate the tyrosine phosphorylation of IRS-1, stimuli required for the 
insulin-induced differentiation of these cells [130]. Nox4 was also stimulated by H2O2 and 
diacylglycerol, through a mechanism dependent of phospholipase A2, but apparently independent of 
PKC activity. The arachidonic acid generated in this system by phospholipase A2 is responsible for the 
oxidase activation and the increase of intracellular ROS production [131], similar results were found in 
mesangial cells [132].  

It has been well established that angiotensin II exerts important intra–cellular signaling through 
ROS generation in many physiological and pathological conditions [133]. In many published works, 
angiotensin II has been shown to activate the Nox enzyme in a PKC-dependent manner [91,109,134–138]. 
Apoptosis of cardiac cells mediated by alcohol is dependent on the angiotensin II interaction with the 
angiotensin II type 1 (AT1) receptor, which subsequently activates PKCβI to phosphorylate and 
activate the Nox enzyme. Because high amounts of superoxide are generated in this process, this 
mechanism has also been related to alcoholic cardiomyopathy [134]. Angiotensin II also increased the 
basal and the NADPH stimulated superoxide production in coronary arteries, and this was found to be 
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modulated by PKC activity [128]. In addition, angiotensin II stimulates the epithelial Na+-channel in 
the rat cortical collecting duct through the activation of Nox-dependent PKC phosphorylation [135]. In 
the renal system, this receptor agonist has a stimulatory effect in a cross talk mechanism between the 
connecting tubule in the renal cortex and the afferent arteriole, which is mediated by O2

− that is 
generated primarily by PKC-dependent Nox activation [132]. In physiological conditions, angiotensin 
II also regulates O2

− generation in the thick ascending limb of the renal medulla through the activation 
of PKCα and the stimulation of NADPH oxidase [81]. This mechanism is also associated with an 
increase in sodium absorption in this renal structure [136]. Similar results were obtained for skeletal 
muscle [137] and monocytes, in which increased ROS generation by angiotensin II caused an increase 
in the level of interaction between human monocytes and the extracellular matrix by favoring adhesion 
to laminin-1 [108]. In myocytes, White and collaborators showed that this angiotensin II-dependent 
activation of PKC/Nox inhibits the Na+–K+ pump [84]. Conversely, at the same time that angiotensin 
II triggers PKC-dependent Nox enzyme activation and ROS generation, it also stimulates the activity 
of antioxidant enzymes like catalase, SOD, and glutathione peroxidase (GPx) in the rat hypothalamus, 
a counteraction mechanism that exerts local control on ROS levels [138]. 

Angiotensin II can also act as key neuromodulator in central autonomic nuclei [139,140]. Vagal 
afferent neurons, in the nucleus of the solitary tract, play a major role in cardiovascular regulation and 
are a target of angiotensin II through activation of the AT1 receptor. In these cells intracellular Ca2+ 
and PKC activation are critical for AT1 receptor-induced Nox2 activation and ROS production. The 
authors suggest that this mechanism could play a role in the vascular dysregulation mediated by the 
central autonomic system [141]. 

Phorbol esters, such as 12-O-tetradecanoylphorbol-13-acetate (TPA) or PMA, are also involved in 
PKC-dependent Nox activation. In human lung adenocarcinoma cells, the tumor-promoting TPA and 
the tumor necrosis factor-alpha (TNF-α) were implicated in the stimulation of the expression of the 
mitochondrial manganese-dependent isoform of SOD (MnSOD) mediated by the Nox enzyme 
pathway. This stimulation is in part regulated by PKCα, which phosphorylates a transcription factor of  
cAMP-responsive element-binding protein, or by the PKCε pathway, which culminates with the 
activation of forkhead transcription factor 3 (FOXO3) [142]. In a recent study, Kamiya and colleagues 
showed that the reduction of extracellular SOD and cytosolic copper/zinc SOD (Cu/ZnSOD) is 
dependent on the PKC/Nox complex during the TPA-induced monocytic differentiation of U937 cells, 
a leukemic cell line. Moreover, the nuclear factor kappa B (NF-κB) is involved only in the reduction of 
Cu/ZnSOD [143], suggesting differential regulation for both isoforms. In human umbilical vein 
endothelial cells, TNF-α was also shown to increase ROS generation via the PKCβII-dependent 
activation of vascular Nox enzyme. This mechanism has been suggested to be involved with apoptosis 
in these cells, but it occurs independently of ROS generation [144]. PMA influences the 
phosphorylation of Nox5 through the activation of the MAPK/ERK1/2 pathway, leading to an increase 
in ROS generation in fibroblasts [145] in a calcium-independent manner [146]. Although Nox5 
requires calcium for its activation, the specific phosphorylation of serine/threonine residues in Nox5 
affects the calcium sensitivity of Nox5, thus permitting its activation without a change in calcium 
levels in the cell [80,146,147]. In bovine coronary arteries, PKC is activated by phorbol  
12,13-dibutyrate (PDBu). PDBu increases superoxide generation by Nox2 through both p47phox and 
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peroxide-dependent Src activation. The authors suggest that Nox2 contributes to vascular contractile 
mechanisms through PKC-dependent activation [148].  

Several works also highlight the participation of formyl peptide formyl-methionyl-leucyl-phenylalanine 
(fMLP) in the activation of PKC and Nox enzyme. This participation includes superoxide generation, 
which in turn stimulates leukocytes, phagocytic cells, and neutrophils [46,72,84,91,149,150]. 

Although most biological functions of PKC have been recognized to occur at the plasma membrane 
or in the cytoplasm, several studies have pointed out the role of PKCs in nuclear functions [39]. 
Almost all the isoforms of PKC have been identified at nuclear level, except for the PKCμ  
isoform [39,151]. The distinct functions of PKCs in the nucleus may be a consequence of either, the 
activity of resident isoforms of the enzyme or the translocation of PKC from cytoplasm to the nucleus, 
which may occur in certain conditions and in a different cellular system, as a result of nuclear lipid 
signaling [39]. It seems that DAG is the driving force to attract cPKCs to the nucleus [39,152–155], 
while for nPKCs and aPKCs there has been no specific recognized lipid messenger for this function 
until now. However, Phosphatidylinositol (3,4,5) trisphosphate (PtdIns(3,4,5)P3), one of the products 
of PI3K family members, has been proposed to act as the driving force for the nuclear translocation of 
the aPKC isoform PKC-ζ [39,156]. This PKC-ζ translocation through PtdIns(3,4,5)P3 signaling has 
been shown in nerve growth factor (NGF)-treated rat pheochromocytoma PC-12 cells [157,158], and 
in rat epatocytes treated with C2-ceramid [159].  

The nuclear presence of PKC suggests an involvement of these enzymes in the regulation of DNA 
replication, RNA synthesis and processing, gene expression, transport between nucleus and cytoplasm, 
and chromatin structure [39]. Moreover, nuclear PKCs have been implicated in cell proliferation, 
differentiation, apoptosis, and cardiovascular diseases [39,160]. For a complete review of nuclear 
PKCs and their function in cells see [39,151,161]. 

Beside PKCs, Nox enzymes subunits have been described to be localized in subcellular 
compartments of different cells [162]. This includes the presence of Nox1 and Nox4 in endoplasmic 
reticulum [79,163], Nox2 in perinuclear compartments [164], and Nox4 at the nucleus of  
multiple kinds of cells, such as endothelial cells, VSMCs, and hepatic cells [121,165,166]. Nox4 is 
considered the predominant NADPH isozyme in the kidney with prevalent expression in the proximal 
tubule [167,168]. Regarding these concepts, recent data show that angiotensin II can induce a nuclear 
Nox4-dependent generation of ROS, through PI3K and PKC activation in isolated nuclei of cortical 
cells of kidney [169].  

6. PKC-Induced ROS Generation 

PKC also has been shown to promote the production of endogenous ROS to induce a positive 
feedback loop [48]. The β isoform of PKC induces ROS generation through mitochondrial  
damage [170]. The enzyme has two major splice variants, -βI and -βII, which result from alternative 
splicing and differ in their carboxyl-terminus and subcellular localization [171]. In melanoma, the 
reduced expression of the variant PKCβII decreases ROS generation and promotes the survival and 
growth of melanoma cells under oxidative stress conditions [172]. In chondrocytes that have lost their 
normal extracellular matrix and growth factor survival signals, the activation of PKCβI results in the 
production of mitochondrial ROS, which is required for a signal that mediates both apoptosis and 
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necrosis. Notwithstanding, in this same study, PKCδ activity was determined to be necessary for 
chondrocyte survival [48]. The PKCβ isoform is responsible for the activation/phosphorylation of the 
mitochondrial p66shc protein [173]. This protein is an alternatively spliced isoform of a growth factor 
adapter. When this isoform is activated in mitochondria, it can bind to cytochrome c, acting as an 
oxidoreductase and ROS-generating system and subsequently promoting organelle dysfunction and 
cell death [174]. In mouse embryonic fibroblasts, inhibition of PKCβ leads to the inhibition of 
mitochondrial p66shc phosphorylation, preserving mitochondrial morphology and reducing apoptosis in 
cells under oxidative stress [170].  

In myeloid leukemia cells, ROS are not necessary for the translocation of PKCβII from the cytosol 
to the cell membrane. However, PKCβII was shown to be essential for ROS production induced by the 
PKC activator TPA. This ROS-dependent mechanism is associated with the stress-activated protein 
kinase pathway (SAPK). SAPK is associated with the molecular response of myeloid leukemia cells to 
TPA, through the phosphorylation and activation of c-jun, activating transcription factor 2 (ATF2) and 
Elk-1, contributing to the induction of the c-jun and Erg-1 early response genes involved in this 
signaling process [175]. The PKCε and PKCζ isoforms are also involved in mitochondrial ROS 
production. The neuroprotective effect of the sphingolipid C2-ceramide involves the participation of 
both isoforms, which promote an increase in the formation of mitochondrial ROS and a controlled 
opening of the mitochondrial permeability transition pore. In ischemia, these events prevent 
mitochondrial calcium overload, leading to a protective effect and the prevention of cell death during 
recovery of normal cell function [176]. In skeletal myocytes and glioma cells, PKCα is translocated to 
the mitochondria after activation by PMA, resulting in mitochondrial dysfunction through a decrease 
in complex I activity and an enhancement of ROS generation [47]. 

7. Conclusions 

Because different PKC isoforms are present in a variety of cells and are involved in a number of 
signaling pathways, it is difficult to ascribe a common ROS-dependent mechanism for all PKC 
isotypes. However, it seems that under pathological conditions, a general signaling mechanism is 
triggered in mitochondrial dysfunction. In this context, an increase in ROS production by mitochondria 
activates local PKCs, which in turn activate Nox enzymes. Nox enzymes could also activate another 
group or the same group of PKCs in a feedback mechanism. Consequently, the redox state of the cell 
becomes imbalanced. Depending on the stimuli, proapoptotic signaling may occur through ROS 
activation of MAPK, such as SAPK/JNK, ERK1/2 and p38, or antiapoptotic signals ccould be 
triggered through activation of the NFκB or Akt/ASK1 pathway [177]. Figure 3 represents a general 
mechanism of cell signaling activation trough mitochondria/PKC/NADPH oxidase. This mechanism 
can be different depending on the cell and activation stimulus. More studies are necessary to elucidate 
the mechanisms that are involved in these signaling pathways.  
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Figure 3. General mechanism of cell signaling activation through mitochondria/  
PKC/ nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. In pathological 
conditions, a mitochondrial dysfunction could lead to an increase in reactive oxygen 
species (ROS) generation. ROS can directly trigger cell signaling or activate different PKC 
isoforms, depending on cell type and stimulation. Activated PKC stimulates NADPH 
oxidase, which generates ROS. These ROS could activate another group or the same group 
of PKCs in a feedback mechanism or induce cell signaling. Depending on the stimulus, it 
could lead to cell survival or death. 
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