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In solid cancers, invasionandmetastasis account formore than90%ofmortality.
However, in the current armory of anticancer therapies, a specific category of
anti-invasion and antimetastatic drugs ismissing. Here, we coin the term ‘migra-
statics’ fordrugs interferingwithallmodesofcancercell invasionandmetastasis,
to distinguish this class from conventional cytostatic drugs, which are mainly
directed against cell proliferation.We define actin polymerization and contractil-
ity as target mechanisms for migrastatics, and review candidate migrastatic
drugs. Critical assessment of these antimetastatic agents is warranted, because
they may define new options for the treatment of solid cancers.

Migrastatics [418_TD$DIFF]As Antimetastatic Drugs
Cancer is characterizedbyabnormal cellularproliferationand thepotential tospread tootherparts
of the body. Hematologic malignancies involve the blood, bone marrow, and lymphatic system,
andapredominant feature isuncontrolledclonalproliferation [1,2]. For this reason,cytotoxicdrugs
haveproventobeaneffective treatment (reviewed in [3]).Bycontrast, solidcancer isaccompanied
by local invasion and metastasis [4]. Treatment of solid cancer should be complemented with
drugs that inhibit the ability of cancer cells to invade through the extracellular matrix (ECM) and
establish secondary tumors. Since mechanisms determining clonal proliferation, cell migration,
and invasion are distinct, it is evident that drug discovery efforts should be dichotomized into
antiproliferative strategies and those directed towards mechanisms related to motility, migration
and/or invasion, and metastasis. This is important and relevant to translational therapies in solid
cancer.Candidatedrugs for solid tumorsare still evaluatedpredominantly by their ability to induce
tumorshrinkage.Progression insolidcancer isconventionallydefinedasan increase in tumorsize,
and, in a superficial sense, the equating of therapeutic efficacy with tumor shrinkage is under-
standable. However, tumor shrinkage is rarely absolute or sustained, and is not predictive of an
antimetastaticeffect.Moreover, a focusondimensiondetracts fromattention to local invasionand
metastasis, which account for more than 90% of mortality [5].

The ability to invade and metastasize is a cancer hallmark, as defined by Weinberg and
Hanahan [6]. According to Lazebnik [7], the gain of an invasive phenotype is the most important
cancer feature and the one that distinguishes malignant from benign tumors. Most morbidity
and mortality in solid cancer stem from metastases. Strikingly, this is not reflected in funding
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and efforts towards antimetastatic research (reviewed in [5]). To date, medicinal chemists
continue to focus on antiproliferative agents because tumor shrinkage is a regulatory require-
ment for approval. However, this approach underestimates the effect on cancer invasion and,
as a result, patients and oncologists bemoan the lack of antimetastatic drugs [4].

Here, we introduce the term ‘migrastatics’ (from Latin ‘migrare’ and Greek ‘statikos’) for drugs
interfering with all modes of the invasion of cancer cells and, consequently, with their ability to
metastasize. The term is used to emphasize a focus on the inhibition of local invasion and
metastasis, and to define and distinguish this class from conventional cytostatic drugs that are
mainly directed against cell proliferation. Here, we review mechanisms related to early steps in
the process leading to cancer metastasis, namely motility, directed migration, and invasion of
the transformed cancer cell. Furthermore, we provide examples of relevant natural products
and a rationale for their role asmigrastatic candidates. Recently identified syntheticmigrastatics
candidates are also discussed. To finish, we discuss toxicity and clinical implications of
migrastatics.

Requirements for the Implementation of Migrastatics
For the successful establishment of migrastatics, two main requirements need to be consid-
ered: (i) fine-tuning regulations for the approval of anticancer drugs. An emphasis on anti-
metastatic effects (related mainly to the inhibition of cancer cell motility and invasiveness) will
allow clinical evaluation of candidate drugs even in the absence of tumor shrinkage (a point
addressed elsewhere [4,8]). A precedent has already been set with checkpoint inhibitors [9];
and (ii) large-scale testing of compound libraries as well as a search for new compounds to
select drugs that display low toxicity and interfere with all modes of cancer cell motility in 3D
systems and animal models.

Although we propose here migrastatics as an independent class of drugs, it should be noted
that there is ‘nothing new under the sun’. In broad evolutionary terms, antimigratory and/or anti-
invasive mechanisms are likely to have evolved as defensive measures, and migrastatics may
be produced by several species of animals, plants, and microorganisms. Understandably,
toxicity is a key concern with botanical product-derived candidates, and bioassay-guided
fractionation of promising natural products has been helpful to identify promising pharmaco-
phores [10]. Recent medicinal chemistry efforts based on cell biology have now defined
attractive candidates for drug development [11].

Cancer Cell Invasion: A Target in Antimetastatic Intervention
During dissemination from a primary tumor, cancer cells invade the ECM most commonly in
clusters or as sheets [12], which is referred to as ‘collective migration’. This requires proteolytic
degradation at the leading edge of the invasive front and cell contractility in the following cells
[13]. Alternatively, single cancer cells can detach and invade using protease-dependent
mesenchymal migration or protease-independent amoeboid migration, or a combination of
both (Figure 1). Furthermore, many cancer cells can actively switch between these invasion
modes in response to changes in the surrounding environment and/or to escape therapy
(reviewed in [14–16]).

For example, the use of matrix metalloprotease inhibitors can arrest mesenchymal migration,
but does not halt invasion in general, because cells can undergo the mesenchymal-amoeboid
transition (MAT) and switch to protease-independent invasion [17]. Furthermore, MAT was
observed after enhancing cell contractility or in loose cell ECM [18,19]. The opposite process,
the amoeboid-mesenchymal transition (AMT), can be induced by upregulating Rac activity,
which decreases contractility [20].

4Central European Institute of
Technology, Brno University of
Technology, Brno, Czech Republic
5Charles University, Department of
Internal Medicine, Third Faculty of
Medicine, Prague, Czech Republic
6Department of Oncology, First
Faculty of Medicine, Charles
University and General University
Hospital, Prague, Czech Republic
7Ayurveda Molecular Modeling,
Hyderabad, Telangana, India
8Tumor Plasticity Laboratory, Randall
Division of Cell and Molecular
Biophysics, Guy’s Campus, King’s
College London, London, UK

*Correspondence:
victoria.sanz_moreno@kcl.ac.uk
(V. Sanz-Moreno) and
jan.brabek@natur.cuni.cz (J. Brábek).

392 Trends in Cancer, June 2017, Vol. 3, No. 6

mailto:victoria.sanz_moreno@kcl.ac.uk
mailto:jan.brabek@natur.cuni.cz


The plasticity of cancer cell invasion is further promoted by interactionswithin the tumor stroma,
where noncancer cells contribute to signaling circuits regulating invasion. For example, tumor-
associated macrophages (TAMs) produce proinvasive cytokines that not only affect invasion
directly, but also sustain the cancer-associated phenotype of proximal fibroblasts (reviewed in
[21]), which realign fibers of the ECM to facilitate cancer cell invasion (Figure 1).

An obvious follow-up question is which molecular mechanisms should be targeted by migra-
statics? Ideally, it should be thosemechanisms that are common and essential for themotility of
all migrating cancer cells derived from solid tumors (Figure 2, Key Figure).

Signaling pathways regulating cell migration are highly redundant and inhibition of a single
pathway leads almost inevitably to resistance (reviewed in [22]). In fact, resistance itself may
explain failures in targeting key, genetically stable mechanisms, since many intracellular
signaling processes are redundant. Thus, while precise targeting of suspect pathways is
possible, it is unlikely to be successful (Figure 2).

Accordingly, we propose that migrastatics should target the ultimate downstream effector
mechanisms of cell migration, such as actin polymerization and contractility, which are difficult
to bypass. It is unlikely that cancer cells will be able to substitute actin polymerization or develop
an alternative contractile apparatus. Actin polymerization and contractility satisfy the
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Figure 1. The Plasticity of Cancer Cell Invasion. Cancer cells can invade either collectively or as individual cells when
utilizing the amoeboid or mesenchymal invasion mode. Cells invading in one mode can undergo the mesenchymal-
amoeboid, or amoeboid-mesenchymal mode (MAT and AMT, respectively) in response to current conditions and signaling
within the extracellular matrix (ECM). The plasticity of invasion is further regulated by interactions with noncancer cells that
contribute to signaling circuits. Tumor-associatedmacrophages (TAMs) produce proinvasive cytokines that affect invasion
directly and sustain the cancer-associated phenotype of proximal fibroblasts. These cancer-associated fibroblasts (CAFs)
realign fibers of the ECM, which facilitates cancer cell invasion. The Rho/Rho-kinase (ROCK) pathway is crucial for many of
these interactions and, thus, its inhibition downregulates cancer cell invasion (for more details, see the main text).
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requirement for ideal migrastatics targets because these processes are required by all invasion
and/or 3D migration mechanisms irrespective of their protease dependence.

In general, the migrating cancer cell is characterized by cellular shape rearrangements involving
the formation of actin-based protrusions and new adhesions to surfaces, as well as cellular
contractility, which is required for rear retraction and cell body translocation [23,24]. The actin
cytoskeleton has a crucial role and undergoes constant reassembly during all these processes
[25]. Actin also participates in the formation of specialized invasive structures, such as
invadosomes, which are adhesive structures with proteolytic activity formed by mesenchymally
migrating cells at the cell–ECM interface [26].

In cooperation with myosin motors, actin is the key resource for cellular contraction. Together,
they form ameshwork that assembles into various structures, such as the contractile ring in the
case of cytokinesis, sarcomeres in muscle cells, stress fibers and/or blebs in migrating cells, or
bundles found at the cell cortex [27–29]. The main event regulating actomyosin contractility is
the Rho-driven activation of Rho-kinase (ROCK), which directly phosphorylates myosin light
chain (MLC) [30]. Furthermore, ROCK as well as myotonic dystrophy kinase-related CDC42-
binding kinase (MRCK), phosphorylate myosin light chain phosphatase (MLCP), which leads to
its inactivation [31,32]. Phosphorylation of both MLC and MLCP results in increased levels of
phosphorylated MLC, which promotes its ATPase activity, resulting in actomyosin contractility
(Figure 3).
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Figure 2. Cell invasion is affected by various extracellular stimuli and encompasses many signaling pathways that
ultimately regulate actomyosin contractility and actin polymerization, which are two essential mechanisms driving cell
migration. Since the signaling pathways regulating cell invasion are highly redundant, inhibition of any of these pathways
can be overcome and will result in resistance, stemming from another signaling circuit by-passing the inhibited pathway.
Thus, migrastatics should target the essential mechanisms (cell contractility and actin polymerization) to efficiently inhibit
cell invasion.
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The importance of the actin cytoskeleton during metastasis is reflected at the level of actin-
binding proteins because many of these are deregulated in metastatic cells [33,34]. So far, the
use of compounds targeting cytoskeletal dynamics has been neglected due to the abundance
and importance of cytoskeletal components and possible adverse effects. However, the
successful clinical use of microtubule-binding agents as anticancer drugs weakens this argu-
ment [35]. While the evaluation of some microtubule-binding agents has been discontinued
because of significant toxicity, others have become drugs with crucial importance for cancer
treatment, particularly vinca domain-binding agents (vincristine, vinblastine, vinorelbine, vinde-
sine, and vinflunine) and taxol domain-binding agents (paclitaxel, docetaxel, and cabazitaxel)
[35]. Moreover, natural products targeting the cytoskeleton as well as synthetic drugs deemed
too potent to elicit therapeutic benefits can now be conjugated to an appropriate protein
delivery system, thereby delivering highly cytotoxic and specific treatments to neoplastic tissue.

Candidate Migrastatic Drugs
Drugs Targeting Actin Polymerization and Function
Whereas the actin cytoskeleton is a crucial component involved in cancer cell migration, agents
targeting actin dynamics have been relatively poorly investigated (reviewed in [36]; see also
[37,38]). Consequently, in vitro pharmacological tools are needed to selectively identify this type
of agent [39]. These drugs can be categorized as compounds that destabilize the actin
cytoskeleton (e.g., cytochalasins, geodiamolides, and latrunculins) and compounds that sta-
bilize actin filaments, initiate deregulated polymerization, monomer depletion, and formation of
large actin aggregates (e.g., jasplakinolide, chondramide, and cucurbitacin E) (Figure 4).
Migrastatic drug candidates targeting actin polymerization and function, including evidence
that these drugs effectively inhibit cancer cell invasion and/or metastasis, are discussed further
below and in Table 1.

Drugs Destabilizing Actin Cytoskeleton
Cytochalasins are drugs interfering with actin polymerization characterized by a highly substi-
tuted perhydro-isoindolone structure that is attached to a macrocyclic ring. More than 60
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different cytochalasins from several species of fungi have been classified into various sub-
groups based on the size of the macrocyclic ring and the substituent of the perhydroisoindolyl-
1-one residue at the C-3 position [40]. Despite this diversity, only cytochalasins B and D have
been extensively studied for their chemotherapeutic potential. Cytochalasin D was shown to
not only inhibit invasion of AGS gastric cells, particularly after induction with LPA [41], andMDA-
MB-231 breast carcinoma cells [42], but also to promote pulmonary metastasis of B16
melanoma through the expression of tissue factor [43]. Many studies that have examined
the anticancer activity of cytochalasins concentrated their efforts on cytochalasin B because it
appears to be a safer and less toxic alternative to the more potent cytochalasin D [44]. The
antimetastatic effects of Cytochalasin B have been well known since the late 1970s [45]. It was
shown to inhibit the metastasis of mouse B16-F10 mouse melanoma cells [46] and Madison
109mouse lung carcinoma cells [47]. In the latter, an immunosuppressive effect of cytochalasin
B was observed, although the same group later showed that this immunosuppression could be
completely abolished through the introduction of human recombinant interleukin-2 [48].

Geodiamolides are actin-targeting drugs that disrupt actin filaments and are derived from
marine sponges. These compounds are cyclodepsipeptides and have the ability to potently
stabilize actin fibers in a manner comparable with phalloidin; however, in contrast to phalloidin,
they are freely cell permeable, rendering them exciting targets for drug development (reviewed
in [49]). Geodiamolide H was shown to inhibit invasiveness of human breast cancer Hs578T
cells when tested in vitro at concentrations of 60–120 nM [50].
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Figure 4. Potential Candidates for Migrastatics. Drugs targeting the actin cytoskeleton are suitable candidates for the inhibition of cell invasion because they
impair both amoeboid andmesenchymal invasion. Chosen groups of migrastatic agents are depicted. Drugs interfering with actin dynamics include actin cytoskeleton-
destabilizing drugs (cytochalasins, latrunculins, and geodiamolide H) and actin filament-stabilizing drugs (jasplakinolide, chondramide, and cucurbitacin). TR100, a
tropomyosin inhibitor, disrupts the actin cytoskeleton by affecting its stability. Other drugs target actomyosin contractility, such as blebbistatin (an inhibitor of non-
muscle myosin II) or inhibitors (e.g., Y-27632, BDP5290, CCT129254, or AT13148) that target kinases involved in the regulation of actomyosin contractility. The group
of kinase inhibitors is emphasized because they have shown the potential to inhibit cell invasion in in vivo experiments. For more detail on certain drugs, refer to the main
text.
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Table 1. Selected [35_TD$DIFF]Q6 Migrastatic Candidates

Structure Target Activity Models [36_TD$DIFF]Refs
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Latrunculins are microfilament-directed agents, also derived from marine sponges, that inhibit
actin polymerization through the sequestration of G-actin monomers [51]. The compound
structure is a 14- or 16-membered macrolide base attached to a 2-thiazolidinone moiety [52].
Latrunculin A was found to inhibit the invasion of the tumorigenic AdoMetDC transformants of
murine fibroblasts [53], the human breast cancer G3S1 cell line [54] and HeLa-O3 cells [55].
Latrunculin A and its derivatives, latrunculin A-17-O-carbamates, inhibited the invasiveness of
human prostate cancer PC3 cells and T47D breast carcinoma cells [56]. Other semisynthetic
derivatives of Latrunculin A (acetylated, esterified, and N-alkylated) exhibited anti-invasive
effects against MDA-MB-231 cells [57]. Latrunculin A also inhibited the peritoneal dissemina-
tion of human gastric carcinomaMKN45 and NUGC-4 cells [58], making it a good candidate for
a migrastatic drug against carcinoma cells.

Table 1. (continued)

Structure Target Activity Models [36_TD$DIFF]Refs
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Drugs Stabilizing Actin Cytoskeleton
Another actin-targeting drug derived from marine sponges is jasplakinolide, which promotes
actin polymerization and stabilizes actin filaments. Its binding to F-actin is competitive with
phalloidin [59]. Jasplakinolide is a cyclodepsipeptide containing a tripeptide moiety linked to a
polypeptide chain [59]. It was found to reduce lung metastases of systemic Lewis lung
carcinoma [60].

Chondramides are cyclodepsipeptides isolated from the myxobacterium Chondromycescro-
catus crocatus [61]. Their binding to F-actin is competitive with phalloidin. Chondramides inhibit
the invasion of human MDA-MB-231 breast carcinoma and inhibit metastasis of 4T1 breast
carcinoma cells to the lung without acute toxicity [62], which supports their role as a migrastatic
drug.

Cucurbitacin E, a natural product of plants from the family Cucurbitaceae, inhibits the
depolymerization of actin filaments by specifically binding to filamentous actin, forming a
covalent bond at residue Cys257 [63]. In animal experiments, intraperitoneal administrations
of cucurbitacin E significantly inhibited breast tumor metastasis to the lung without affecting
apoptosis or proliferation of inoculated 4T1 and MDA-MB-231 breast cancer cells [64].

Drugs Targeting Contractility
Actomyosin contractility is required for both cell deformability and rear retraction, key mecha-
nisms in amoeboid and mesenchymal invasion, respectively (reviewed in [14,65]; Figure 3).
Accordingly, there is clear evidence for a role of ROCK/MRCK/MLC activation in enhancing
tumor cell invasion and metastasis via direct effects on amoeboid or mesenchymal cancer cell
invasion [66] and/or via indirect effects on cancer-associated fibroblasts to increase ECM
stiffness and facilitate cancer cell movement [65,67] (Figure 1). As described in detail below,
there is increasing evidence that inhibiting contractility chemically decreases cancer cell
invasiveness and metastasis.

Contractility targeting drugs can be categorized as inhibitors that target actin (chondramides),
tropomyosin (TR100), myosin (blebbistatin), MLC kinase (MLCK) (ML-7 andML-9), ROCK (e.g.,
fasudil, Y-27632, H-1152, Wf-536, RKI-1447, and RKI-18), MRCK (e.g., BDP5290), ROCK/
MRCK (e.g., DJ4) and ROCK/PKA/PKB (e.g., CCT129254 and AT13148) (Figure 4).

Tropomyosin Inhibitors
A novel class of anti-tropomyosin compounds has been developed that preferentially disrupt
the actin cytoskeleton of tumor cells, thus impairing tumor cell motility. The lead compound,
TR100, is effective in vitro and in vivo in reducing melanoma cell invasive outgrowth and tumor
cell growth in neuroblastoma and melanoma models at a low micromolar range. Importantly, in
testing for potential adverse effects of the treatment, TR100 was shown to have no adverse
impact on cardiac structure and function in a mouse xenograft model [68], making it a good
candidate for a migrastatic drug.

Myosin Inhibitors
Blebbistatin is a 1-phenyl-2-pyrrolidinone derivative capable of inhibiting non-muscle myosin II
activity. It was shown to inhibit the invasiveness of pancreatic adenocarcinoma [69], mesen-
chymally invading BE human colon carcinoma cells and MDA-MB-231 human breast
carcinoma cells [32], 501mel melanoma cells [70], 4T1 breast cancer cells [71], MCF7/6 breast
cancer cells [72], A337/311RP rat and PR9692 avian sarcoma cells [66], and D54 glioblastoma
cells [73]. However, no in vivo data are yet available for blebbistatin.

Trends in Cancer, June 2017, Vol. 3, No. 6 399



MLCK [220_TD$DIFF]Inhibitors
MLCK contributes to cell migration by phosphorylating MLC, mainly at the cell cortex [74].
Inhibition of MLCK by its specific inhibitors, ML-7 andML-9, reduces the invasiveness of human
pancreatic cells [75] and rat prostatic cells [76]. Moreover, ML-7 is able to retard the growth of
tumors in vivo [77].

ROCK Inhibitors
ROCK is a member of of the AGC kinase family, along with PKA, PKC, and AKT. It has two
isoforms that share significant structural specificity and differ mainly in their tissue distribution
[78]. All listed ROCK inhibitors are isoform unspecific and act as type I kinase inhibitors, in that
they competitively bind the ATP-binding site during the open (active) conformation. However,
they differ in their specificity against other members of the AGC family (for IC50s, refer to
Table 1).

Fasudil was shown to decrease lung metastasis of HT1080 sarcoma cells [79] and was also
found to inhibit the LPA-induced invasiveness of human ovarian cancer cells [80], human lung
cancer A549 cells [81], in vitro and in vivo invasiveness of T98 and U251 human glioblastoma
cells [82], invasiveness of 95D human lung adenocarcinoma [83], NCI-H446 human small cell
lung cancer cells [84], human high metastatic liver cancer cells HCCLM3 [85], and human oral
squamous cell carcinoma SCC-4 cells [86]. Of relevance for potential future clinical applications
is the fact that fasudil has been clinically approved for treatment of cerebral vasospasm in Japan
since 1995 [87].

Y-27632 was the first published selective ROCK inhibitor [88]. It was shown to decrease the
invasive activity of rat hepatoma MM1 cells and their dissemination in the peritoneal cavity [89];
inhibit the metastatic growth of human prostatic cancer PC3 cells in immune-compromised
mice [90]; decrease intrahepatic metastasis of primary human hepatoma LI7 cells [91];
decrease the bombesin-stimulated invasiveness of Isreco 1 human colon carcinoma cells
[92]; and decrease the invasiveness of human MDA-MB-231 breast carcinoma cells [93],
A375m2 and WM266.4 human melanoma cells, LS174T human colon carcinoma cells [19],
LPA-induced invasiveness of human hepatoma SMMC-7721 cells [94], human anaplastic
thyroid cancer ARO cells [95], shear stress-induced invasiveness of human esophageal cancer
OC-1 cells [96] and VMRC-LCD human non-small-cell lung cancer cells [97]. In addition,
Y-27632 significantly inhibited intrahepatic metastasis orthotropic implantation of CBO140C12
HCC tumor fragments into mice liver [98], and decreased the invasiveness of B16F1 mouse
melanoma cells; UvMel 1.3, UvMel 1.5, and UvMel 270 human uveal melanoma cells [99];
PRL-1-expressing A549 human lung carcinoma cells [100]; AMFR-induced motility of esoph-
ageal squamous carcinoma cells [101]; LPA-induced invasiveness of human ovarian cancer
CAOV-3 and PA-1 cells [102]; SGC-7901 human gastric carcinoma cells [103]; human
colorectal carcinoma SW620 cells [104]; U87MG human glioma cells [105]; human hepato-
cellular carcinoma cells [106]; metastases of HT29 human colorectal carcinoma cells in an
orthotropic mouse model of liver metastasis [107]; Y79 human retinoblastoma cells [108]; and
Tca8113 and CAL-27 human tongue squamous cell carcinoma cells [109].

However, it was also shown that Y-27632 increased the invasiveness of human gliomaU87 and
U251 cells [110] and also enhanced the invasion of human gastric carcinoma OCUM-2MD3
cells [111]. Time-lapse microscopy showed conversion of OCUM-2MD3 cells from a round to a
more elongated morphology in the presence of Y-27632, and the expression of membrane-
type 1 matrix metalloproteinase (MT1-MMP) was elevated, suggesting that inhibition of the
RhoA/ROCK pathway undergoes AMT. Y-27632 is less potent than other more recently
developed ROCK inhibitors, such as H1152, AT13148 or GSK269962 [112]. Together, results
obtained with this compound could be indicative of only the partial inhibition of ROCK kinase
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activity. Such partial inhibition may still lead to enough actomyosin contractility to allow
migration in some cellular systems. Nevertheless, these studies indicate that the contribution
of Rho/ROCK signaling to cancer cell migration may vary depending on the cell line tested and
on the surrounding microenvironment [113].

H-1152 is a membrane-permeable inhibitor with high specificity for ROCK over other kinases of
the AGC family [114]. It was shown to decrease the invasiveness of human breast carcinoma
TMX2-28 [115].

Wf-536 was found to inhibit the invasiveness and metastasis of B16 mouse melanoma cells
[116] and LLC mouse Lewis lung carcinoma cells [116]. Notably, while Wf-536 has an IC50 for
ROCK-II of 200 nM, the IC50 of its pyrrolopyridine derivative for ROCK-II is as low as 3.6 nM
[117].

RKI-1447 and RKI-18 were both found to inhibit the invasiveness of human breast carcinoma
MDA-MB-231 cells [118,119].

MRCK Inhibitors
BDP5290 was found to be more effective at reducing MDA-MB-231 human breast cancer cell
invasion through Matrigel compared with Y27632. Moreover, the ability of human SCC12
squamous cell carcinoma cells to invade a 3D collagen matrix was strongly inhibited by 2-mM
BDP5290 but not by the identical concentration of Y27632, despite equivalent inhibition of MLC
phosphorylation [120].

ROCK/MRCK Inhibitors
Although the first generation of ROCK inhibitors, fasudil or Y-27632, effectively inhibited
amoeboid invasiveness, their application occasionally induced AMT and resulted in mesen-
chymal motility, which requires lower levels of actomyosin contractility. Consequently, these
inhibitors failed to block cancer cell invasiveness completely [19,20]. Notably, the first genera-
tion of inhibitors exhibited considerable nonspecificity and also targeted other kinases of the
AGC family [121]. Whether this is responsible for the adverse effects leading to AMT is unclear.
Nevertheless, it encouraged the development of second-generation ROCK and/or MRCK
inhibitors such as RKI-18, BDP5290 or DJ4, which show substantially better specificity.
Although these inhibitors are widely used in experimental conditions, no in vivo data are yet
available for RKI-18 [119], BDP5290 [120] or DJ4 [122]. However, DJ4 was found to inhibit the
invasiveness of human breast carcinoma MDA-MB-231 cells [122].

ROCK/PKA/PKB Inhibitors
The report by Sadok et al. represents the first evidence that an ROCK/PKA/PKB multikinase
inhibitor impairs both ‘amoeboid-like’ and ‘mesenchymal-like’ modes of cancer cell invasion.
The compound CCT129254 reduced the motility of melanoma cells in vivo and greatly reduced
the ability of these cells to colonize the lungs [112]. CCT129254, which has both antimigratory
and antimetastatic properties, is among the candidates most likely to meet the requirements of
a novel migrastatic drug. Also, the other compound tested, AT13148, was able to inhibit the
invasiveness of melanoma cells in vitro and in vivo; however, because of toxicity in heavily
immunocompromised mice, its effect on metastasis was not analyzed. Nevertheless, AT13148
is, to our knowledge, the only ROCK inhibitor in clinical development for oncological indications
(reviewed in [123]), and is currently at Phase 1 clinical trial in patients with advanced solid
tumors [124]. Interestingly, it is notable that the AT13148 compound showed adverse cardio-
vascular effects, including vascular smooth muscle contraction, reduction of blood pressure,
and tachycardia, although these effects resolved after repeated dosing.
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Drugs Targeting Ion Transport Proteins
Besides cytoskeletal elements and proteins with direct roles in contractility, ion transport
proteins have been proposed to be attractive candidate target proteins for interfering with
cell migration and/or invasion (reviewed in [125]), since they are easily accessible as membrane
proteins and are often overexpressed or activated in cancer. The role of ion transport proteins in
migration and/or invasion is mainly attributed to the involvement in the pH- or Ca-dependent
regulation of actin cytoskeleton or cell adhesion. Importantly, several clinically widely used
drugs are available. However, their anticipated efficacy as antimetastatic drugs has now only
begun to be evaluated [125].

Key Challenge of Migrastatics: Toxicity
As with currently approved anticancer drugs, migrastatic agents that reach the clinical setting
could be limited by drug toxicity [126]. Thus, phalloidin and pentabromopseudilin are not
discussed in this review. The requirements for low toxicity of migrastatics will be more
prominent than with cytostatic drugs, since, to prevent cancer cell invasion, the administration
of migrastatics is anticipated to be continuous. However, detailed analysis of various plans of
therapy may reveal that intermittent application is possible [127].

Theapproachof targeting theactincytoskeletonhasbeen thought fora long timetobetootoxic for
clinical application [128]. It is clear that targeting actin cytoskeleton dynamics and/or contractility
affects many processes in both cancer and normal cells, such as cell migration, division, and
exocytosis. In addition, synaptic plasticity relies on F-actin and may be affected by migrastatics
[129] as well as by endothelial integrity [130]. Importantly, cell migration is a fundamental step in
embryonic development andwound repair [131]. Accordingly,migrastaticsmaybe inappropriate
in womenwith child-bearing potential, and caution should be exercised in patientswith diabetes.

There is justified concern that migrastatics will affect immune processes by interfering with both
mesenchymal and amoeboid migration of leukocytes. In addition, they can inhibit granule
exocytosis-dependent target cell killing by cytotoxic T lymphocytes, as shown for latrunculin A
and jasplakinolide [132]. However, in the context of the immune tumor microenvironment,
migrastatics could elicit positive therapeutic effects. Recently, it was shown that chondramide
A may contribute to an antitumoral microenvironment by depletion of M2 and activation of M1
macrophages. Similarly, ROCK2 inhibition suppresses the M2 phenotype [133]. This suggests
that migrastatics could target tumor-associated macrophages in addition to neoplastic cells.
Additionally, inhibition of ROCK leads to Fas-ligand overexpression in melanoma cells, resulting
in infiltration of leukocytes and reduced tumor growth in vivo [134].

Here, we have reviewed examples that demonstrate the feasibility of targeting actin with
migrastatics in in vivo animal models of tumor metastasis. Although inhibition of cancer cell
motility, possibly selective, is a crucial chemotherapeutic target for migrastatic agents, one
should be aware of the many physiological functions that are inherently dependent on such
capabilities. For this reason, the lowest effective dose must be identified. Moreover, natural
products targeting the cytoskeleton as well as synthetic drugs deemed too potent to elicit
therapeutic benefit can now be conjugated to an appropriate protein delivery system, thereby
limiting the delivery of specific and effective treatments to neoplastic tissue [36].

Concluding Remarks
[419_TD$DIFF]We direct recognition to a new class of drugs: the migrastatics. To date, the most promising
agents are multikinase inhibitors targeting either ROCK/MRCK or ROCK/PKA/PKB kinases of
the AGC family. These inhibitors target a pattern of signaling leading to enhanced cell
contractility that is required for all modes of cancer cell invasion. Actin- and contractility-

Outstanding Questions
In solid cancer, does ongoing meta-
static activity negate the ‘benefit’ of
tumor shrinkage? Why are regulatory
end-points of preclinical drug selection
still primarily based on tumor shrinkage
and not on their antimetastatic
activities?

Can recent progress in delivering
agents specifically to neoplastic tis-
sues decrease the risk of adverse
effects?

Can progress in advanced imaging
offer the possibility of tracking step-
wise events in the metastatic cascade
and could this validate the use of
migrastatics?
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targeting drugs are an intriguing area of pharmacological research, and could revolutionize
cancer treatment (see Outstanding Questions). Such drugs have already demonstrated desired
effects in many in vitro and in vivo preclinical studies, and represent promising candidates for
clinical evaluation.

It should be emphasized that the goal here is not to replace antiproliferative therapy, but rather
complement it. In fact, synergy of migrastatics with antiproliferative cancer drugs appears to be
a promising approach for treatment of metastasis (Box 1). Moreover, from recent results, it
appears that migrastatics targeting ROCK kinases could themselves have antiproliferative
characteristics. It was shown that inhibition of both ROCK isoforms caused severe proliferation
defects and loss of both ROCK1 and ROCK2 blocked tumor formation in mice [135].

Critical assessment of these novel antimetastatic agents is warranted and hopefully will
establish new and improved options for the treatment of solid cancer that is consistent with
interruption of the natural course of the disease. It is expected that oncology regulations will
soon consider guidelines for the development of antimetastatic drugs directed at prevention
and treatment [4]. All elements are in place for the entry of migrastatics onto the next stage of
anticancer research and development.
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