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Expanded newborn screening for inborn errors of metabolism (IEMs) by tandem mass 
spectrometry (MS/MS) could simultaneously analyze more than 40 metabolites and 
identify about 50 kinds of IEMs. Next generation sequencing (NGS) targeting hundreds 
of IMEs-associated genes as a follow-up test in expanded newborn screening has been 
used for genetic analysis of patients. The spectrum, prevalence, and genetic characteristic 
of IEMs vary dramatically in different populations. To determine the spectrum, prevalence, 
and gene mutations of IEMs in newborns in Suzhou, China, 401,660 newborns were 
screened by MS/MS and 138 patients were referred to genetic analysis by NGS. The 
spectrum of 22 IEMs were observed in Suzhou population of newborns, and the overall 
incidence (excluding short chain acyl-CoA dehydrogenase deficiency (SCADD) and 
3-Methylcrotonyl-CoA carboxylase deficiency (3-MCCD)) was 1/3,163. The prevalence 
of each IEM ranged from 1/401,660 to 1/19,128, while phenylketonuria (PKU) (1/19,128) 
and Mild hyperphenylalaninemia (M-HPA) (1/19,128) were the most common IEMs, 
followed by primary carnitine uptake defect (PCUD) (1/26,777), SCADD (1/28,690), 
hypermethioninemia (H-MET) (1/30,893), 3-MCCD (1/33,412) and methylmalonic 
acidemia (MMA) (1/40,166). Moreover, 89 reported mutations and 51 novel mutations 
in 25 IMEs-associated genes were detected in 138 patients with one of 22 IEMs. Some 
hotspot mutations were observed for ten IEMs, including PAH gene c.728G > A, c.611A > 
G, and c.721C > T for Phenylketonuria, PAH gene c.158G > A, c.1238G > C, c.728G > A, 
and c.1315+6T > A for M-HPA, SLC22A5 gene c.1400C > G, c.51C > G, and c.760C > T 
for PCUD, ACADS gene c.1031A > G, c.164C > T, and c.1130C > T for SCAD deficiency, 
MAT1A gene c.791G > A for H-MET, MCCC1 gene c.639+2T > A and c.863A  > G 
for 3-MCCD, MMUT gene c.1663G > A for MMA, SLC25A13 gene c.IVS16ins3Kb 
and c.852_855delTATG for cittrullinemia II, PTS gene c.259C > T and c.166G > A for 
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INTrODUCTION

Inborn errors of metabolism (IMEs) are a large group of 
monogenic diseases resulting in death and abnormalities of 
physical and neurological development at almost all stages of life. 
IMEs are always caused by the defect of an enzyme, its coenzyme, 
or a transporter leading to the accumulation of its substrate and/
or the insufficiency of its downstream products. Nowadays, 
the introduction of tandem mass spectrometry (TMS) allows 
screening for more than 50 IMEs using dried blood spot in 
the neonatal period (Therrell et al., 2015). For the neonates 
screened to have IMEs, some serious clinical consequence 
could be prevented, including mild to severe irreversible mental 
retardation, lifelong disability, physical handicaps, coma, and 
early death, if early diagnosis and treatment were implemented 
(Therrell et al., 2015). Therefore, expanded newborn screening 
program covering dozens of diseases has been implemented in 
the majority of developed countries. For example, population-
based data are available in the United States (Centers for 
Disease Control and Prevention, 2008; Gallant et al., 2012; Hsu 
et al., 2013), Canada (Karaceper et al., 2016), United Kingdom 
(Sanderson et al., 2006), Germany (Lindner et al., 2008), France 
(Dhondt, 2010), Egypt (Hassan et al., 2016), Greece (Loukas 
et al., 2010), Saudi Arabia (Alfadhel et al., 2017), Australia (Wiley 
et al., 1999; Webster et al., 2003), South Korea (Yoon et al., 2005), 
Singapore (Lim et al., 2014), and Japan (Shibata et al., 2018).

The advent of target capture and next generation sequencing 
(NGS) enables simultaneously sequence a large group of 
targeted genes accounting for numerous diseases, which has 
become the best choice for identification of genetic etiology of 
IMEs following expanded newborn screening program. The 
utility of NGS in expanded newborn screening has enriched 
our understanding of genetic etiology, genetic characteristics, 
and phenotype-genotype correlation of IMEs. Some hotspot 
variants resulting in the defect of enzymes have been identified 
in patients with IMEs, such as ACADS variants c.511C > T and 
c.625G > A for short chain acyl-CoA dehydrogenase deficiency 
(SCADD; MIM# 201470) (Tonin et al., 2016; Nochi et al., 2017), 
PAH variant c.728C > A for phenylketonuria (PKU; MIM# 
261600) (Liu et al., 2017), and so on. Also, many IMEs have a 
dramatic variation of symptoms and the outcome of the affected 
patients was correlated with genotype, such as medium chain 
acyl-CoA dehydrogenase deficiency (MCADD; MIM# 201450) 
(Ensenauer et al., 2005; Maier et al., 2005), very long chain acyl-
CoA dehydrogenase deficiency (VLCADD; MIM# 609016) 
(Andresen et al., 1999; Obaid et al., 2018), and so on. In addition, 
the spectrum, the incidence, and the genetic characteristics of 
IMEs vary dramatically in different regions and populations.

Expanded newborn screening was introduced in China in 
2004, later than developed countries. In the milestone pilot 
study, a total of 371,942 newborns were screened in four 
centers, and the collective estimated incidence of overall 
IMEs was 1/3,795 in live births, with a sensitivity of 98.99% 
and a specificity of 99.83% (Shi et al., 2012). Recently, targeted 
sequencing of genes associated to more than 50 IMEs by NGS 
was used as a follow-up test for genetic diagnosis after the 
expanded newborn screening, and some novel variants were 
found in Chinese patients. In Suzhou, the expanded newborn 
screening program targeting 27 IMEs started in 2014. Until 
now, its screening rate is closed to 100% of live births and more 
than 400,000 newborns have been referred to expand newborn 
screening. A total of 22 kinds of IMEs were identified in 
Suzhou population and 153 infants were diagnosed with one of 
these IMEs. Almost all these patients were referred to genetic 
analysis via targeted NGS. 140 variants in 25 IMEs-associated 
genes were found in 138 patients. Some hotspot variants 
were also observed in Suzhou patients, including c.791G  > 
A in MATA1 gene for hypermethioninemia (MIM# 250850), 
c.158G > A in PAH gene for mild hyperphenylalaninemia 
(M-HPA; MIM# 261600), c.721C > T in PAH gene for PKU 

Tetrahydrobiopterin deficiency, and ACAD8 gene c.1000C > T and c.286C > A for 
Isobutyryl coa dehydrogenase deficiency. All these hotspot mutations were reported to 
be pathogenic or likely pathogenic, except a novel mutation of ACAD8 gene c.286C > A. 
These mutational hotspots could be potential candidates for gene screening and these 
novel mutations expanded the mutational spectrum of IEMs. Therefore, our findings could 
be of value for genetic counseling and genetic diagnosis of IEMs.

Keywords: expanded newborn screening, inborn errors of metabolism, tandem mass spectrometry, disease 
spectrum, prevalence, genetic characteristics, hotspot mutation

Abbreviations: ASA, Argininosuccinate aciduria; BH4 deficiency, 
Tetrahydrobiopterin deficiency; BKT, beta-Ketothiolase deficiency; 
CACT, Carnitine-acylcarnitine translocase deficiency; CPT-Ia, Carnitine 
palmitoyltransferase I deficiency; CPY-II, Carnitine palmitoyltransferase II 
deficiency; EMA, Ethylmalonic encephalopathy; GA-I, Glutaric aciduria type 
I; H-ARG, Arginemia; HCY, Homocystinuria; H-MET, Hypermethioninemia; 
HMG, 3-Hydroxy-3-methylglutaric aciduria; H-ORN, Hyperornithinemia; 
H-PRO, Hyperprolinemia; H-TYR, Tyrosinemia; IBG, Isobutyrylglycinuria; IVA, 
Isovaleric acidemia; LCHADD, long-chain L-3-Hydroxy acyl-CoA dehydrogenase 
deficiency; MADD, mutiple Acyl-coa dehydrogenases deficiency; MAL, Malonic 
acidemia; MCADD, Medium chain acyl-CoA dehydrogenase deficiency; MCD, 
multiple Carboxylase deficiency (MCD); M-HPA, mild Hyperphenylalaninemia; 
MSUD, Maple syrup urine disease; MUT, Methylmalonic acidemia; NKHG, 
Nonketotic hyperglycinemia; OTC, Ornithine transcarbamylase deficiency; 
PCUD, Primary carnitine uptake defect; PKU, Phenylketonuria; PROP, Propionic 
acidemia; SCADD, Short chain acyl-CoA dehydrogenase deficiency; TFP, 
Trifunctional protein deficiency; TYR-I, Tyrosinemia type I; VLCADD, very long 
chain acyl-CoA dehydrogenase deficiency; 2M3HBA, 2-Methyl-3-hydroxybutyric 
aciduria; 2MBG, 2-Methylbutyrylglycinuria; 3-MCC, 3-Methylcrotonyl-CoA 
carboxylase deficiency; 3MGA, 3-Methylglutaconic aciduria.
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(MIM# 261600), c.852_855delTATG in SLC25A13 gene for 
citrullinemia type II (CTLN 2; MIM# 605814), c.639+2T  > 
A in MCCC1 gene for 3- methylcroton acyl coenzyme A 
carboxylase deficiency (3-MCCD; MIM# 210200 and 210210), 
c.1400C > G in SLC22A5 gene for primary carnitine uptake 
defect (PCUD; MIM# 212140), and c1031A > G in ACADS 
gene for SCADD. These hotspot mutations could explain 
the relative high incidence of associated IMEs. As a result, 
it is critical to screen these mutations and prenatal genetic 
consulting for Suzhou population. These mutations are good 
candidates for further research on genetic characteristics in 
other Chinese populations.

MaTErIal aND METhODS

Subjects
A total of 401,660 newborns were referred to expand newborn 
screening. Informed and written consent was obtained from 
the parents of all screened newborns. Our screened protocol is 
consistent with other newborn screening centers in China, and 
was shown in Figure 1. The protocol was reviewed and approved 
by Ethic committee of the Affiliated Suzhou Hospital of Nanjing 
Medical University.

Expanded Newborn Screening assay
Eleven amino acids, 30 acylcarnitines, free carnitine, and 
succinylacetone were tested using tandem mass spectrometry 
(Supplementary Table 1). Assays for screening inborn 
metabolism disorders were performed using screening 
kit (PerkinElmer, USA) and Waters HPLC-tandem mass 
spectrometry (TQD, Waters, USA). In brief, 100-ul extract liquor 
containing internal standards was added into U bottom plates. 
After incubating for 45 min at 45°C, 75-ul extract liquor was 
transferred into V bottom plates. After 2 h standing at ambient 
temperature, 25-ul liquor was injected into tandem mass 
spectrometry for metabolites analyses. Three levels of internal 
quality controls including blank, low, and high were used for 
quality control.

Positive results for IMEs
In our screening panel, 26 kinds of IEMs were included. Each 
IEM had two or more indicators including metabolites and ratios, 
and their cut-off values. When DBS results met the positive rules 
of IEMs, they were considered as positive. All the positive rules 
of IEMs were shown in Table 1.

Genetic analysis
High throughput sequencing was performed on all patients 
diagnosed with one kind of IEMs using the expanded edition 
panel of IMEs (Genuine Diagnostic, Hangzhou, China) 
including 306 genes related to IEMs. In brief, the target 
sequences were enriched using Agilent SureSelect Human 
Exon Sequence Capture Kit (Agilent Technologies, Inc, 
California, USA). Next, the captured products were purified 
using Agencourt AMPure XP beads (Beckman Coulter, Inc, 

Miami, USA). Then, the sequencing library was established 
using TruePrepTM DNA Library Prep Kit V2 (Vazyme 
Biotech, New Jersey, USA) and TruePrepTM Index Kit V2 
(Vazyme Biotech, New Jersey, USA) and was examined by 
Agilent High Sensitivity DNA Kit (Agilent Technologies, 
Inc, California, USA). Finally, the sequencing library was 
quantified by Illumina DNA Standards and Primer Premix 
Kit (KAPA Biosystems, Boston, USA), and massively parallel 
sequenced on Illumina HiSeq 2500 system.

Statistical analysis
Statistical analysis was performed using SPSS17.0 version. The 
difference of categorical data was compared using Chi-square 
test. The difference of measurement data was compared by 
analysis of variance. p < 0.05 was considered to be statistical 
significance.

FIGUrE 1 | Flowchart of expanded newborn screening for inborn errors of 
metabolism and genetic analysis of patients. DBS, dried blood spot; IEMs, 
inborn errors of metabolisms.
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rESUlTS

A total of 401,660 newborns were screened by expanded newborn 
screening program (Figure 1). After initial screening, 11,247 
(2.80%) newborns, who had positive results, were recalled for a 
new specimen. However, only 10,606 (94.30%) newborns with 
an initial positive result were collected a new specimen. After 
a repeated test, 732 (6.90%) newborns with a second positive 
result were determined to be suspect positive, and 720 (98.36%) 
of them were referred to diagnostic testing. Finally, 153 infants 
were diagnosed with one of IMEs and treated, and 138 of them 
were referred to genetic analysis. As SCADD and 3-MCCD were 
diseases with questionable phenotype, the overall incidence 
(excluding SCADD and 3-MCCD) was 1/3163. The comparison 
of all characteristics between normal newborns and patients 
did not reach at significant difference, including age at testing 
(p = 0.574), gender (p = 0.260), gestational age (p = 0.691), 
birth weight (p = 0.795), number of fetus (p = 0.988), register 
region (p = 0.571), and household registration (p = 0.166). The 
characteristics of newborns screened by expanded newborn 
screening program were shown in Table 2.

Of 22 IEMs, 10 were amino acid metabolic disorders 
(AAMDs), 7 were organic acid metabolic disorders (OAMDs), 
and 5 were fatty acid metabolic disorders (FAMDs). The 

AAMDs were the most common diseases, accounting for 
51.63% of patients, followed by FAMDs (19.61%) and OAMDs 
(28.76%). The overall prevalence of AAMDs, FAMDs, and 
OAMDs was 1/5,084, 1/11,814, and 1/10,041, respectively. 
HPA may be induced by PAH defect or tetrahydrobiopterin 
deficiency. A total of 48 infants with HPA were found, including 
42 (87.5%) infants with PAH defect and 6 (12.5%) infants with 
tetrahydrobiopterin deficiency caused by PTPS (MIM* 612719) 
defect. The incidence of HPA, PAH defect, and PTPS defect 
were 1/8,368, 1/9,563, and 1/66,943, respectively. Furthermore, 
42 infants with PAH defect were classified into two groups: 
21 (50%) infants with PKU (≥360 μmol/L Phe) and 21 (50%) 
infants with M-HPA (120 μmol/L to 360 μmol/L Phe) (Chen 
et al., 2015). Of the 10 AAMDs, PKU and M-HPA were the 
most common diseases, accounting for 26.58% of patients, 
respectively, followed by hypermethioninemia (16.46%). The 
prevalence of single AAMD ranged from 1/401,660 to 1/19,127. 
Of the 7 OAMDs, 3-MCCD was the most common disease, 
accounting for 40.00% of patients, followed by methylmalonic 
acidemia (MMA; MIM# 251000) (33.33%). The prevalence of 
single OAMD ranged from 1/401,660 to 1/33,412. Of the 5 
FAMDs, PCUD was the most common disease, accounting for 
34.09% of patients, followed by SCADD (31.82%), VLCADD 
(13.64%), and MCADD (11.36%). The prevalence of single 

TaBlE 1 | Conditions and their positive rules in expanded newborn screening panel.

Conditions Positive rule 1 Positive rule 2 Positive rule 3

PKU, M-HPA, BH4 deficiency PHE > 100 nmol/L, PHE/TYR > 1.2 PHE > 130 nmol/L, PHE/TYR > 2
HCY, H-MET MET > 70 nmol/L MET > 43 nmol/L, MET/PHE > 0.85
ASA CIT > 50 nmol/L CIT > 35 nmol/L, ALA/CIT < 8.5
MSUD LEU+ILE+PRO-OH > 400 nmol/L LEU+ILE+PRO-OH > 320 nmol/L, LEU+ILE+PRO-OH/PHE > 

5.9, VAL > 250 nmol/L
OTC CIT < 5.5 nmol/L CIT < 6.5nmol/L, CIT/PHE < 0.12
H-ORN ORN > 450 nmol/L ORN > 340 nmol/L, ORN/CIT > 24
H-TYR TYR > 400 nmol/L TYR > 350nmol/L, LEU+ILE+PRO-OH/TYR < 0.5, PHE/

TYR < 0.15
H-ARG ARG > 65 nmol/L ARG/PHE > 1.2, ARG > 50 nmol/L
TYR-I SA > 2 nmol/L SA > 1.2 nmol/L, SA/PHE > 0.03
H-PRO PRO > 470 nmol/L
MUT, PROP C3/C0 > 0.3 nmol/L C3/C2 > 0.21, C3 > 4.5nmol/L C3 > 6.5
IVA, 2MBG C5 > 0.8 nmol/L C5 > 0.4 nmol/L, C5/C0 > 0.02
3-MCC, MCD, 2M3HBA, 
3MGA, HMG

C4DC+C5-OH > 0.7nmol/L C4DC+C5-OH > 0.5nmol/L, (C4DC+C5-OH)/C0 > 0.025

MADD C5 > 0.4 nmol/L,C4 > 0.5 nmol/L
BKT C5:1 > 0.02nmol/L,C4DC+C5-OH > 

0.5nmol/L
MAL C3DC+C4-OH > 0.8nmol/L C3DC+C4-OH > 0.45nmol/L, (C3DC+C4-OH)/C10 > 5
GA-I C5DC+C6-OH > 0.4nmol/L C5DC+C6-OH > 0.23nmol/L, (C5DC+C6-OH)/(C3DC+C4-OH) 

> 2, (C5DC+C6-OH)/(C4DC+C5-OH) > 1.38
MCADD C8 > 0.3nmol/L C6 > 0.11nmol/L, C8 > 0.19nmol/L, C8/C2≥0.01, 

(C4DC+C5-OH)/C8 < 1
VLCADD C14:1 > 0.5nmol/L C14:1 > 0.35nmol/L, C14:1/C16 > 0.14, C14:1/C2≥0.02
LCHADD, TFP C16-OH > 0.06nmol/L,C16-OH/C16 > 

0.025,C18:1-OH > = 0.06 nmol/
L,C18-OH > 0.03 nmol/L

PCUD C0 < 9.5 nmol/L
CPT-Ia C0 > 100 nmol/L C0/(C16+C18) > 50, C0 > 55 nmol/L, (C16+C18:1)/C2 < 0.08
CPY-II, CACT C18 > 1.9 nmol/L, C18:1 > 3 nmol/L C16> 12 nmol/L, C16 > 7 nmol/L, C18:1 > 3 nmol/L
SCADD C4 > 0.7 nmol/L C4 > 0.5 nmol/L, C4/C2 > 0.03
NKHG GLY > 1100 nmol/L
IBG, EMA C4 > 0.7 nmol/L C4/C3 > 0.45, C4/C2 > 0.03
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FAMD ranged from 1/100,411 to 1/26,777. All the above data 
were shown in Figure 2 and Table 3.

With regard to genetic analysis, 89 reported mutations and 51 
novel mutations were detected in 138 patients with one of IEMs 
(Table 4). All common IEMs affecting more than 10 patients had 
mutational hotspots. In 12 patients with PKU, 17 mutations were 
detected and the c.728G > A was the most common mutations 
in PAH gene, accounting for 20.8% of mutational alleles and 
41.7% of patients, followed by c.611A > G (8.3% and 16.7%), 
c.721C > T (8.3% and 16.7%), and c.498C > G (8.3% and 8.3%). 
All the four hot mutations are pathogenic (www.ncbi.nlm.nih.
gov/clinvar). In 18 patients with M-HPA, 19 mutations were 
detected and the c.158G > A was the most common mutations 
in PAH gene, accounting for 25.0% of mutational alleles and 
50.0% of patients, followed by c.1238G > C (11.1% and 22.2%), 
c.728G > A (8.3% and 16.7%), and c.1315+6T > A (8.3% and 
16.7%). However, the c.158G > A has a uncertain significance 
of pathogenicity (www.ncbi.nlm.nih.gov/clinvar). In 15 patients 
with PCUD, nine mutations were detected and the c.1400C > G 
was the most common mutation in SLC22A5 (MIM* 603377) 
gene, accounting for 50.0% of mutational alleles and 80% of 
patients, followed by c.51C > G (13.3% and 26.7%) and c.760C > 
T (13.3% and 26.7%). All the three mutations are pathogenic 
and/or likely pathogenic (). In 14 patients with SCAD 
deficiency, nine mutations were detected and the c.1031A > G 

was the most common mutation in ACADS (MIM* 606885) 
gene, accounting for 42.9% of mutational alleles and 71.4% 
of patients, followed by c.164C > T (17.9% and 28.6%) and 
c.1130C > T (10.7% and 21.4%). The two mutation c.1031A > G 
and c.164C > T are likely pathogenic, and the c.1130C > T had 
conflicting interpretations of pathogenicity (www.ncbi.nlm.
nih.gov/clinvar). Hypermethioninemia is able to be inherited 
by dominant transmission of MAT1A (MIM* 610550) gene. 
In 13 patients with hypermethioninemia, five mutations were 
detected and the c.791G > A was the most common mutation 
in MAT1A gene, accounting for 71.4% of mutational alleles and 
76.9% of patients. The c.791G > A is pathogenic (www.ncbi.nlm.
nih.gov/clinvar) and dominantly inherited. In 12 patients with 
3-Methylcrotonyl-CoA carboxylase deficiency, 13 mutations 
and 2 mutations were detected in MCCC1 (MIM* 609010) gene 
and MCCC2 (MIM* 609014) gene. The most common mutation 
is c.639+2T > A of MCCC1 gene, accounting for 16.7% of 
mutational alleles and 33.3% of patients, followed by c.863A > G 
of MCCC1 gene (12.5% and 25.0%). The c.639+2T  >  A is 
pathogenic, but the c.863A > G has uncertain significance of 
pathogenicity (). Of 10 patients with MMA, 7 carried MMUT 
(MIM* 609058) gene mutations and 3 carried MMACHC 
(MIM* 609831) gene mutations. In all patients with MMA, 
the most common mutation was c.1663G > A of MMUT gene, 
accounting for 15.0% of mutational alleles and 30% of patients, 
followed by c.729_730insTT of MMUT gene (10.0% and 20.0%) 
and c.609G > A of MMACHC gene (10.0% and 20.0%).

Other IEMs including citrullinemia (MIM# 605814 and 
603471), Tetrahydrobiopterin deficiency (MIM# 233910, 261640, 
612716, 264070, and 261630), and Isobutyryl coa dehydrogenase 
deficiency (IBD; MIM# 611283) were also observed to have 
mutational hotspots. Of eight patients with Citrullinemia, seven 
were confirmed CTLN2 caused by mutations in SLC25A13 
(MIM* 603859) gene, and only one cittrullinemia I (CTLN 1; 
MIM# 215700) caused by mutations in ASS1 (MIM* 603470) 
gene. In all patients with citrullinemia, the most common 
mutation was c.IVS16ins3Kb of SLC25A13 gene, accounting 
for 25.0% of mutational alleles and 50.0% of patients, followed 
by c.852_855delTATG of SLC25A13 gene (18.8% and 37.5%). 
Both c.IVS16ins3Kb and c.852_855delTATG of SLC25A13 gene 
are pathogenic for CTLN2 (www.ncbi.nlm.nih.gov/clinvar). In 
six patients with Tetrahydrobiopterin deficiency, six mutations 
in PTS (MIM* 612719) gene were detected and the c.259C > 
T was the most common mutation, accounting for 41.7% of 
mutational alleles and 50.0% of patients, followed by c.166G > A 
(25.0% and 50.0%). Furthermore, the c.259C > T is pathogenic 
and the c.166G > A is likely pathogenic (www.ncbi.nlm.nih.
gov/clinvar), and the two mutations account for 83.3% of 
patients. Interestingly, all the three patients with Isobutyryl coa 
dehydrogenase deficiency were heterozygous for the c.1000C > 
T variant of ACAD8 (MIM* 604773) gene, and two patients were 
heterozygous for the c.286C > A variant, which has not been 
reported. The c.1000C > T of the ACAD8 gene was reported to 
be pathogenic and likely pathogenic in patients with IBD (www.
ncbi.nlm.nih.gov/clinvar). Obviously, the two mutations are 
hotspots and main causes for IBD.

TaBlE 2 | Characteristics of newborns screened by expanded newborn 
screening program.

Newborns 
without targeted 
IMEsN = 401,507

PatientsN = 153 p

Age at initial testing 
(days, mean ± SD)

7.35 ± 8.14 6.98 ± 6.08 0.574

Gender
 Male 210,273 86 0.260
 Female 191,194 65
 No record 41 0
Gestational age (weeks)
 <32 1,915 0 0.691
 32~36 18652 7
 >37 379861 146
 No record 1232 0
Birth Weight (g)
 <1,500 607 0 0.795
 1,500–1,999 1,986 0
 2000–2499 9,904 4
 >2,500 377,858 149
 No record 11,305 0
Number of fetus
 Singleton 398,649 152 0.988
 Twins 2,992 1
 Triplet 19 0
Register region
 Suzhou 229,793 91 0.571
 Others 171,867 62
 No record 0 0
Household registration
 Urban 245,863 102 0.166
 Rural 155,797 51
 No record 0 0
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DISCUSSION

PKU is an autosomal recessive genetic AAMD caused by deficiency 
of phenylalanine hydroxylase (PAH) (Blau et  al., 2010). They 
were the most common IMEs identified by expanded newborn 
screening program, and the incidence of both were about 1/20,000. 
Up to now, more than 800 PAH mutations have been identified in 
patients with deficiency of PAH (Zhang et al., 2018). Some hotspot 
mutations exist in PAH gene and vary in different populations. 
For example, the most common PAH mutation is c.1222C > T in 
American (Kaul et al., 1994), IVS10-11G > A in Iranian (Zamanfar 
et al., 2017; Esfahani and Vallian, 2018; Rastegar Moghadam et al., 
2018) and Spanish (Bueno et al., 2013; Aldámiz-Echevarría et al., 
2016), c.168+5G > C in western Iranian (Alibakhshi et al., 2014), 
c.1238G > C in Japanese (Okano et al., 2011; Dateki et al., 2016), 
c.728G > A in Chinese (Zhou et al., 2012; Li et al., 2015; Zhang et al, 
2018), c.781C > T in Karachays (Gundorova et al., 2018), c.1068C 
> A and c.728G > A in south Korean (Lee et al., 2008), c.1162G > A 
in Brazilian (Vieira Neto et al., 2018), c.782G > A in Syrian (Murad 
et al., 2013), and c.1222C > T in Australian (Ho et al., 2014). These 
different hotspot mutations suggested different origins. Similar to 
other Chinese populations, in our cohort, the c.728G > A is the 
most common PAH mutation that account for 20.8% of mutational 

alleles and 41.7% of classical PKU patients. However, in patients 
with M-HPA, the c.158C > A is the most common mutation that 
account for 25.0% of mutational alleles and 50.0% of patients. In a 
Japanese population, the c.158C > A also exhibited a relative higher 
prevalence in patients with hyperphenylalaninemia compared 
with PKU (Dateki et al., 2016). It appears that PAH deficiency has 
a correlation between genotype and clinical phenotype, and the 
c.158C > A could be considered as a marker for differentiating 
hyperphenylalaninemia from classical PKU.

PCUD is the second common IME. It shows a large variation of 
prevalence in different populations. For example, the prevalence 
of PCUD is 1/297 in Faroese (Rasmussen et al., 2014), 1/120,000 in 
Australian (Wilcken et al., 2003), 1/40,000 in Japanese (Koizumi 
et al., 1999), and 1/20,000–70,000 in American (Magoulas and 
El-Hattab, 2012). According to the available data, the prevalence 
of PCUD ranges from 1/45,000 to 1/8,000 in different areas of 
China (Han et al., 2012; Sun et al., 2017; Zheng et al., 2017; Guo 
et al., 2018), while the incidence of PCUD is 1/26,777 in Suzhou 
population. PCUD is caused by deficiency of organic cation 
transporter 2 (OCTN2) that results from variants in SLC22A5 
gene. The symptomatic patients presented a variety of clinical 
symptoms, including muscle weakness, dilated cardiomyopathy, 
hepatomegaly, encephalopathy, sudden infant death, feeding 

FIGUrE 2 | Disease spectrum and distribution of inborn errors of metabolisms. (a) The percentage of three categories of inborn errors of metabolisms. (B) the 
percentage of different kinds of amino acid metabolic disorders. (C) the percentage of different kinds of organic acid metabolic disorders. (D) the percentage of 
different kinds of fatty acid metabolic disorders.
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difficulty, recurrent pneumonia, vomiting, abdominal pain, and 
diarrhea (Han et al., 2014). These symptoms might be caused 
by different genotypes of PCUD (Rose et al., 2012; Chen et al., 
2013). To date, more than 110 SLC22A5 mutations have been 
reported and hotspot mutations vary in different population 
(Han et al., 2014). For example, C.844T > C is always observed 
in Caucasian PCUD patients (Burwinkel et al., 1999; Vaz et al., 
1999; Wang et al., 1999), and c.1400C > G is the hotspot mutation 
in Southeast Asian (Koizumi et al., 1999; Nezu et al., 1999; 
Tang et al., 1999). However, in California patients, no obvious 
hotspot mutation was observed in PCUD patients (Gallant et al., 
2017). This could be explained by the fact that those patients are 
multi-ethnic. With regard to Chinese, the hotspot mutations are 
similar in different regions. Chen et al. found the most common 

mutations were c.760C > T (32.9%), c.1400C > G (21.1%), and 
c.51C > G (14.5%) in Taiwan PCD patients (Chen et al., 2013). 
Han et al. reported that c.760C > T is the most common mutation 
in patients with symptomatic, and c.51C > G in patients with 
asymptomatic in Shanghai (Han et al., 2014). Guo et al. observed 
that c.1400C > G were the most common mutation in five Jining 
PCUD patients (Guo et al., 2018). Sun et al. also noted that the 
c.1400C > G was the most common mutation in seven Nanjing 
PCUG patients (Sun et al., 2017). Tan et al. found the c.51C > G 
is the most common mutations in Liuzhou PCUD patients (Tan 
et al., 2017). In agreement with most studies, the c.1400C > G is 
the most common mutation, with a relative frequency of 50% 
and accounting for 80% of Suzhou PCUD patients.

SCADD is the third prevalent disease of IMEs and the 
most prevalent disease of fatty acid metabolic errors in Suzhou 
population. SCADD had a wide spectrum of symptoms, 
including hepatic dysfunction, bilateral optic atrophy, vomiting, 
dysmorphic facial features, feeding difficulties, metabolic 
acidosis, epilepsy, ketotic hypoglycemia, developmental delay, 
lethargy, seizures, dystonia, myopathy, and hypotonia (Kılıç 
et al., 2017; Nochi et al., 2017). However, almost all patients with 
SCADD identified by newborn screening present no symptom 
or significant health tissue (Jethva et al., 2008; Waisbren et  al., 
2008; Huang et al., 2016; Zheng et al., 2017). Therefore, SCADD 
was not included in expanded newborn screening panels in 
many newborn screening centers (Dietzen et al., 2009; Mak 
et  al., 2013; Smon et al., 2018). The reported incidence of 
SCADD is 1/25,000~1/45,000 worldwide (Zytkovicz et al., 2001; 
Loukas et  al., 2010; Lim et al., 2014). In consistence with the 
above reports, the incidence of SCADD in Suzhou population 
is 1/28,690. SCADD is caused by the deficiency of SCAD that 
is encoded by ACADS gene. Until now, about 70 variants have 
been reported to be pathogenic or likely pathogenic in ACADS 
gene, including two common variants, c.511C > T and c.625G > 
A (Tonin et al., 2016; Nochi et al., 2017). Most patients with 
SCAD deficiency carry two mutation alleles of the two common 
variants, or harbor one of them in combination with a rare variant 
in ACADS gene (van Maldegem et al., 2010), and the hotspot in 
Ashkenazi Jewish patients is a pathogenic c.319C > T mutation 
(Tein et al., 2008). However, 71.4% of Suzhou patients with SCAD 
deficiency carried the pathogenic mutation c.1031A > G, similar 
to Zhejiang SCADD patients (Huang et al., 2016), but different 
from Jining SCADD patients (Guo et al., 2018).

Several conditions, including deficiency in cystathionine 
β-synthase activity, tyrosinemia type I, and liver disease, could 
result in abnormal elevation of serum methionine. In this study, 
hypermethioninemia specially refers to abnormal elevated 
methionine caused by the abolished or reduced activity of 
hepatic methionine adenosyltransferase (MAT) I/III that are 
encoded by MATA1 gene. More than 37 mutations described 
previously range from truncating mutations with no residual 
enzyme activity to mild missense mutations (Mudd., 2011; 
Chien et al., 2015). The prevalence of MAT I/III deficiency 
was reported to range from 1/110,000 to 1/20,000 in different 
newborn populations (Chien et al., 2005; Couce et al., 2008; 
Martins et al., 2012; Couce et  al., 2013; Nagao et al., 2013). 
However, in mainland of China, the incidence is unreported. 

TaBlE 3 | The spectrum and incidence of conditions from 401660 newborns 
screened by expanded newborn screening program.

Conditions Patients Estimated 
incidence

95%CI

Amino acid metabolic 
disorders

79 1/5,084 1/6,378–1/4,102

Phenylketonuria 21 1/19,128 1/30,093–1/12,729
Mild 
hyperphenylalaninemia

21 1/19,128 1/30,093–1/12,729

Hypermethioninemia 13 1/30893 1/55,556–1/18,532
Citrullinemia type II 7 1/57,372 1/131,199–1/29,011
Tetrahydrobiopterin 
deficiency

6 1/66,934 1/165,153-1/32,185

Tyrosinemia 4 1/100,411 1/316,056–1/41,632
Ornithine 
transcarbamylase 
deficiency

3 1/133,887 1/526,316–1/49,188

Citrullinemia type I 2 1/200,843 1/1,197,891–1/60,790
Maple syrup urine 
disease

1 1/401660 1/8,025,682–1/ 81,433

Argininosuccinate 
aciduria

1 1/401,660 1/8025682–1/81,433

Organic acid metabolic 
disorders

30 1/13,389 1/19,486–1/9,497

3-Methylcrotonyl-CoA 
carboxylase deficiency

12 1/33,412 1/61,767–1/19,689

Methylmalonic acidemia 10 1/40,166 1/79,051–1/22,533
Isobutyryl coa 
dehydrogenase 
deficiency

3 1/133,887 1/526,316–1/49,188

Isovaleric acidemia 2 1/200,843 1/1,197,891–1/60,790
Malonic acidemia 1 1/401,660 1/8,025,682–1/81,433
2-Methylbutyrylglycinuria 1 1/401,660 1/8,025,682–1/81,433
Propionic acidemia 1 1/401,660 1/8,025,682–1/81,433
Fatty acid metabolic 
disorders

44 1/9,129 1/11,669–1/6,863

Primary carnitine uptake 
defect

15 1/26,777 1/46,083–1/16,609

Short chain acyl-
CoA dehydrogenase 
deficiency

14 1/28,690 1/50,403–1/17,516

Very long chain acyl-
CoA dehydrogenase 
deficiency

6 1/66,934 1/165,153–1/32,185

Medium chain acyl-
CoA dehydrogenase 
deficiency

5 1/80,332 1/219,250–1/36,245

Glutaric aciduria type I 4 1/100,411 1/316,056–1/41,632
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TaBlE 4 | Mutations detected in patients with inborn error of metabolism identified by expanded newborn screening.

Conditions (OMIM 
number)

Gene 
(OMIM 

number)

Mutation 
alleles 

number

Nucleotide 
variant

amino acid 
variant

reported Pathogenic rF% Cases accounting 
for patients 

(%)

Phenylketonuria 
(261,600)

PAH 
(612,349)

24 12

5 c.728G > A p.R243Q Y P 20.8 5 41.7
2 c.611A > G p.Y204C Y P/LP 8.3 2 16.7
2 c.721C > T P.R241C Y P 8.3 2 16.7
2 c.498C > G p.Y166X Y P 8.3 1 8.3
1 c.125A > T p.K42I Y NP 4.2 1 8.3
1 c.158G > A p.P53H Y US 4.2 1 8.3
1 c.208_210delTCT p.S70del Y P 4.2 1 8.3
1 c.331C > T p.R111T Y P 4.2 1 8.3
1 c.442-1G > A / Y P 4.2 1 8.3
1 c.722delG R241Pfs Y LP 4.2 1 8.3
1 c.722G > A p.R241H Y P 4.2 1 8.3
1 c.740G > T p.G247V Y P/LP 4.2 1 8.3
1 c.827T > G p.M276R Y NP 4.2 1 8.3
1 c.929C > T p.S310F Y P 4.2 1 8.3
1 c.1223G > A p.R408Q Y P 4.2 1 8.3
1 c.1238G > C p.R413P Y P 4.2 1 8.3
1 c.1264G > A p.E422K Y NP 4.2 1 8.3

Mild 
hyperphenylalaninemia 
(261,600)

PAH 
(612,349)

36 18

9 c.158G > A p.P53H Y US 25.0 9 50.0
4 c.1238G > C p.R413P Y P 11.1 4 22.2
3 c.728G > A p.R243Q Y P 8.3 3 16.7
3 c.1315+6T > A / Y LP 8.3 3 16.7
2 c.1174T > A p.F392I Y NP 5.6 2 11.1
1 c.208_210delTCT p.S70del Y P 2.8 1 5.6
1 c.310G > T p.A104S N US 2.8 1 5.6
1 c.331C > T p.R111X Y P 2.8 1 5.6
1 c.464G > A p.R155H Y P 2.8 1 5.6
1 c.721C > T p.R241C Y P 2.8 1 5.6
1 c.722G > A p.R241H Y P 2.8 1 5.6
1 c.754C > T p.R252W Y P 2.8 1 5.6
1 c.770G > T p.G257V Y LP 2.8 1 5.6
1 c.782G > A p.R261Q Y P 2.8 1 5.6
1 c.977G > A p.W326X Y P 2.8 1 5.6
1 c.1301C > A p.A434D Y LP 2.8 1 5.6
1 c.1123C > G p.Q375E Y NP 2.8 1 5.6
1 1197A > T p.V399X Y P 2.8 1 5.6
1 c.1199G > A p.R400K Y LP 2.8 1 5.6

Primary carnitine uptake 
defect (212,140)

SLC22A5 
(603,377)

30 15

15 c.1400C > G p.S467C Y P/LP 50.0 12 80.0
4 c.51C > G p.F17L Y LP 13.3 4 26.7
4 c.760C > T p.R254X Y P 13.3 4 26.7
2 c.497+1G > T / N US 6.7 2 13.3
1 c.394-1G > T / Y LP 3.3 1 6.7
1 c.428C > T p.P143L N US 3.3 1 6.7
1 c.652+1G > A / Y P 3.3 1 6.7
1 c.1252C > T p.Q418X Y P 3.3 1 6.7
1 c.1462C > T p.R488C Y US 3.3 1 6.7

Short chain acyl-
CoA dehydrogenase 
deficiency (201,470)

ACADS 
(606,885)

28 14

12 c.1031A > G p.E344G Y LP 42.9 10 71.4
5 c.164C > T p.P55L Y LP 17.9 4 28.6
3 c.1130C > T P377L Y CIP 10.7 3 21.4
2 c.322G > A p.G108S Y LP 7.1 2 14.3
2 c.737G > A p.C246T N US 7.1 2 14.3
1 c.77A > G p.H26R N US 3.6 1 7.1

(Continued)
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TaBlE 4 | Continued

Conditions (OMIM 
number)

Gene 
(OMIM 

number)

Mutation 
alleles 

number

Nucleotide 
variant

amino acid 
variant

reported Pathogenic rF% Cases accounting 
for patients 

(%)

1 c.973C > T p.R325W Y CIP 3.6 1 7.1
1 c.1054G > A p.A352T Y US 3.6 1 7.1
1 c.1055C > T p.A352V N US 3.6 1 7.1

Hypermethioninemia 
(250,850)

MAT1A 
(610,550)

14* 13

10 c.791G > A p.R264H Y P 71.4 10 76.9
1 c.533C > T p.P177L N US 7.1 1 7.7
1 c.572_592dup N LP 7.1 1 7.7
1 c.776G > T p.A259V Y P 7.1 1 7.7
1 c.790C > T p.R264C Y P 7.1 1 7.7

3-Methylcrotonyl-CoA 
carboxylase deficiency 
(210,200 and 210,210)

24 12

MCCC1 
(609,010)

4 c.639+2T > A p.S164Rfs*3 Y P 16.7 4 33.3

3 c.863A > G p.E288G Y US 12.5 3 25.0
1 c.181G > T p.A61S N US 4.2 1 8.4
1 c.190G > A p.V64M N US 4.2 1 8.4
1 c.388G > A p.G130S Y US 4.2 1 8.4
1 c.416C > T p.T139I N US 4.2 1 8.4
1 c.490delA N US 4.2 1 8.4
1 c.872C > T p.A291V Y US 4.2 1 8.4
1 c.1069G > T p.E357X N LP 4.2 1 8.4
1 c.1103delG p.G368Vfs*70 N LP 4.2 1 8.4
1 c.1136G > A p.G379D N US 4.2 1 8.4
1 c.1381G > T p.V461F N US 4.2 1 8.4
1 c.1679dupA p.N560Kfs*10 Y P 4.2 1 8.4

MCCC2( 
609,014)

2 c.577C > T p.R193C N US 8.3 2 16.7

1 c.592C > T p.Q198X N LP 4.2 1 8.4
3 undetectable – – – 12.5 3 25.0

Methylmalonic acidemia 
(251,000)

20 10

MMUT 
(609,058)

3 c.1663G > A p.A555T Y LP 15.0 3 30.0

2 c.729_730insTT p.D244Lfs Y P 10.0 2 20.0
1 c.322C > T p.R108C Y P 5.0 1 10.0
1 c.454C > T p.R152X Y P 5.0 1 10.0
1 c.581C > T p.P194L N US 5.0 1 10.0
1 c.755dupAA p.H252QfsX6 N LP 5.0 1 10.0
1 c.1280G > A p.G427D Y P 5.0 1 10.0
1 c.1677-1G > A p.R559Sfs*14 Y P 5.0 1 10.0
1 c.2080C > T p.R694W Y P 5.0 1 10.0
1 c.2131G > T p.E711X Y LP 5.0 1 10.0

MMACHC 
(609,831)

2 c.609G > A p.W203X Y P 10.0 2 20.0

1 c.394C > T p.R132X Y P 5.0 1 10.0
1 c.567dupT p.190Yfs*13 Y P 5.0 1 10.0
1 c.658_660del p.L220del Y P 5.0 1 10.0
2 undetectable – – – 10.0 2 20.0

Citrullinemia (605814 
and 603,471)

16 8

SLC25A13 
(603,859)

4 c.IVS16ins3Kb / Y P 25.0 4 50.0

3 c.852_855delTATG p.M285Pfs Y P 18.8 3 37.5
1 c.851_854delGTAT p.Met284fs Y LP 6.3 1 12.5
1 c.1078C > T p.R360X Y P 6.3 1 12.5
1 c.1399C > T p.R467X N LP 6.3 1 12.5
4 undetectable – – – 25.0 4 50.0

ASS1 
(603,470)

1 c.689G > C p.G230A Y LP 6.3 1 12.5

(Continued)
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TaBlE 4 | Continued

Conditions (OMIM 
number)

Gene 
(OMIM 

number)

Mutation 
alleles 

number

Nucleotide 
variant

amino acid 
variant

reported Pathogenic rF% Cases accounting 
for patients 

(%)

1 c.1004G > A p.R355H Y US 6.3 1 12.5
Very long chain acyl-
CoA dehydrogenase 
deficiency (609,016)

ACADVL 
(609,575)

13# 6

2 c.887_888delCT p.P296Rfs*17 Y P/LP 15.4 1 16.7
2 c.1349G > A p.R450H Y P/LP 15.4 2 33.3
1 c.278-31_278-

18del
/ Y US 8.3 1 16.7

1 c.553G > A p.G185S Y P/LP 8.3 1 16.7
1 c.642_643delCT p.F214Lfs*38 N LP 8.3 1 16.7
1 c.838A > G p.T280A N US 8.3 1 16.7
1 c.878+34G > A / N US 8.3 1 16.7
1 c.895A > G p.K299E N US 8.3 1 16.7
1 c.1077G > A p.A359A N US 8.3 1 16.7
1 c.1280G > A p.W427X Y LP 8.3 1 16.7
1 c.1345G > C p.E449Q Y US 8.3 1 16.7

Tetrahydrobiopterin 
deficiency (233,910, 
261,640, 612,716, 
264,070, and 261,630)

PTS 
(612719)

12 6

5 c.259C > T p.P87S Y P 41.7 3 50.0
3 c.166G > A p.V56M Y LP 25.0 3 50.0
1 c.155A > G p.N52S Y P 8.3 1 16.7
1 c.272A > G p.K91R N US 8.3 1 16.7
1 c.277C > A p.L93M N US 8.3 1 16.7
1 c.286G > A p.D96N Y P 8.3 1 16.7

Medium chain acyl-
CoA dehydrogenase 
deficiency (201,450)

ACADM 
(607,008)

10 5

2 c.449_452delCTGA p.T150Rfs Y P/LP 20.0 2 40.0
1 c.589A > G p.K197E N US 10.0 1 20.0
1 c.790G > T p.G264C N US 10.0 1 20.0
1 c.970G > A p.A324T N US 10.0 1 20.0
1 c.1171A > G p.M391V N US 10.0 1 20.0
1 c.1238G > A p.R413H Y US 10.0 1 20.0
1 c.1247T > C p.I416T Y CIP 10.0 1 20.0
1 c.1248T > G p.I416M N US 10.0 1 20.0
1 undetectable – – – 10.0 1 20.0

Tyrosinemia (276,700, 
276,600, 276,710)

8 4

FAH 
(603,859)

1 c.5C > T p.T2M N US 12.5 1 25.0

1 c.236G > A p.G79E N US 12.5 1 25.0
2 undetectable – – – 25.0 2 50.0

HPD 
(609,695)

1 c.784G > A p.A262T N US 12.5 1 25.0

1 c.916C > T p.R306X N LP 12.5 1 25.0
TAT 

(613,018)
1 c.1162G > A p.A388T N US 12.5 1 25.0

1 c.1210G > A p.A404T N US 12.5 1 25.0
Glutaric aciduria I 
(231,670)

GCDH 
(608,801)

8 4

2 c.1064G > A p.R355H Y P 25.0 2 50.0
1 c.158C > G p.P53R N US 12.5 1 25.0
1 c.554G > A p.G185E N US 12.5 1 25.0
1 c.892G > A p.A298T Y P/LP 12.5 1 25.0
1 c.916G > A p.E306K N US 12.5 1 25.0
1 c.1186G > C p.D396H N US 12.5 1 25.0
1 c.1240G > A p.E414K Y P 12.5 1 25.0

(Continued)
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Our study reported a prevalence of 1/30,893 in Suzhou 
population of newborns. Of 13 Suzhou hypermethioninemia 
patients, 10 cases carried the dominant mutation c.791G > A 
(Pérez Mato et al., 2001; Muriello et al., 2017). Previous studies 
reported that the c.791G > A was the most prevalent mutation in 
Asian populations, such as Japanese, Chinese in Taiwan, and so 
on (Chien et al., 2005; Nagao et al., 2013). MATA1 deficiency is 
inherited either as autosomal-recessive or autosomal-dominant. 
Most MAT1A mutations give rise to autosomal recessive 
phenotypes, but several autosomal dominant mutations have 
also been observed, including c.776C > T, c.791G > A (Muriello 
et al., 2017), c.746G > A, and c.838G > A (Kim et al., 2016). With 
the exception of a few individuals with hypermethioninemia 
who present with abnormal neurological symptoms, most 
patients generally are free of major clinical manifestation. 
Hypermethioninemia shows clinical symptoms correlated to 
genotypes (Chou, 2000), while the c.791G > A could lead to 
mild hypermethioninemia. Of all MATA1 mutations related to 
hypermethioninemia, the c.791G > A was the most common 
mutation identified in patients screened by expanded newborn 
screening (Couce et al., 2008; Martins et al., 2012; Couce 
et al., 2013). The c.791G > A mutation was the most prevalent 

mutation in Asian populations, including Japanese (Nagao et al., 
2013) and Taiwan population (Chien et al., 2005). As expected, 
the c.791G > A was the most prevalent (80%) mutation in 
Suzhou newborns. In addition, another autosomal dominant 
mutation c.776G > T was found in one patient, and t one patient 
carried a novel heterozygous c.533C > T mutation. It appears 
that MATA1 deficiency is mainly inherited via autosomal 
dominant mode in Suzhou population. Furthermore, we found 
no Suzhou patients exhibit obvious clinical abnormality. There 
is a wide range of clinical manifestations in individuals with 
mutations in MAT1A gene, from completely asymptomatic to 
neurological problems associated with brain demyelination 
(Furujo et al., 2012). As a result, we speculated that the extent 
of clinical manifestations is associated with the inherited mode, 
which needs further research.

3-MCCD is an autosomal recessive inborn error of leucine 
metabolism, resulting in leukodystrophy, developmental delays, 
hypoglycemia, acidosis, failure to thrive, lactic acidosis, and 
hyperammonemia (Elpeleg et al., 1992; de Kremer et al., 2002; 
Forsyth et al., 2016). Despite cases with 3-MCCD identified by 
expanded newborn screening are more than previous expected, a 
growing number of reports have shown that the majority of cases 

TaBlE 4 | Continued

Conditions (OMIM 
number)

Gene 
(OMIM 

number)

Mutation 
alleles 

number

Nucleotide 
variant

amino acid 
variant

reported Pathogenic rF% Cases accounting 
for patients 

(%)

Isobutyryl coa 
dehydrogenase 
deficiency (611,283)

ACAD8 
(604,773)

6 3

3 c.1000C > T p.R344C Y P/LP 50.0 3 100.0
2 c.286C > A p.G96S N US 33.3 2 66.7
1 c.568-3C > G / N US 16.7 1 33.3

Isovaleric acidemia 
(243,500)

IVD 
(607,036)

4 2

1 c.241C > T p.R81X N LP 25.0 1 50.0
1 c.466-29A > G / N US 25.0 1 50.0
1 c.1216A > G p.T406A N US 25.0 1 50.0
1 undetectable – – – 25.0 1 50.0

Argininosuccinate 
aciduria (207,900)

ASL 
(608,310)

2 1

2 c.331C > T p.R111W N LP 100.0 1 100.0
Maple syrup urine 
disease (248,600)

DBT 
(248,610)

2 1

2 c.1132C > T p.Q378X N LP 100.0 1 100.0
Ornithine 
transcarbamylase 
deficiency (311,250)

OTC 
(300,461)

2 1

2 c.829C > T p.R277Y Y P 100.0 1 100.0
Malonic acidemia 
(248,360)

MLYCD 2 1

2 c.482T > C p.L161P Y US 100.0 1 100.0
2-Methylbutyrylglycinuria 
(611,283)

ACADSB 
(600,301)

2 1

2 C.1165A > G p.M389V N LP 100.0 1 100.0
Propionic acidemia 
(606,054)

PCCA 
(232,000)

2 1

1 c.229C > T p.R77W Y LP 50.0 1 100.0
1 c.2002G > A p.G668R Y P/LP 50.0 1 100.0

CIP, conflicting interpretations of pathogenicity; LP, likely pathogenic; N, no; P, pathogenic; RF, relative frequency; US, uncertain significance; Y, yes.
*one case carry two mutational alleles.
#, one case carry three mutational alleles.
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are in fact asymptomatic (Stadler et al., 2006; Arnold et al., 2008; 
Arnold et al., 2012; Lam et al., 2013; Ye et al., 2014; Rips et al., 
2016). This suggests this condition might represent a biochemical 
phenotype, but not a disease, and therefore should be excluded 
from newborn screening panels (Wilcken, 2008; Forsyth et al., 
2016; Rips et al., 2016). The 3-MCCD is classified into type I 
(MIM# 210200) and type II (MIM# 210210), caused by MCCC1 
gene and MCCC2 gene, respectively. Until now, at least 66 
MCCC1 and 83 MCCC2 mutations have been reported (Yang 
et al., 2015). The 3-MCCD was the most prevalent organic acid 
metabolic error and showed a large variation of incidence from 
1/27,000 to 1/110,000 in different countries (Yang et al., 2015; 
Fonseca et al., 2016). Similar to another Chinese population 
(Yang et al., 2015), the incidence of 3-MCCD is about 1/33,412 in 
Suzhou population. Some previous reports revealed that MCCC2 
mutations were the main etiology of 3-MCCD (Uematsu et al., 
2007; Cho et al., 2012; Grünert et al., 2012; Fonseca et al., 2016). 
However, in Zhejiang population, almost all (5/6) 3-MCCD 
patients carried one or two MCCC1 mutations (Yang et al., 2015). 
Similarly, of 12 Suzhou patients with 3-MCCD, 75% (9/12) were 
caused by MCCC1 mutations, which suggested the MCCC1 
mutations might be prevalent in China (Yang et al., 2015). It is 
worth mentioning that further genetic testing for more Chinese 
patients should be conducted to confirm the above conclusion. 
Several mutations were observed to have a relative high frequency 
in 3-MCCD patients, including c.838G > T (4/12), c.295G > A 
(3/56), c.1574+1G > A (3/56) in MCCC2 gene and c.1155A > 
C (4/56) in MCCC1 gene (Dantas et al., 2005; Cho et al., 2012). 
However, most studies did not observe mutational hotspot of the 
two genes (Stadler et al., 2006; Yang et al., 2015; Smon et al., 2018). 
Contrary to a previous report on Zhejiang patients, a mutational 
hotspot c.639+2T > A, that was observed in only one Zhejiang 
patient and predicted to be pathogenic (Yang et al., 2015), had 
a high prevalence (4/12) in Suzhou patients. This inconsistency 
could be caused by the diversity of races or a small sample size of 
patients. As a result, the mutational hotspot should be confirmed 
by further research based on a large number of patients.

MMA is a family of lethal, severe, and multisystems organic 
acid metabolic errors, which has a wide clinical spectrum, 
including anorexia, failure to thrive, hypotonia, developmental 
delay, progressive renal failure, functional immune impairment, 
optic nerve atrophy, and hematologic abnormalities. MMA is 
classified into two main forms according to phenotype, including 
isolated methylmalonic acidurias and combined methylmalonic 
aciduria and homocystinuria, and caused by the defects of 10 
genes, including MUT, MMAA, MMAB, CD320, MMADHC, 
LMBRD1, HCFC1, ABCD4, MCEE, and SUCLA2. According to 
previous reports, the incidence of MMA was 1/50,000 in Japan 
(Shigematsu et al., 2002), 1/85,000 in Taiwan of China (Cheng 
et al., 2010), and 1/250,000 in Germany (Schulze et al., 2003). 
However, in mainland China, the incidence of MMA ranged from 
1/3,920 to 1/26,000 (Tu, 2011; Han et al., 2016; Yin, 2016; Zhao 
et al., 2016). In Suzhou, the incidence of MMA is about 1/40,000, 
obviously higher than that in the above countries, but lower than 
that in Shandong, Henan, Beijing, Shanghai, and Taiwan. Recently, 
a study with large sample size, containing 1,003 MMA patients 
derived from 26 provinces or cities of China, demonstrated that 

MMA cblC and MMA mut were the two major types in China. 
Similar to the report by Liu et al., the MMA cblC and the MMA 
mut were also the most prevalent types in Suzhou. However, 
contrary to Liu et al. report, in Suzhou population, the MMA 
mut (six patients) was more prevalent than MMA cblC (three 
patients). Several hotspot mutations were reported in MUT gene 
and MMADHC gene. Han et al. reported that the c.729_730insTT 
of the MMUT gene was the most common mutation in Shanghai 
patients (Han et al., 2015). Liu et al. reported that the c.609G > 
A and the c.658_660delAAG of the MMACHC gene were the 
most common mutations in 70 unrelated MMA cblC patients 
(Liu et al., 2010). Yu et al. reported that the c.609G > A and the 
c.658_660delAAG were the most common mutations detected in 
13 (81%) out of 16 MMA cblC patients (Yu et al., 2015). However, 
in Suzhou patients with MMA, the mutations c.1663G > A and 
c.729_730insTT of the MMUT gene and c.609G > A of the 
MMACHC gene were the most common mutations. Therefore, 
the hotspot mutations in Chinese patients with MMA might be 
c.609G > A and c.658_660delAAG of the MMACHC gene and 
might be c.1663G > A and c.729_730insTT of the MMUT gene.

Citrullinemia is an autosomal recessive disorder and a urea 
cycle disease leading to a wide spectrum of phenotypes, from 
life-threatening neonatal hyperammonemia to adult onset 
with mild symptoms, and even no manifestation (Saheki and 
Kobayashi, 2002; Gao et al., 2003; Häberle et al., 2003; Enns et al., 
2005; Dimmock et al., 2008; Komatsu et al., 2008; Häberle et al., 
2009; Salek et al., 2010). This disease is classified into CTLN 1 
and CTLN 2, caused by mutations of ASS1 gene and SLC25A13 
gene, respectively. The estimated prevalence of CTLN 1 and 
CTLN 2 is 1 in 44,300–200,000 (Kasper et al., 2010; Niu et al., 
2010) and 1 in 7,100–230,000 (Yamaguchi et al., 2002; Kobayashi 
et al., 2003; Lu et al., 2005; Tabata et al., 2008; Kikuchi et al., 2012) 
based on expanded newborn screening, respectively. However, 
most CTLN2 cases were identified in countries of East Asia, 
especially in Japan. More than 137 mutations in ASS1 gene have 
been identified in worldwide patients (Diez-Fernandez et al., 
2017). The c.1168G > A mutation is the most common mutation 
in several ethnic groups, including Germans, Spaniards, and 
Turks, but rare in Asians (Gao et al., 2003; Engel et al., 2009; 
Diez-Fernandez et al., 2017). Whereas, the c.421-2A > G is the 
most frequent mutation in East Asians (Kobayashi et al., 1995; 
Lee et al., 2013; Woo et al., 2013). However, in this study, only 
one CTLN 1 patient and two mutations of the ASS1 gene were 
identified in Suzhou citurillinemia patients, which could be 
caused by ethnic specificity. With regard to CTLN2, a higher 
prevalence is observed in Suzhou patients compared to CTLN1. 
In previous studies, mutation detection of the SLC25A13 gene 
was very high, greater than 90% of CTLN2 in East Asians 
(Yasuda et al., 2000; Saheki and Kobayashi, 2002; Yamaguchi 
et al., 2002; Kobayashi et al., 2003; Saheki et al., 2004; Lu et al., 
2005). In contrast to CTLN1, the CTLN2 had a narrow spectrum 
of mutations in SLC25A13 gene and highly clustered mutations 
(Woo et al., 2014). The c.851_854del mutation in SLC25A13, 
which was suspected to have a founder effect, was identified in 
CTLN2 patients throughout East Asian countries, such as China, 
Japan, Korea, and so on (Kobayashi et al., 1999; Tanaka et al., 2002; 
Imamura et al., 2003; Tabata et al., 2008). According to targeted 
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mutation analysis, the frequency of overall mutations in CTLN2 
is estimated to be 1/65–79 in Chinese, 1/69–73 in Japanese, 
1/50–112 in Korean, and 1/70–97 in Taiwanese (Yamaguchi et al., 
2002; Saheki and Kobayashi, 2002; Kobayashi et al., 2003; Saheki 
et al., 2004; Lu et al., 2005). In above countries, c.1177+1G>A 
and c.851_854del are the most common mutations in CTLN 2 
patients. In Japanese patients, the c.1177+1G>A mutation (up 
to 43.1% of detected alleles) had the highest frequency, followed 
by c.851_854del mutation (up to 38.9%) (Saheki and Kobayashi, 
2002; Yamaguchi et al., 2002). In Korea patients, the IVS16ins3kb 
and the c.851_854del were the most common mutations and were 
found at very high frequencies (100%) (Ko et al., 2007). In Hong 
Kong CTLN2 patients, the c.851_854del GTAT, IVS16ins3kb 
and c.852_855delTATG were the most common mutations of 
SLC25A13 gene (Hui et al., 2014; Chong et al., 2018). In another 
Chinese population, the c.851_854del GTAT was the most 
common mutation and was observed in 100% CTLN2 patients 
(Lin et al., 2017). Some other studies also observed c.851_854del 
GTAT was the most common mutation in Chinese populations 
(Xing et al., 2010; Fu et al., 2011; Song et al., 2011). In our study, 
we found the c.852_855delTATG and the IVS16ins3kb were 
the most common mutations and accounted for 75.0% of cases. 
In addition, another reported hotspot mutation c.851_854del 
GTAT was also observed in one Suzhou patient. As a result, 
c.851_854del, c.852_855delTATG, and IVS16ins3kb might be 
the most common mutations and should draw more attention in 
genetic analysis of Chinese CTLN2 patients.

Tetrahydrobiopterin deficiency (or BH4 deficiency) is a rare 
inborn metabolic disorder characterized by the deficiency of 
tetrahydrobiopterin or BH4 and caused by mutations in one of 
the four genes, including GCH1, PCBD1, PTS, and QDPR. This 
condition is inherited by autosomal recessive pattern and has 
a wide spectrum of symptoms, including intellectual disability, 
progressive problems with development, movement disorders, 
difficulty swallowing, seizures, behavioral problems, and 
inability to control body temperature. The total prevalence of this 
condition is estimated 1/500,000 to 1/1,000,000 worldwide and 
was relative high in Asian populations. In mainland of China, 
BH4 deficiency accounted for 8.55% of patients with HPA (Ye 
et al., 2009), significantly higher than 1%–3% of HPA worldwide 
(Blau et al., 1996). In our study, the prevalence of BH4 deficiency 
in Suzhou newborns was about 1/67,000, higher than 1/140,000 
in the mainland of China (Ye et al., 2009; Li et al., 2018). Two 
teams reported the mutations in PTS gene were the main cause 
of BH4 deficiency, accounting for more than 95% of Chinese 
patients (Ye et al., 2009; Ye et al., 2013; Li et al., 2018). Similar 
to the above reports, all these six Suzhou patients with BH4 
deficiency were caused by mutations in PTS gene. To date, more 
than 90 mutations in PTS gene have been reported in different 
populations. There are several mutational hotspots in different 
regions. Wang and coworkers investigated 204 PTPS deficiency 
patients and found the c.259C > T (38.2%) in PTS gene was 
the most common mutation, followed by c.84-291A > G (11%) 
(Wang et al., 2018). Ye and coworkers investigated 136 Chinese 
patients with PTPS deficiency and found c.259C > T (42.9%) in 
PTS gene was the most common mutation, followed by c.286G 
> A (13.4%) (Ye et al., 2013). Similar to the report by Ye et al., 

Li and coworkers reported that the c.259C > T (31.82%) in PTS 
gene was the most common mutation, followed by c.286G > A 
(13.64%) (Li et al., 2018). In Suzhou BH4 deficiency patients, 
we also found the c.259C > T was the most common mutation, 
accounting for 41.7% of mutation alleles. However, the second 
common mutation was c.166G > A, accounting for 25% of 
mutation alleles. The two most common mutations accounted for 
83.3% of BH4-deficiency patients. The remaining four mutation 
alleles were c.155A > G, c.272A > G, c.277C > A, and c.286G > A, 
respectively, and all of these mutations were reported previously. 
However, c.155A > G, c.272A > G, and c.286G > A were reported 
as common mutations in Chinese patients with BH4 deficiency 
(Ye et al., 2013; Li et al., 2018; Wang et al., 2018). This difference 
could be caused by a small sample size and different populations. 
As a result, these mutational hotspots are potential candidates for 
genetic analysis of Chinese patients with BH4 deficiency.

IBD deficiency is a very rare disorder characterized by disrupting 
the breakdown of Val. This condition is an autosomal recessively 
inherited disease and caused by mutations in the ACAD8 gene. To 
the best of our knowledge, only 27 patients with IBD deficiency were 
reported in literature, and 28 mutations in the ACAD8 gene were 
detected in these patients (Yun et al., 2015; Santra et al., 2016; Lin 
et al., 2018). Most patients with IBD deficiency were asymptomatic 
in neonatal period, and a few had developed features such as dilated 
cardiomyopathy, hypotonia, developmental delay, and speech delay 
(Yun et al., 2015; Lin et al., 2018). In Suzhou population of newborns, 
three patients with IBD deficiency were identified from more than 
400,000 newborns, and all patients remained asymptomatic during 
treatment and follow-up. Two reported common mutations were 
detected, including c.1000C > T and c.286C > A in the ACAD8 
gene. Recently, Lin and coworker reported six Chinese patients 
with IBD deficiency and found the c.286C > A (7/14) was the 
most common mutation (Lin et al., 2018), followed by c.1000C > 
T. However, we found that the c.1000C > T was the most common 
mutation accounting for 50.0% (3/6) of mutational alleles in Suzhou 
patients with IBD deficiency, followed by c.286C > A (33.3%). As 
a result, the two mutations c.286C > A and c.1000C > T in the 
ACAD8 gene could be considered as mutational hotspots resulting 
in IBD deficiency in Chinese population. In addition, a novel 
heterozygous mutation c.568-3C > G was found in one patient with 
IBD deficiency. Our results characterized the mutational hotspots 
in the ACAD8 gene in Chinese patients with IBD deficiency and 
broaden the mutational spectrum of the ACAD8 gene.

There were five patients who were affected with Argininosuccinic 
aciduria (ASA; MIM# 207900), Maple syrup urine disease (MSUD; 
MIM# 248600), ornithine transcarbamylase deficiency (OTD; 
MIM# 311250), 2-methylbutyrylglycinuria (MBG; MIM# 248360), 
and Malonic acidemia (MA; MIM# 248360), respectively. Despite 
these five kinds of IEMs are extremely rare in Suzhou population, 
the cases affected with one of these IEMs are homozygous for one 
of the mutations, including c.331C > T in ASL, c.1132C > T in 
DBT, c.829C > T in OTC, 1165A > G in ACADSB, and c.482T > C 
in MLYCD. Therefore, these mutations might be hotspots causing 
the above five IEMs. In Suzhou patients, the remaining six IEMs 
were not observed to have mutational hotspots, including MCAD 
deficiency, VLCAD deficiency, glutaric acidemia type I (GA-I; 
MIM# 231670), tyrosinemia (MIM# 276700, 276600, and 276710), 

Frontiers in Genetics | www.frontiersin.org October 2019 | Volume 10 | Article 1052

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Inborn Errors of Metabolism in Suzhou, ChinaWang et al.

14

isovaleric acidemia (IVA; MIM# 243500), and propionic acidemia 
(PROP; MIM# 606054). In 32 mutation alleles of 16 patients 
with one of above six IEMs, 24 reported mutations and 6 novel 
mutations were detected. This might be caused by a small sample 
size and further research is needed.

In summary, we have detected a few mutational hotspots and 
some novel mutations that account for most Suzhou patients 
with IEMs identified by expanded newborn screening that might 
be pathogenic. These mutational hotspots could be potential 
candidates for gene screening and these novel mutations 
expanded the mutational spectrum of IEMs. Our findings could 
be of value for genetic counseling and genetic diagnosis of IEMs.
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