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1 Supplementary Material

1.1 Discussion of velocity biases
The divergence correction does not affect the eddy properties - the small and
short scale fluctuations as indicated by the almost identical eddy kinetic energy
(EKE, not shown) between the corrected product and the uncorrected, also de-
scribed in earlier work using this method (
large scale biases, which are particularly pronounced during positive and negative
phases of ENSO in the Pacific (fig. S1). The amplitude of these biases is quite
small (< 2cm/s). But argued in the main text these small differences will change
surface diffusivities considerably. This is particularly important since changes of
the large scale circulation on the magnitude up to 1cm/s are certainly seen over
a wide range of regions and timescales in the global ocean (e.g. Fig. ). Due to
the large scale velocity bias, results from the tracer experiment might not repro-
duce realistic changes in diffusivity, particularly in the subtropical basins. While
the large scale structure of interannual variations is not realistic, the amplitude is
within the observed variability in surface currents (internannual and longer), as
seen in fig. S1. It however, serves well as a sensitivity testbed in which the valid-
ity of the SMLT-derived diffusivities can be compared to an independent estimate
of surface diffusivities, to gain confidence about applying SMLT to observed ve-
locities.

1.2 Osborn-Cox Diffusivity based on Smoothing Operator
Nakamura (2001) (
budget under generic Reynolds averaging. Our experiments use a convolution fil-
ter to apply spatial smoothing. Convolution is not a Reynolds average, so here we
re-derive Nakamura’s result for our filter-based approach, following the approach
outlined in ( , ).

Our smoothing operator, indicated by angle brackets, is defined by spatial con-
volution. For a scalar field f(x, t), the smoothed field is

〈f〉 =
∫
f(x′, t)G(x− x′; `)dx (1)

We use a Gaussian Kernel in 2D, defined as

G(x;σ) = 1

2πσ2
e−|x|

2/2σ2

(2)

s

9). It does however introduce basinwide

5E

39) defines a scalar eddy diffusivity based on the tracer variance
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Fig. S1. Velocity bias introduced by divergence correction. The columns rep-
resent composite averages of high(left), neutral(center) and low(right) NINO3.4
indicies for the uncorrected - e.g. observed - velocities (upper) and the divergence
corrected velocities (lower) used for the tracer experiment.



where σ is the standard deviation. Smoothing is not a Reynolds operator, because

〈〈f〉〉 6= 〈f〉 (3)
〈f 〈g〉〉 6= 〈f〉 〈g〉 (4)

For second order statistics, we define the small-scale component via the operator
τ , defined as

τ(f, g) = 〈fg〉 − 〈f〉〈g〉 (5)
(6)

The quantity τ(f, f) can be thought of as the small-scale variance, while 〈f〉2
is the large-scale variance. They sum to give the total variance. The third-order
fluctuation quantities are given by

τ(f, g, h) = 〈f g h〉 − 〈f〉τ(g, h)− 〈g〉τ(f, h)− 〈h〉τ(f, g)− 〈f〉〈g〉〈h〉 (7)

Note that, since Reynolds averaging (e.g. time average) commutes with convolu-
tion, we can and do add time averaging to our smoothing operation with no change
to the derivations below.

In many papers, the smoothing operation is applied to the momentum equation
to derive a large-scale and small scale kinetic energy equation ( , ) Here we apply
it to the passive tracer equation

∂tθ + u · ∇θ = ∇ · κ∇θ + s (8)

where κ is the molecular diffusivity s is any (non-diffusive) source or sink. The
flow is incompressible: ∇ · u = 0. Also, ∇ · 〈u〉 = 0 The smoothed version is

∂t〈θ〉+ 〈u〉 · ∇〈θ〉 = −∇ · τ(u, θ) +∇ · κ∇〈θ〉+ 〈s〉 (9)

The quantity τ(u, θ) plays the role of the Reynolds flux. The total variance is
〈θ2〉/2 . Using the τ operator, we can express it as the sum of a small-scale
component and large-scale component. The small-scale tracer variance is given
by

1

2
τ(θ, θ) =

1

2
(〈θ2〉 − 〈θ〉2) (10)

To derive the tracer-variance equation, we start by multiplying (8) by θ and then
smoothing. We get

∂t
〈θ2〉
2

+∇ · 〈uθ
2
〉 = ∇ · κ〈θ

2〉
2
− κ〈|∇θ|2〉 (11)
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Next we multiply (9) by 〈θ〉 to find

∂t
〈θ〉2

2
+ 〈u〉∇ · 〈θ〉

2

2
= −θ∇ · τ(u, θ) +∇ · κ∇〈θ〉

2

2
− κ|∇〈θ〉2| (12)

In order to get to an equation for τ(θ, θ)/2, we need to subtract (12) from (11).
There is a bit of algebra to work out. First we note that

〈θ〉∇τ(u, θ) = ∇ · 〈θ〉τ(u, θ)− τ(u, θ) · ∇〈θ〉 (13)

Now we put all terms with a u in them on the left-hand side of the equation and
simplify, using the third-order fluctuation definition. We obtain

∇ ·
[
〈u θ

2
〉 − 〈θ〉τ(u, θ)− 〈u〉〈θ〉

2

2

]
+ τ(u, θ) · ∇〈θ〉 (14)

=∇ ·
[
〈u〉τ(θ, θ)

2
+

1

2
τ(u, θ, θ)

]
+ τ(u, θ) · ∇〈θ〉 (15)

The terms proportional to κ give

∇ · κ∇
(
〈θ2〉
2
− 〈θ〉

2

2

)
− κ〈|∇θ|2〉+ κ|∇〈θ〉|2 (16)

= ∇ · κ∇τ(θ, θ)
2
− κτ [(∇θ)T ,∇θ] (17)

Putting it all together, we find

∂t
τ(θ, θ)

2
+∇ ·

[
〈u〉τ(θ, θ)

2
+

1

2
τ(u, θ, θ)− κ∇τ(θ, θ)

2

]
+ τ(u, θ) · ∇〈θ〉 = −κτ((∇θ)T ,∇θ)

(18)

If we average over the whole domain and assume that the statistics are stationary
in time, we are left with the balance∫

τ(u, θ) · ∇〈θ〉dx = −
∫
κτ((∇θ)T ,∇θ)dx (19)

Because the right-hand side is negative definite, τ(u, θ) must, on average, have the
opposite sign to ∇〈θ〉. That suggests that τ(u, θ) can be represented via down-
gradient diffusion.



Following ( ), wecan try to separate the part of this flux associated with re-
versible processes from the down-gradient flux due to irreversible mixing. We let

τ(u, θ) = −(Kk +Ke)∇〈θ〉 (20)

Which are defined via

Kk =
∂tτ(θ, θ) +∇ · [〈u〉τ(θ, θ) + τ(u, θ, θ)− κ∇τ(θ, θ)]

2|∇〈θ〉|2
(21)

and

Ke = κ
τ((∇θ)T ,∇θ)
|∇〈θ〉|2

(22)

or

Km = κ
〈|∇θ|2〉
|∇〈θ〉|2

= Ke + κ (23)

The quantity Km is equivalent to the Osborn-Cox diffusivity of ( ).

The main shortcoming of this approach is that our convolution operator does
not commute precisely with differential operators on the sphere ( ). This intro-
duces small but nonzero residuals in the tracer variance equation.

1.3 Osborn-Cox cross frontal diffusivity using mulitple tracers
The spatial distribution of the scalar lateral surface diffusivities (KOC) depends
on the initial tracer field q0, reflecting the anisotropy of the full diffusivity tensor
projected onto the background gradient ( ). We compute the diffusivities for 4
experiments with different initial tracer fields q0

• KOC,LAT q0 is a linear function of the latitude

• KOC,PSI q0 is the mean horizontal streamfunction, based on the the mean
dynamic topography from Aviso altimetry ( )

• KOC,SST q0 is the mean climatological sea surface temperature (SST) ( )

• KOC,SSS q0 is the mean climatological sea surface salinity (SSS) ( )

Each field is linearly interpolated onto the model grid.

A previous study using this methodology has focused on the spatial variability
of the long-term mean ( ). Using a different diagnostic but identical model setup
( ) documented time variability in eddy diffusivities in the subtropical. In order
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to resolve spatio-temporal variability, in this manuscript we combine some of the
methods from both studies above: For each experiment (defined by the initial
tracer field q0), we compute two passive tracers (q) which are initialized identically
and reset with equal and regular time intervals (390 days) but the reset phase of
one tracer is shifted by half a reset interval, similar to ( ). After each of the
respective reset points the initial spin up phase (30 days) is removed due to the
dominating role of the tendency term in the tracer variance budget (for details
see ( , )). This results in a 5-dimensional array of diffusivities

KOC{longitude(lon), latitude(lat), time(ti), tracer(q), initial condition(q0)}
(24)

Results from experiments with several initial conditions mostly differ in terms
of overall magnitude and spatial structure (fig. S2a), while temporal variability is
very coherent across experiments on interannual and longer time scales, particu-
larly in the subtropics of the Pacific (Fig. 2b).

This means that the temporal changes in diffusivity are driven by the velocity
field. We compute a minimum diffusivity Kmin across all four tracer experiments
by selecting the lowest time-averaged diffusivity at each grid point. Kmin is in-
terpreted as the cross-frontal diffusivity (closely related to the minor axis of the
diffusivity tensor), which is most relevant to identify mixing barriers ( ). For
simplicity, the rest of the manuscript will refer to Kmin as KOC ; no results of
single tracer experiments are used outside of the methods section. Details on the
uncertainty of Kmin are given below.

The root mean square error between tracers for each initial condition, defined as

RMSEtr,q0 =
√
〈(KOC{q, q0} − 〈KOC{q0}〉q)2〉ti,q0 (25)

is minor compared to the mean diffusivities. TheRMSEq,q0 (not shown) is mostly
smaller than 2% of the local mean of KOC . We quantify the uncertainty of Kmin

similar to Eq. 25 as

RMSE =
√
〈(〈KOC〉q − 〈KOC〉q,q0)2〉ti (26)

The estimated uncertainty is smaller then 10% almost everywhere (fig. S2c).
Most importantly the results presented in this dataset show very similar tempo-
ral evolution, indicating that the variability is indeed caused by the velocity field
variability, and not the choice of initial condition.
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Fig. S2 Comparison of K OC results for different initial conditions. a) Time
mean surface diffusivity for each initial condition (’tracer’) used in [m2/s]. b)
Example time series in the North and South Pacific boxes used in the main text
(see Fig. ). Colors indicate different initial conditions and solid and dashed line
indicate the different tracers used for each initial condition (see text for details).
c) The root mean square deviations corresponding to the two tracers used as well
as the various initial conditions. For details see text.
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2 Tracer ariance udget
In order to use a diffusivity to parameterize the transport by mesoscale eddies,
the main balance in the tracer variance budget (derived and explained in detail
in Abernathey and Marshall 2013 ( )), needs to be between variance production
and dissipation. To confirm that this balance holds we computed the full tracer
variance budget for all initial conditions of the tracer experiment (described above)
for 3 month averages, and in fact we see that for all tracers the balance holds both
spatially (see maps in fig. S3 upper three rows) but also temporally as shown
in the timeseries of dissipation and production, shown in the lower two rows of

Pacific (see Fig. ), where strong variability in the surface diffusivity is seen.

v b

fig. S3, for values averaged in the previously used boxes in the North and South
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Fig. 3 Validation of tracer variance budget. Columns represent the 4 initial
conditions used for the tracer experiment (see above for details). The first row
shows the residual fraction defined as |production+dissipation||production|+|dissipation| . The second and third
row show the dissipation and production term respectively as a long term average.
The lower two rows show timeseries of both terms in the previously used exam-
ple boxes (see e.g. Fig. ), with the dissipation inverted. These show that for
the large excursions in the Osborn-Cox diffusivity (described in main text), both
terms increase(decrease), thus maintaining the balance and justifying the diffusive
approach.
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