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ABSTRACT
The purpose of this comprehensive review is to: 1) review the physiology of sweat gland function
and mechanisms determining the amount and composition of sweat excreted onto the skin
surface; 2) provide an overview of the well-established thermoregulatory functions and adaptive
responses of the sweat gland; and 3) discuss the state of evidence for potential non-thermo-
regulatory roles of sweat in the maintenance and/or perturbation of human health. The role of
sweating to eliminate waste products and toxicants seems to be minor compared with other
avenues of excretion via the kidneys and gastrointestinal tract; as eccrine glands do not adapt to
increase excretion rates either via concentrating sweat or increasing overall sweating rate. Studies
suggesting a larger role of sweat glands in clearing waste products or toxicants from the body
may be an artifact of methodological issues rather than evidence for selective transport.
Furthermore, unlike the renal system, it seems that sweat glands do not conserve water loss or
concentrate sweat fluid through vasopressin-mediated water reabsorption. Individuals with high
NaCl concentrations in sweat (e.g. cystic fibrosis) have an increased risk of NaCl imbalances during
prolonged periods of heavy sweating; however, sweat-induced deficiencies appear to be of
minimal risk for trace minerals and vitamins. Additional research is needed to elucidate the
potential role of eccrine sweating in skin hydration and microbial defense. Finally, the utility of
sweat composition as a biomarker for human physiology is currently limited; as more research is
needed to determine potential relations between sweat and blood solute concentrations.
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Introduction

Sweat evaporation from the skin surface plays a critical
role in human thermoregulation and this is most
apparent when the ability to sweat is compromised
during periods of strenuous physical labor and/or
exposure to hot environments [1]. For example, in
anhidrotic patients [2,3] or individualswearing encap-
sulating protective clothing/equipment [4], body core
temperature rises sharply with exercise-heat stress,
which can lead to heat exhaustion or heat stroke if
other means of cooling are not provided. Despite the
well-accepted thermoregulatory role of sweating, it is
common perception that sweating has a variety of
other critical homeostatic functions unrelated to ther-
moregulation. For instance, sweat glands are perceived
to play an important excretory function, similar to that
of the renal system, responsible for clearing excess
micronutrients, metabolic waste, and toxicants from
the body. This belief can lead individuals to engage in
practices (e.g. prolonged sauna exposure, exercise in

uncompensable conditions) designed to induce heavy
sweat losses for their perceived health benefits.
However, the effectiveness of sweat glands as an excre-
tory organ for homeostatic purposes is currently
unclear as there are no comprehensive reviews on
this topic. Another common perception is that excre-
tion of certain constituents in sweat may lead to per-
turbations in health, such as micronutrient
imbalances. A few studies have investigated this
notion but a thorough review of the literature has
not been published to date. Therefore, the first aim
of this paper is to provide a comprehensive review of
the physiology of sweat gland function, including the
types of sweat glands, their structure, andmechanisms
that determine the amount and the composition of
sweat excreted onto the skin surface. This will provide
the background necessary to then discuss the physio-
logical roles of sweat in the maintenance and/or per-
turbation of human health. In particular, this paper
will provide the state of the evidence for the non-
thermoregulatory as well as the thermoregulatory
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roles of sweating, consider the methodological chal-
lenges of studies in this area, and make suggestions
where future research is needed.

Types of sweat glands

The purpose of this section is to compare and contrast
the three main types of sweat glands: eccrine, apocrine,
and apoeccrine [5,6], which are illustrated in Figure 1.
Eccrine sweat glands are the most numerous, distrib-
uted across nearly the entire body surface area, and
responsible for the highest volume of sweat excretion
[5]. By contrast, apocrine and apoeccrine glands play a
lesser role in overall sweat production as they are
limited to specific regions of the body [7–10].
However, it is important to briefly discuss the apocrine
and apoeccrine glands since their secretions can also
impact the composition of sweat collected at the skin
surface.

Eccrine sweat glands

Eccrine glands were the first type of sweat gland
discovered; as they were initially described in 1833
by Purkinje andWendt and in 1834 by Breschet and
Roussel de Vouzzeme, but were not named eccrine
glands until almost 100 years later by Schiefferdecker
[11]. Eccrine glands are often referred to as the small
gland variety, but are by far the most ubiquitous type
of sweat gland [12]. Humans have ~2–4 million
eccrine sweat glands in total and are found on both
glabrous (palms, soles) and non-glabrous (hairy)

skin [13–15]. Gland density is not uniform across
the body surface area. The highest gland densities are
on the palms and soles (~250–550 glands/cm2) [16]
and respond to emotional as well as thermal stimuli.
The density of eccrine glands on non-glabrous skin,
such as the face, trunk, and limbs are ~2–5-fold
lower than that of glabrous skin [16], but distributed
over a much larger surface area and are primarily
responsible for thermoregulation.

The eccrine glands are functional early in life and,
starting at ~2–3 years of age, the total number of
eccrine glands is fixed throughout life [12–14].
Therefore, overall sweat gland density decreases with
skin expansion during growth from infancy and is
generally inversely proportional to body surface area.
As a result, children have higher sweat gland densities
than adults [11], and larger or more obese individuals
have lower sweat gland densities than their smaller or
leaner counterparts [13,17]. However, higher sweat
gland density does not necessarily translate to higher
sweating rate. In fact, most of the variability in regional
and whole-body sweating rate within and between
individuals is due to differences in sweat secretion
rate per gland, rather than the total number of active
sweat glands [18,19]. Eccrine sweat is mostly water and
NaCl, but also contains a mixture of many other
chemicals originating from the interstitial fluid and
the eccrine gland itself. The structure and function of
eccrine glands and the composition of eccrine sweat
will be discussed in more detail in subsequent sections
of this paper.

Figure 1. Comparison of the apocrine, eccrine, and apoeccrine glands in the axilla.
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Apocrine sweat glands

The apocrine gland is a second type of sweat
gland, which was first recognized by Krause in
1844 and later named by Schiefferdecker in 1922
[20,21]. Apocrine sweat glands are located primar-
ily in the axilla, breasts, face, scalp, and the peri-
neum [21,22]. As shown in Figure 1, these glands
differ from eccrine glands in that they are larger
and open into hair follicles instead of onto the skin
surface [12]. In addition, although present from
birth, the secretory function of apocrine glands
does not begin until puberty [23]. Apocrine glands
produce viscous, lipid-rich sweat, which is also
comprised of proteins, sugars, and ammonia
[21,23]. The function of apocrine glands in many
species is generally regarded as scent glands
involved in production of pheromones (body
odor), although this social/sexual function is rudi-
mentary in humans. Apocrine gland innervation is
poorly understood, but isolated sweat glands have
been found to respond equally to adrenergic and
cholinergic stimuli [23].

Apoeccrine sweat glands

A third type of sweat gland, only recently described
by Sato et al. in 1987 [23,24] is the apoeccrine
gland. Apoeccrine glands develop from eccrine
sweat glands between the ages of ~8 to 14 years
and increase to as high as 45% of the total axillary
glands by age 16–18 [23]. They are intermediate in
size, but as the name suggests, apoeccrine glands
share properties with both eccrine and apocrine
glands. Like apoeccrine glands, apoeccrine glands
are limited in distribution, as they are contained to
only the axillary region. Apoeccrine glands are
more similar to eccrine glands in that the distal
duct connects to and empties sweat directly onto
skin surface [23]. In addition, the apoeccrine gland
produces copious salt water secretions similar to
eccrine sweat [23]. The function of this secretion
is unknown, but unlikely to play a significant role in
thermoregulation since evaporation is inefficient in
the axilla region. The innervation of the apocrine
gland is still poorly understood, but in vitro models
suggest the apocrine gland is more sensitive to
cholinergic than adrenergic stimuli [23,24].

Sebaceous glands

Sebaceous glands are not a type of sweat gland
but worth mentioning here since their secretions
can impact the composition of sweat collected at
the skin surface [25]. Sebaceous glands, first
described by Eichorn in 1826 [26], are associated
with hair follicles and present over much of the
body surface but particularly the scalp, forehead,
face, and anogenital area [26,27]. They are absent
on the palms of hands and soles of the feet [26].
Sebaceous glands are holocrine glands that secrete
a viscous, lipid-rich fluid consisting of triglycer-
ides, wax esters, squalene, cholesterol, and cho-
lesterol esters [25–27]. The rate of sebum
production is related to the number and size of
glands which is under hormonal (androgen) con-
trol [26]. The importance of sebaceous gland
secretions is uncertain but sebum is thought to
have antibacterial and antifungal properties and
function as a pheromone [28].

Eccrine glands will be the focus of this review;
therefore, unless otherwise specified, sweating rate
and sweat composition will hereafter refer to that of
the eccrine glands. The reader is referred to other
papers for more details on apocrine and apoeccrine
glands [12,20–24,27,29,30] as well as sebaceous glands
[26–28].

Structure and function of eccrine sweat
glands

Anatomy

The anatomical structure of the eccrine sweat gland,
illustrated in Figure 2, consists of a secretory coil and
duct made up of a simple tubular epithelium. The
secretory tubule is continuous with and tightly coiled
with the proximal duct. The distal segment of the
duct is relatively straight and connects with the acro-
syringium in the epidermis [5]. The secretory coil
has three types of cells: clear, dark, and myoepithe-
lial. As shown in Figure 2(c), clear cells are respon-
sible for the secretion of primary sweat, which is
nearly isotonic with blood plasma [6–8]. The clear
cells contain a system of intercellular canaliculi, gly-
cogen, and a large amount of mitochondria and Na-
K-ATPase activity [5]. The dark cells are distinguish-
able by the abundance of dark cell granules in the
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cytoplasm. Their function is poorly understood, but
thought to potentially act as a repository for various
bioactivematerials involved in regulation of clear cell
and duct cell function [9,10]. The function of the
myoepithelial cells is provision of structural support
for the gland against the hydrostatic pressure gener-
ated during sweat production [5]. The duct has two
cell layers: basal and luminal cells. Its primary

function is reabsorption of Na and Cl ions as sweat
flows through the duct, as shown in Figure 2(d).
Most of the NaCl reabsorption occurs in the prox-
imal duct, as these cells contain more mitochondria
and Na-K-ATPase activity than that of the distal
segment of the eccrine duct [5]. The result is a
hypotonic final sweat excreted onto the skin sur-
face [6,9].

Figure 2. Structure of the eccrine sweat gland (panels A-B) and mechanisms of sweat secretion in the secretory coil (panel C) and Na
and Cl reabsorption in the proximal duct (panel D). ACh; acetylcholine; AQP-5, aquaporin-5; CFTR, cystic fibrosis membrane channel;
ENaC, epithelial Na channel; NaCl, sodium chloride.
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Mechanisms of secretion and reabsorption

Secretion
The basic mechanism by which secretion of pri-
mary sweat occurs in the clear cells, according to
the Na-K-2Cl cotransport model, is illustrated in
Figure 2(c). First, binding of acetylcholine to mus-
carinic receptors on the basolateral membrane of
the clear cell triggers a release of intracellular Ca
stores and an influx of extracellular Ca into cyto-
plasm. This is followed by an efflux of KCl through
Cl channels in the apical membrane and K channels
in the basolateral membrane. This leads to cell
shrinkage, which triggers an influx of Na, K, and
Cl via Na-K-2Cl cotransporters on the basolateral
membrane and subsequently Na and K efflux via
Na-K-ATPase and K channels on basolateral mem-
brane as well as Cl efflux via Cl channels on apical
membrane. Increased Cl concentration in the
lumen creates an electrochemical gradient for Na
movement across the cell junction [9,10]. In turn,
the net KCl efflux from the cell creates an osmotic
gradient for water movement into the lumen via
aquaporin-5 channels [31–33].

Ion reabsorption
Figure 2(d) shows the mechanism of ion reabsorp-
tion according to the modified Ussing leak-pump
model. On the apical membrane of the luminal
cells passive influx of Na occurs through amilor-
ide-sensitive epithelial Na channels. Active trans-
port of Na across the basolateral membrane of the
basal cells occurs via Na-K-ATPase, which is
accompanied by passive efflux of K through K
channels on the basolateral membrane. The move-
ment of Cl is largely passive via cystic fibrosis
membrane channels (CFTR) on both the apical
and basolateral membranes [9,34,35]. The two
cell layers are thought to be coupled and behave
like a syncytium. The sweat duct also reabsorbs
bicarbonate, either directly or through hydrogen
ion secretion, but the specific mechanism is
unknown [5,8,36,37]. The activity of Na-K-
ATPase is influenced by the hormonal control of
aldosterone [38]. Overall the rate of Na, Cl, and
bicarbonate reabsorption is also flow-dependent,
such that higher sweating rates are associated
with proportionally lower reabsorption rates
resulting in higher final sweat electrolyte

concentrations [39,40]. This concept will be cov-
ered in more detail in the Effect of sweat flow rate
section below.

Sweat gland metabolism
Transport of Na across cellular membranes is an
active process, thus sweat secretion in the clear
cells and Na reabsorption in the duct require
ATP. The main route of energy production for
sweat gland activity is oxidative phosphorylation
of plasma glucose [6,41]. Cellular glycogen is also
mobilized in the eccrine sweat gland during sweat
secretion, but its absolute amount is too limited to
sustain sweat secretion. Thus, the sweat gland
depends almost exclusively on exogenous sub-
strates, especially glucose, as its fuel sources
[6,42]. Although the sweat gland is capable of
utilizing lactate and pyruvate as energy sources,
these intermediates are less efficient than glucose
[6,9]. Indeed, studies have shown that arterial
occlusion of forearms [43,44] and removal of glu-
cose and oxygen from the bathing medium of
isolated sweat glands [6,45] inhibits sweat produc-
tion. Consequently, lactate (as an end product of
glycolysis) and NaCl concentrations in sweat rise
sharply. Taken together, these results indicate that
oxygen supply to the sweat gland is important for
maintaining sweat secretion and ion reabsorp-
tion [45].

Control of eccrine sweating

Eccrine sweat glands primarily respond to thermal
stimuli; particularly increased body core tempera-
ture [40], but skin temperature and associated
increases in skin blood flow also play a role
[9,46–49]. An increase in body temperature is
sensed by central and skin thermoreceptors and
this information is processed by the preoptic area
of the hypothalamus to trigger the sudomotor
response. Recent studies suggest that thermorecep-
tors in the abdominal region [50,51] and muscles
[52] also play a role in the control of sweating.
Thermal sweating is mediated predominately by
sympathetic cholinergic stimulation. Sweat pro-
duction is stimulated through the release of acet-
ylcholine from nonmyelinated class C sympathetic
postganglionic fibers, which binds to muscarinic
(subtype 3) receptors on the sweat gland (see
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Figure 2(c)) [9]. Eccrine glands also secrete sweat
in response to adrenergic stimulation, but to a
much lesser extent than that of cholinergic stimu-
lation [6,53]. Catecholamines, as well as other
neuromodulators, such as vasoactive intestinal
peptide, calcitonin gene-related peptide, and nitric
oxide, have also been found to play minor roles in
the neural stimulation of eccrine sweating
[9,54,55]. In addition, eccrine sweat glands
respond to non-thermal stimuli related to exercise
and are thought to be mediated by feed-forward
mechanisms related to central command, the exer-
cise pressor reflex (muscle metabo- and mechan-
oreceptors), osmoreceptors, and possibly
baroreceptors [55,56].

Sweating rate over the whole body is a product of
the density of active sweat glands and the secretion
rate per gland. Upon stimulation of sweating, the
initial response is a rapid increase in sweat gland
recruitment, followed by a more gradual increase in
sweat secretion per gland [13,57–59]. Two important
aspects of thermoregulatory sweating, depicted in
Figure 3, are the onset (i.e. body core temperature
threshold) and sensitivity (i.e. slope of the relation
between sweating rate and the change in body core
temperature) of the sweating response to hyperther-
mia [60]. Shifts in the sweating temperature thresh-
old are thought to be central (hypothalamic) in
origin, whereas changes in sensitivity are peripheral
(at the level of sweat glands) [61].

Modifiers of eccrine sweating

Several intra- and interindividual factors can modify
the control of sweating [60], some of which are
shown in Figure 3. For example, the enhancement
of sweating with heat acclimation [62–65] and aero-
bic training [66–69] has been associated with both an
earlier onset and greater responsiveness of sweating
in relation to body core temperature [64,70–75]. By
contrast, dehydration has been shown to delay the
sweating response [76,77], as hyperosmolality
increases the body temperature threshold for sweat-
ing onset [78–81]. Hypovolemia may reduce sweat-
ing sensitivity [82], but this finding has not been
consistent [79,83].

Other examples of host and external factors that
modify regional and/or whole-body sweating are pro-
vided in Table 1. For example, older adults exhibit a
lower sweat output per activated gland in response to
a given pharmacological stimulus or passive heating
compared with younger adults [84–86]. This decline
in sweating occurs gradually throughout adulthood
[85,87] and there are regional differences in the age-
related decrement in sweat gland function [88–91].
However, the decline in sweating rate with aging has
been primarily attributed to mechanisms related to a
decline in aerobic fitness and heat acclimation (possi-
bly due to decreased sensitivity of sweat glands to
cholinergic stimulation [67,92]), rather than age per
se [67,68,85,93–96]. In addition, lifetime ultraviolet
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exposure and other environmental factors may have
an interactive effect with chronological age in deter-
mining sweat gland responsiveness [84]. Nonetheless,
it is important to note that most studies have reported
no significant difference in sweating between older
and younger adults during exercise in the heat; with
the exception of peak sweating rates associated with
hot dry climates [94,97,98]. Therefore the ability of
older adults to maintain body core temperature dur-
ing heat stress is usually not compromised. When the
effects of concurrent factors, such as fitness level, body
composition, and chronic disease are removed, ther-
mal tolerance appears to be minimally compromised
by age [93].

It is often reported that men exhibit higher
sweating rates than women; and several factors,
some of which are independent effects of sex and
others due to confounding physical characteristics,
seem to contribute depending upon the study
design. Men have a greater cholinergic responsive-
ness (see Figure 3) and maximal sweating rate than
women [83,99–101]. However, studies in which
subjects were matched for body mass, surface
area, and metabolic heat production, have shown
that sex differences in whole-body sweat produc-
tion are only evident above a certain combination
of environmental conditions (e.g. 35–40°C, 12%
rh) and rate of metabolic heat production (e.g.
300–500 W/m2) leading to high evaporative
requirements for heat balance [83,100–102].
Sweat gland density is generally higher in women
than men (due in part to lower body surface area)
[17,69,103]. Accordingly, the lower sweating rates
by women reported in some studies were a result
of lower output per gland [99,101,103]. Otherwise,
higher whole-body sweating rates observed in men
than women (e.g. in cross-sectional studies) can
usually be attributed to higher body mass and
metabolic heat production (higher absolute exer-
cise intensities), rather than sex per se [104–109].
Taken together it seems that women are not at a
thermoregulatory disadvantage compared with
men for most activities and environmental condi-
tions typically encountered [110,111]. As discussed
in more detail elsewhere [109,110,112], other fac-
tors such as body size, surface area-to-mass ratio,
heat acclimation status, aerobic capacity, exercise
intensity, and environmental conditions (all of
which directly or indirectly impact the evaporativeTa
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requirement for heat balance) are more important
than sex in determining sudomotor responses to
exercise-heat stress. The reader is referred to pub-
lished reviews for more comprehensive discussions
on the effects of sex and sex hormones on thermo-
regulation [110,113,114].

Additional factors, such as maturation [94,115–
117], altitude/hypoxia [118–120], circadian
rhythm [121,122], and menstrual cycle [122–125]
have been shown to modify the onset and/or sen-
sitivity of the sudomotor response (see Table 1).
However, modifications in the onset and/or sensi-
tivity of regional sweating in relation to body core
temperature are not necessarily associated with
significant differences in overall whole-body
sweat losses during exercise. Two examples of
this were noted above, with respect to the impact
of sex and chronological age on sweating. Another
example is the menstrual cycle: during the luteal
phase regional sweating rate is lower at a given
body core temperature (increased threshold and

decreased slope) [122–125], but there are no dif-
ferences in whole-body sweating rate across the
menstrual cycle phases [123,126–129].
Additionally, for trained females their menstrual
phase is of little physiological or performance con-
sequence during exercise in the heat [103,130].

Some of the variability in sweating rate can be
explained by differences in the structure of sweat
glands. For example, with habitual activation,
sweat glands show some plasticity in their size
and neural/hormonal sensitivity [18,19]. Sato and
colleagues have shown that glandular size
(volume) can vary by as much as fivefold between
individuals [9,131], and there is a significant posi-
tive correlation between the size of isolated sweat
glands and their methacholine sensitivity and
maximal secretory rate [131] (see Figure 4).
Sweat gland hypertrophy and increased choliner-
gic sensitivity have been reported to occur with
aerobic training [131] and heat acclimation [38]
(see Table 1 for more information).

d e

Figure 4. Top row (panels A-C): Variation in the size of human eccrine sweat glands taken from the backs of three different men who
were described as poor (A), moderate (B), and heavy sweaters (C). Bottom row: Correlation between size of sweat gland and sweat
ratemax per gland (panel D). Dose-response curves (expressed per unit length of tubule) of sweat rates of 7 men to methacholine.
Closed symbols show moderate to heavy sweaters. Open symbols show poor sweaters. Reprinted from Sato and Sato 1983 [131]with
permission.
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Eccrine sweat composition

Methodological considerations

In science, the accuracy and reliability of study meth-
odology are critical to interpret results and draw con-
clusions about the impact of an intervention or other
factor on the outcomemeasure of interest. Measuring
sweat composition is no exception. Previous papers
have comprehensively reviewed the effect of metho-
dology on intra- and inter-individual variability in
sweating rate and sweat composition as well as made
suggestions for best practices [16,83,132]. Therefore,
this topic will not be reviewed extensively here.
Instead, these methodological considerations and
supporting references have been summarized in
Table 2. This table includes the main aspects of
sweat methodology that are important to consider
when interpreting and designing sweat composition
research; these include 1) skin cleaning/preparation,
2) sweat stimulation, 3) sweat collection, 4) sample
storage, and 5) analytical technique.

Specific examples illustrating the importance of
valid methodology in interpreting study results are
discussed throughout the remaining sections of this
paper. However, it is worth noting a couple of over-
arching themes. First, it is important to realize that
depending upon the methodology used, sweat col-
lected from the surface of the skin may contain, not
only thermal sweat secreted by the eccrine sweat
gland but also, residual contents of the sweat duct,
sebum secretions, epidermal cells, and other skin
surface contaminants. This can lead to artificial
elevations in sweat constituent concentrations
and, in some cases, the overestimation is not
small. For example, as shown in Table 2, two- to
five-fold increases in constituent concentrations
have been reported for trace minerals such as Fe
and Ca. Unless care is taken to avoid contaminants
it is difficult to draw conclusions about sweat com-
position and its utility as a biomarker, its impact on
micronutrient balance, and assess the effectiveness
of the sweat gland in excretion of waste products or
toxicants. By contrast, dermal contamination from
extra-sweat NaCl seems to be negligible compared
with NaCl contained in the sweat itself, as studies
have reported only 0.2 mmol/h of Cl on the skin
without sweat activity [133–135].

Another important methodological considera-
tion is to ensure that the conditions of theTa
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protocol, including the method of sweat stimula-
tion and anatomical location of sweat collection,
are specific to the research question of interest. As
described in Table 2 sudomotor responses vary
among pharmacological-, passive heat-, and exer-
cise-induced sweating and so these methods
should not be used interchangeably. Similarly,
because of regional variability in sweating rate
and sweat constituent concentrations, data from
one region cannot be generalized to other regions
or the whole body.

Overview of sweat composition

Sweat is a very complex aqueous mixture of chemi-
cals. Although sweat is mostly water andNaCl, it also
contains a multitude of other solutes in varying
concentrations [6,136–139]. Tables 3 and 4 list
some of the micronutrients and non-micronutrients,
respectively, present in sweat. This is obviously not
an exhaustive list but includes some of the more
commonly researched constituents. Tables 3 and 4
include the range in sweat constituent concentra-
tions, mechanisms of secretion and reabsorption,
and functional role in health, where known or
applicable. Micronutrients include the electrolytes
Na and Cl, which are the constituents found in the
highest concentrations in sweat, as well as K, vita-
mins, and trace minerals. Non-micronutrient ingre-
dients listed in Table 4 include products of
metabolism, proteins, amino acids, and toxicants. It
is important to note that concentrations listed in
these tables are approximate ranges and are not
intended to reflect normal reference ranges. There
are insufficient data, perhaps with the exception of
Na, Cl, and K, to inform normative ranges for sweat
constituents at this time. Instead the ranges listed are
meant to provide some context in terms of relative
order of magnitude of concentrations across all of
the constituents, in order of higher (e.g. NaCl) to
lower (e.g. trace minerals and heavy metals) concen-
trations (in mmol/L). For some constituents, higher
values outside the range listed have been reported,
but are relatively rare, involve individuals with med-
ical conditions, or may be inflated because of meth-
odological issues; all of these points are discussed in
more detail in later sections of this paper.

Because interstitial fluid is the precursor fluid
for primary sweat, it follows that manyTa
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components of final sweat originate from this
fluid space. However, the exact mechanisms of
secretion are largely unknown for most consti-
tuents other than Na and Cl. Potential mechan-
isms and supporting references are listed in
Tables 3 and 4 and may include active or pas-
sive (diffusion across membranes or paracellu-
lar transport) mechanisms of transport. Some
sweat constituents do not originate from the
interstitial fluid, but instead, appear in sweat
as a result of sweat gland metabolism (e.g. lac-
tate) [140]. Yet others (e.g. antimicrobial pep-
tides, proteolytic enzymes) are thought to be
produced by the sweat gland and play a func-
tional role in skin health (Table 4). It should be
noted that many other chemicals (not in Tables
3 and 4), such as cortisol [141,142] neuropep-
tides, bradykinin, cyclic AMP, angiotensins, and
histamines [9,15] are also present in sweat.
Some researchers have hypothesized that one
or more of these ingredients may be biologi-
cally functional, and involved in the regulation
of sweat gland and/or ductal function; however,
support for this notion is currently limited [9].
For a more comprehensive list of sweat consti-
tuents, the reader is referred to other published
reviews [6,134] and studies [139,143], including
metabolomic analysis of sweat [136–138].

Sodium chloride

It is well established that sweat [Na] and [Cl] can vary
considerably among individuals. Regional sweat [Na]
typically ranges from 10 to 90 mmol/L (Figure 5(a);
see also [144–148]), while whole-body sweat [Na] is
~20–80 mmol/L (predicted shown in Figure 5(b);
measured in references [144,146,147,149]). The
range in sweat [Cl] is similar, but perhaps slightly
lower than that of sweat [Na], with whole-body values
reported to be ~20–70 mmol/L [134,144,149]. Table 1
shows the host and environmental factors that
account for some of the variability in sweat [Na] and
[Cl]. The [Na] and [Cl] of final sweat are determined
predominately by the rate of Na reabsorption in the
duct relative to the rate of Na secretion in the clear
cells.

Na ion reabsorption is controlled by Na-K-ATPase
activity, which is influenced by plasma aldosterone
concentration and/or sweat gland sensitivity to aldos-
terone. Resting (genomic) plasma aldosterone is dic-
tated by an individual’s chronic physiological
condition, dictated in part by heat acclimation, fitness,
and diet. Circulating aldosterone also changes acutely
in response to non-genomic factors such as exercise
and dehydration. Yoshida et al. [150] demonstrated
that individual variations in the sweat [Na] response
to an increase in the sweating rate during exercise
were correlated with resting aldosterone, but not to
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exercising aldosterone. Therefore the genomic action
of aldosterone may have a stronger impact on inter-
individual variations in sweat [Na] than the rapid
non-genomic action of aldosterone during exercise
in humans [150]. Both [Na] and [Cl] in sweat are
influenced by the availability of CFTR chloride chan-
nels; with lower CFTR abundance resulting in less
ductal reabsorption and therefore higher final sweat
[Na] and [Cl]. CFTR availability is clearly reduced
with defects in CFTR genes (i.e. cystic fibrosis, dis-
cussed in more detail in the Sweat composition as a
biomarker section below) and recent evidence sug-
gests that healthy (non-CF) individuals with salty
sweat may also exhibit lower abundance of sweat
duct Cl channel CFTR [151].

Effect of sweat flow rate

Sodium chloride
Sweat flow rate is another important factor determin-
ing final sweat [Na] and [Cl] and of other aspects of
sweat composition. This concept has been known
since as early as 1911 [152] and several studies since
then have confirmed a direct relation between sweat-
ing rate and final sweat [Na] and [Cl]
[5,6,11,15,40,153,154]. In 2008, Buono et al. [39]
reported data providing insight to the physiological
mechanism responsible for the relation between sweat
flow rate and sweat [Na] and [Cl]. They found that as
forearm sweating rate increased (from ~0.25 to 0.82

mg/cm2/min), the rate of Na secretion in primary
sweat increased proportionally more than the rate of
Na reabsorption along the duct [39].Within this range
in sweating rate, which was stimulated via a progres-
sive increase in exercise intensity (from 50% to 90%
HRmax), sweat [Na] increased from 19 ± 5 to 59 ± 10
mmol/L (Figure 6) [39]. An important point is that the
absolute rate of Na reabsorption actually increased
continuously with increases in sweating rate.
However, the percentage of secreted Na that was
reabsorbed in the duct decreased with a rise in sweat-
ing rate. That is, at the lowest sweating rate 86 ± 3% of
the secreted Na was reabsorbed, while at the highest
sweating rate only 65 ± 6% ofNawas reabsorbed from
the duct. Therefore, the faster the primary sweat tra-
vels along the duct the smaller the percentage of Na
that can be reabsorbed [39]. Underlying mechanisms
are unclear, but Buono et al. [39] speculated that
possible factors could include decreased contact time
of sweat with the apical membrane of the duct, satura-
tion of transporters, and/or decreased activity of
epithelial sodium channels due to decreased cytosolic
pH associated with higher sweating rates. According
to some studies, there may be a minimum threshold
sweating rate (~0.3 mg/cm2/min) required before
sweat [Na] starts to rise with an increase in sweating
rate [15,155]. For context, this equates to ~0.3 L/h (for
a 1.8m2 individual), which is at the very low end of the
range of sweating rates expected during exercise/heat
stress [105,156,157].

Given the well-established relation between sweat
flow rate and sweat electrolyte concentrations, it fol-
lows that any factors stimulating acute increases in
sweating rate (e.g. increases in air temperature or
exercise intensity) within an individual would result
in higher sweat [Na] and [Cl] [152,158]. This has been
found at the whole-body level [159] (Figure 7) as well
as within isolated sweat glands [6] and given skin
regions [39]. The effect of sweat flow rate on relative
Na reabsorption may also partially explain regional
differences in sweat [Na] and [Cl] within subjects.
Studies measuring sweating rate and sweat [Na]
and/or [Cl] across multiple body sites have found
that sites with higher sweating rate also tend to exhibit
higher sweat [Na] and [Cl] [146,147]. This concept is
illustrated in Figure 8, which shows a significant cor-
relation (r = 0.71, p < 0.05) between mean regional
sweating rate and mean sweat [Na] across eight dif-
ferent regions, where sweat [Na] ranged from 36

Figure 6. Relation between regional sweating rate and regional
sweat [Na]. Values are means ± SE for 10 subjects’ regional
(forearm) sweating rate and sweat [Na] while exercising at 50%,
60%, 70%, 80%, and 90% of maximal heart rate. The mean r for
the group was 0.73 (P < 0.05). y = 59.7(x)+6.7. Reprinted from
Buono et al. 2008 [39] with permission.
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mmol/L on the calf (lowest sweating rate) to 72
mmol/L on the scapula (highest sweating rate) [149].

To date, the relation between sweat flow rate and
sweat [Na] has been well-established in studies in
which subjects served as their own control (e.g.
Figure 6–8). However, the regional sweating rate vs.
regional sweat [Na] relation for between-subject

comparisons has been researched to a lesser extent.
When plotting regional sweating rate vs. regional
sweat [Na] across subjects, Baker et al. [149] found a
significant relation between sweating rate and sweat
[Na] at only one region (thigh, r = 0.43) out of 11
regions studied and no significance at the whole-body
level (Figure 9). This may suggest that other factors
affecting sweat [Na] and [Cl], such as CFTR genes or
genomic effects of aldosterone on Na-K-ATPase may
play a more important role in determining inter-indi-
vidual differences in sweat [Na] and [Cl] during exer-
cise/heat stress. On the other hand, acute changes in
sweating rate play a significant role in intra-individual
differences in sweat [Na] and [Cl] [39,159].

Bicarbonate, pH, and lactate
In addition toNa andCl conservation, another impor-
tant function of the sweat gland is reabsorption of
bicarbonate for the maintenance of acid-base balance
of the blood [8]. Exact mechanisms are not fully
understood, but it is thought that bicarbonate is reab-
sorbed directly via CFTR chloride channels [36] and/
or hydrogen ions are secreted in the sweat duct [5]. In
the process, sweat fluid in the ductal lumen is acidified
before excretion onto the skin surface [36]. The pH of
primary sweat starts at ~7.1–7.4 [5,8]. Bicarbonate
reabsorption in the duct is inversely related to sweat-
ing rate [5,8,37,160]. At low sweating rates, the lumi-
nal fluid is exposed to the duct for a longer period of
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time and is acidified to a greater extent, resulting in a
decrease in pH to as low as ~4–5 [5,134]. At faster
sweat flow rates, pH of sweat can remain as high as
~6.9 [5,134].

As discussed previously, lactate is produced by
eccrine sweat gland metabolism [13,15,45,134,140].
Thus, there is a direct relation between sweating rate
and lactate excretion rate, such that the higher the
sweating rate (and the greater metabolic activity of
the sweat gland) the more lactate is secreted in sweat
in terms of mmol/min. However, because of the dilut-
ing effect of higher sweat fluid volume, there is an
inverse relation between sweating rate and sweat lac-
tate concentration [161–163]. Accordingly, sweat lac-
tate concentration decreases with increasing exercise
intensity [161,162]. More details regarding the effect
of sweat flow rate on sweat composition are provided
in Tables 3 and 4.

Sweat composition as a biomarker

There has been considerable interest recently in the
use of sweat as a non-invasive alternative to blood
analysis to provide insights to human physiology,
health, and performance. The development of wear-
able devices and sensing techniques for sweat diag-
nostics is an expanding field. Perhaps the best example
of a sweat biomarker is the use of sweat [Cl] for the
diagnosis of cystic fibrosis, although this practice is not
new [164]. The association between high sweat Cl and
cystic fibrosis was first recognized by di Sant’Agnese et
al. in 1953 [165]; and subsequently, a standardized
sweat test (Quantitative Pilocarpine Iontophoretic
Test) was developed by Gibson and Cooke in 1959
[166]. Individuals with cystic fibrosis have higher than

normal sweat [Cl] because of a genetic absence of a
functioning CFTR (two defective genes, homozygote)
[167–170]. The cutoff for a positive sweat test consis-
tent with cystic fibrosis is sweat [Cl] >60 mmol/L
[171]. However, sweat [Cl] in cystic fibrosis patients
can be much higher, with values in the 80–130 range
commonly reported [165,166,172–176]. Because the
epithelial Na channels depend upon a functioning
CFTR, Na is also poorly reabsorbed in individuals
with cystic fibrosis [170]. Individuals with one defec-
tive gene for CFTR (heterozygote) may also have
elevated sweat [Na] and [Cl] [169,177]. For more
details, the reader is referred to the following reviews
on cystic fibrosis [169,178–180].

Apart from the use of sweat [Cl] for the diagnosis of
cystic fibrosis, the application of sweat diagnostics has
been limited to date [181,182]. There are perhaps a few
constituents in sweat whose concentrations may
change in accordance with large disturbances in
homeostasis. For example, sweat glucose concentra-
tion has been shown to increase 2–3x in response to
oral and intravenous glucose which increased blood
glucose concentration to 200–250 mg/dl [183]. In
addition, iron-deficient anemic patients have lower
than normal [Fe] in sweat (especially in cell-rich
sweat [184]) and sweat [Fe] has been shown to
increase with iron therapy [185]. However, the utility
of glucose, micronutrients, and other constituents as
sweat biomarkers is questionable, especially as a real-
time monitoring tool, because correlations between
sweat and blood have not been established. As
shown in Tables 3 and 4, the literature has reported
mixed results regarding the correlation between sweat
and blood for glucose, cytokines, urea, ammonia, and
bicarbonate and no significant correlation for

Figure 9. Regression of regional sweating rate vs. regional sweat [Na] within site for the dorsal forearm (A), and the 9-site aggregate
(weighted for body surface area and regional sweating rate), as well as regression of whole-body sweating rate vs. whole-body
sweat [Na]. Correlations between sweating rate and sweat [Na] were not significant (p > 0.05). Reprinted from Baker et al. 2018 [149]
with permission.
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micronutrients, lactate, heavy metals, or environmen-
tal toxicants.

One of the proposed uses of sweat composition as a
biomarker is the prediction of hydration status from
sweat electrolyte concentrations or some ratio of [Na],
[Cl], and/or [K] [186–189]. However, a fundamental
issue with this assertion is that sweat [Na] and [Cl] are
known to vary considerably within and among indi-
viduals; and a change in hydration status is only one of
many factors that could play a role in this variability
[132]. This is further complicated by the fact that
dehydration could have differential effects on sweat
[Na] and [Cl]. Dehydration-induced hemoconcentra-
tion would increase extracellular [Na] and in turn
increase Na of the primary sweat, in theory leading
to a small increase in final sweat [Na]. On the other
hand, dehydration would also be expected to reduce
sweating rate (Figure 3), which would, in turn, lead to
lower sweat [Na]. Other factors such as heat acclima-
tization, exercise intensity, environment, diet, and
sweat stimulation/collection methodology influence
sweat [Na] and [Cl] (Table 1). These confounding
factors likely explain the discrepancy in results across
studies measuring sweat composition and changes in
hydration status. Dehydration has been associated
with increased [134,153,190], decreased [191,192], or
no change [193–195] in sweat [Na] and [Cl]. Sweat [K]
and pH are also poor indicators of hydration status
[190]. Additionally, sweat composition (Na, Cl, K, pH,
lactate) explains very little of the variation in indivi-
duals’ sweating rate during exercise [147,149].

In summary, while the notion of a non-invasive
tool for real-time hydration, nutrition, and health
monitoring is attractive, more research is needed
to determine the utility of sweat composition as a
biomarker for human physiological status. To
date, few well-designed, adequately powered stu-
dies have investigated the correlation between
sweat and blood solute concentrations. Moreover,
as discussed throughout this paper, final sweat
composition is not only influenced by blood solute
concentrations, but also the method of sweat sti-
mulation (active vs. passive), ion secretion and/or
reabsorption in the proximal duct, sweat flow rate,
byproducts of sweat gland metabolism, skin sur-
face contamination from epidermal cells as well as
sebum secretions, among other factors. These
challenges need to be considered in future research
and applications of sweat diagnostics.

Physiological purpose of sweating: Roles in
the maintenance/disturbance of human
health

Thermoregulation

It is well-established that the primary physiological
function of sweating is heat dissipation for body
temperature regulation. The mechanical efficiency
of humans is ≤30% [196]; therefore, during exer-
cise, a large amount of heat is produced by the
contracting muscles as a byproduct of metabolism.
In addition, heat is transferred from the air to the
body when ambient temperature is greater than
skin temperature. With sweating, heat is trans-
ferred from the body to water on the surface of
the skin. The latent heat of vaporization of sweat is
580 kcal of heat per 1 kg of evaporated sweat (2426
J per gram of sweat) [197]. According to heat-
balance theory, the amount of sweat production
is determined by the relation between the evapora-
tive requirement for heat balance (Ereq) and max-
imum evaporative capacity of the environment
[198,199]. Ereq is represented by the following
equation [200]:

Ereq¼ M�W� Rþ Cþ Kð Þ
where M is metabolic energy expenditure, W is
external work, R is radiant heat exchange, C is
convective heat exchange, and K is conductive
heat exchange [201,202]. The primary means by
which the body gains heat is from metabolism
(which is directly proportional to exercise inten-
sity) and the environment; therefore, these factors
are also the primary determinants of sudomotor
activity [201,203]. It is important to note that
some sweat can drip from the body and not be
evaporated. Therefore during conditions of low
sweat efficiency (e.g. humid environment), a
higher sweating rate than calculated from Ereq
may be needed to achieve a given level of evapora-
tion [198,204]. For a more comprehensive discus-
sion on the role of sweat evaporation in human
thermoregulation, the reader is referred to other
reviews [83,200,205].

Skin health

Eccrine sweat is thought to play a role in epider-
mal barrier homeostasis through its delivery of
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water, natural moisturizing factors, and antimicro-
bial peptides to the skin surface. Natural moistur-
izing factors include amino acids (or their
derivatives), lactate, urea, Na, and K; which can
act as humectants allowing the outermost layers of
the stratum corneum to remain hydrated [206].
Some of these natural moisturizing factors, such
as lactate, urea, Na, and K originate from eccrine
sweat [206], while amino acids on the skin surface
may be produced in the stratum corneum [207].
Nevertheless studies have shown that perspiration
increases stratum corneum hydration [206,208]
and this may occur via moisture transfer from
the eccrine gland coil directly into the skin before
commencement of surface sweating [13,208].
Therefore, it has been proposed that preservation
of sweating may be an important therapeutic strat-
egy for improving atopic dermatitis or other con-
ditions of dry skin [206,209], albeit direct evidence
is still needed. On a related topic, wetting of the
skin with eccrine sweat on the palmar surfaces can
improve tactile sense and enhance grip as an
aspect of the fight or flight response in humans
[210]. Finally, recent immunohistochemistry stu-
dies suggest that sweat glands produce and excrete
antimicrobial peptides such as dermcidin [211],
cathelicidin [212], and lactoferrin [213], pointing
to a potential role of sweating in host defense
against skin infection [214]. The reader is referred
to recent reviews for more details on the role of
sweat in skin hydration [209,214,215] and micro-
bial defense [216].

Role in micronutrient balance

Sweat gland adjustments in response to deficiency
or excess
Heat acclimation
Sodium chloride. The changes in sweat [Na] and
[Cl] during heat acclimation have been well estab-
lished and reviewed in previous papers [134,169]
and therefore will not be comprehensively dis-
cussed here. In brief, adaptation to the heat leads
to improved salt conservation through a decrease
in sweat [Na] and [Cl] [62,63,152,158,217–220].
While the degree of conservation varies across
studies due in part to methodological differences,
the reported decrease in sweat [Na] and [Cl] after
~10 days of heat acclimation ranges from ~30% to

60%. Most studies have involved a 7–10-day heat
acclimation protocol, but Buono et al. [217]
recently showed that Na conservation may begin
after just two consecutive days of heat exposure
and sweat [Na] decreases linearly over time.

Somewhat paradoxically, the decrease in sweat
[Na] and [Cl] occurs despite increases in sweating
rate that accompany heat acclimation. This can be
explained by the disparate effects of acute changes
in sweat flow rate (discussed above) versus the
longer-term adaptations in the sweat gland that
occur with heat acclimation. Buono et al. [218]
found that the linear relation between sweat flow
rate (up to 1 mg/cm2/min) and sweat [Na] persist
after a 10-day heat acclimation protocol, but there
is a downward shift such that the y-intercept of the
relation decreased by 15 mmol/L. The slope of the
relation did not change after heat acclimation.
Thus, at any given sweating rate on the forearm,
heat acclimation resulted in significantly lower
forearm sweat [Na] [218]. However, changes in
the slope and y-intercept in response to heat accli-
mation have not been established for the relation
between whole-body sweating rate and whole-
body sweat [Na] or [Cl]. Most heat acclimation
studies have measured regional sweat electrolyte
concentrations. Because of the variable effects of
heat acclimation on regional sweating rate, such
that regional sweating rate on the limbs (forearm)
tend to increase proportionally more than at cen-
tral sites (chest, back) [221,222], future research is
needed to confirm the effects of heat acclimation
on whole-body sweat [Na] and [Cl] and its relation
with whole-body sweating rate.

The underlying mechanism for NaCl conser-
vation is thought to be related to increased sen-
sitivity of the sweat gland to circulating
aldosterone [62]. Aldosterone impacts Na reab-
sorption in the eccrine sweat duct by increasing
Na-K-ATPase activity [38,223]. However, it is
important to clarify that the presence of a salt
deficit is required for NaCl conservation to
occur with heat acclimation. In studies where
subjects consumed enough NaCl to replace
losses incurred during the repeated exercise-
heat stress, sweat [Na] and [Cl] did not change
or increased slightly [45,169,224,225]. This topic
will be discussed further in the Diet – Sodium
Chloride section below.
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Trace minerals. A common question on the topic
of heat acclimation is whether or not electrolytes
or minerals other than NaCl are conserved. Only a
few studies have investigated this and mixed
results have been reported. For example, in a
study with college basketball players, dermal Ca
losses measured via a cotton shirt method
decreased by 32% from the first to last day of a
10-day training session [226]. In 2008, Chinevere
et al. [219] measured sweat mineral concentrations
(Ca, Mg, Fe, Zn, and Cu) using the polyethylene
arm glove technique and found a 23–75% decrease
in mineral concentrations from day 1 to 10 of a
heat acclimation protocol. However, in a subse-
quent heat acclimation study from the same
laboratory, Ely et al. [227] found that the changes
in sweat mineral concentrations varied depending
upon the sweat collection methodology. In arm
bag sweat, [Ca], [Mg], and [Cu] trended progres-
sively downward by 26–29% from day 1 to 10
[227]. However, there were no changes in sweat
mineral concentrations with heat acclimation at
the scapular site that had been thoroughly washed
[227]. The authors attributed the decline in sweat
mineral concentrations in this [227] and their pre-
vious heat acclimation study [219] to an artifact of
epidermal contamination when using the arm bag
technique and/or not pre-washing/cleaning the
skin at the site of collection [228]. That is, pro-
gressive flushing of mineral residue lying on the
skin surface with daily-repeated profuse sweating
may have contributed to the decrease in sweat
mineral concentrations over the 10 days of testing
[227].

There have been some suggestions that conserva-
tion of sweat trace mineral loss occurs on an acute
basis during a single bout of exercise. For example,
several studies have shown decreases in sweat mineral
(Fe, Zn, Mg, Ca) concentrations during 1–7 h of
exercise [229–232]. Because sweat mineral concentra-
tions decreased despite stable or increasing sweating
rates over time, it was hypothesized that mineral con-
servation may have been taking place. However,
again, this is likely an artifact of skin surface contam-
ination, as studies using methodology to collect clean
or cell-free sweat have shown no evidence of trace
mineral conservation in response to acute exercise-
induced sweating [228,233,234]. Moreover, there are
no known physiological mechanisms by which Ca,

Mg, Fe, Cu, and other trace minerals would be reab-
sorbed by the eccrine sweat gland duct in order to
facilitate conservation of loss via sweating.

Diet
Sodium chloride. It is a common perception that
Na ingestion influences sweat [Na] or the rate of
sweat Na excretion. However, study results to date
have been mixed. For example, in a systematic
review of six endurance exercise studies,
McCubbin and Costa (2018) found no relation
between the change in Na intake and the change
in sweat [Na] across studies. For example, in one
study Costa et al. [235] found just a 4 mmol/L
mean difference in whole-body sweat [Na] in men
after 6-weeks of consuming either 3.4 g Na/day or
5.6 g Na/day (2.2 g/day intake difference). On the
other hand, Hargreaves et al. [236] reported a 12
mmol/L difference in whole-body sweat [Na] after
2 weeks of either 1.15 g Na/day or 3.45 g Na/day
(2.3 g/day intake difference). Thus, McCubbin and
Costa concluded that the impact of dietary Na
intake on sweat [Na] during exercise is uncertain
and future studies are needed [237].

Table 5 shows a summary of the studies assessing
the effects of Na intake on sweat electrolyte concen-
tration and total sweat electrolyte loss during exercise
and/or heat stress. The disparate results among stu-
dies may be reconciled in part by considering the time
course of sweat glands’ response to variations in salt
balance and associated changes in circulating aldos-
terone. As noted by Robinson in the early 1950s, while
the renal system responds to a salt deficiency or excess
within 1–3 h, the sweat glands typically require 1–4
days [134,238]. The literature summary in Table 5 is
in general agreement with this notion. Indeed, most
studies have shown that several days to weeks of
dietary Na manipulation are associated with changes
in sweat [Na] [45,224,225,235,236,239–241]. Other
studies, usually of shorter duration (up to 3 days)
[195,242] or with relatively small changes in daily
Na ingestion [243,244] have reported no or minimal
effect of dietary Na on sweat [Na] or the rate of Na
excretion. The relation between acute (i.e. shortly
before/during exercise) Na intake and sweat [Na]
has not been well-studied. However, in one investiga-
tion, Hamouti et al. (2012) found no differences in
sweat [Na] when various amounts of Na (0, 1.45 g, or
2.9 g) were ingested 1.5 h before exercise [245]. This
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result is perhaps not surprising based on the time
course of sweat gland responsiveness, which is also
in agreement with the notion that genomic effects of
aldosterone on sweat [Na] are stronger than non-
genomic actions (as discussed above in the Overview
of Sweat Composition section) [150]. Regardless of
duration, all studies have been consistent in finding
no effect of salt deficiency or excess on sweating rate
(Table 5). Therefore, any change in the rate of sweat
NaCl excretion associated with dietary NaCl is likely
due to changes in sweat concentrations.

Finally, it is important to discuss the dietary Na
vs. sweat [Na] literature within a practical context.
Several studies have employed study designs with
large, perhaps unrealistic changes in dietary Na
intake. For example, in five out of the 12 studies
in Table 5 the high Na diet consisted of ≥8 g Na/day
sustained over 5 days or more [45,224,240–242].
The low Na diet in these same studies was 0.5 to
2.3 g/day, resulting in vast differences in controlled
daily Na intakes (by at least ~6 g). Few studies
included “normal” dietary Na trials, which is 3.4
g/day for Americans [246]. The variation in sweat
[Na] as a result of smaller deviations in Na intake,
more realistic to a free-living individual, is yet to be
fully elucidated. Nonetheless, in these five studies,
the change in mean sweat [Na] was inconsistent,
ranging from −5 mmol/L to +30 mmol/L. In addi-
tion, some studies measured sweat [Na] via regional
techniques [240,243], which may not be indicative
of changes at the whole-body level. Others have
used a parallel study design where sweat [Na] was
not matched between groups at baseline [241].
Thus, it is important that future studies address
these and other methodological limitations as also
pointed out by McCubbin and Costa [247].
Trace minerals. Several studies have investigated
the hypothesis that dietary intake of trace minerals
and vitamins influences sweat composition.
However, most [230,231,248–251] but not all
[184,185,252] studies reported no association
between dietary intake of trace minerals (Zn, Fe,
Ca, Cu) and their concentrations or excretion rates
in sweat. This research has included acute supple-
mentation (within ~24 h of sweat collection) as
well as controlled and free-living chronic dietary
intake of minerals and vitamins. Regardless of
study duration, the impact of diet on sweat
mineral and vitamin loss seems to be minimal, at

least in healthy individuals with no known defi-
ciencies. For example, Vellar et al. [251] measured
whole-body cell-free sweat before and after giving
an acute oral iron load (ferrous succinate tablets)
to healthy men that led to nearly a twofold
increase in serum [Fe]. There was no change in
sweat [Fe] or sweating rate during 60 min of
passive heat stress as a result of the acute iron
load [251]. Similarly, Lug and Ellis [250] found
no significant changes in sweat vitamin concentra-
tions in healthy heat-acclimatized men after
administration of a dietary supplement of 500 mg
L-ascorbic acid during the 24 h before sweat col-
lection. Furthermore, in a 30-day controlled diet
study in healthy men, Jacob et al. [248] found no
association between dietary intake of Zn, Cu, and
Fe and whole-body sweat [Zn], [Cu], and [Fe],
respectively.

A few studies have found a significant change in
sweat mineral concentrations associated with diet-
ary intake [184,185,252] and the commonality of
these studies is that they included patient popula-
tions with known mineral deficiencies or involved
controlled interventions designed to deplete and
subsequently replete mineral stores of healthy sub-
jects. For example, Milne et al. [252] measured
daily whole-body sweat Zn loss during controlled
periods of Zn intake. For the first 5 weeks, Zn
intake was 8.3 mg/d, then reduced to 3.6 mg/d
for the next 16 weeks, followed by an increase to
33.7 mg/d for the final 4 weeks of the study.
Corresponding sweat Zn loss was 0.49 mg/d, 0.24
mg/d, and 0.62 mg/d, respectively; equivalent to a
51% decrease with Zn restriction and a 27%
increase with excess dietary Zn [252]. It is also
important to interpret these results within the
context of the source of mineral concentrations
found in sweat. As pointed out by Milne et al.,
[252] sweat samples included desquamated cell
debris as well as cell-free eccrine sweat.
Therefore, in this study [252] it is difficult to
discern how much of the sweat Zn originated
from the body surface (epidermal cells) versus
the interstitial fluid (secreted by the eccrine sweat
gland), as changes in body mineral homeostasis
can impact the mineral stores of the skin as well
as that of the interstitial fluid [184,185,253].

Some studies have compared mineral concen-
trations of cell-free and cell-rich sweat in Fe and
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Zn-deficient patient populations versus healthy
normal controls [184,185]. Prasad et al. [184]
found that [Fe] and [Zn] in cell-rich sweat was
lower in patients versus the healthy control group.
However, in cell-free sweat, only [Zn] was lower in
patients, while there were no differences in [Fe]
between Fe and Zn-deficient patients and healthy
controls. This study suggests that most of the Fe
collected at the skin surface originates from des-
quamated epithelial cells, while most of the Zn is
present in the cell-free portion of sweat. This may
also partly explain why an acute increase in blood
[Fe] in the study by Vellar et al. [251] resulted in
no change in cell-free sweat [Fe].

There are no known reabsorption or secretion
mechanisms by which the eccrine sweat gland
could actively conserve or preferentially excrete
minerals. Therefore, any significant changes in
sweat mineral concentrations would be expected
to be a result of significant changes in the
mineral content of interstitial fluid (impacting
cell-free sweat) and/or epidermal cells (impacting
cell-rich sweat). Therefore, sweat mineral concen-
trations may be altered in situations of depletion
in intervention studies or chronic deficiencies in
patient populations. Note that this is not necessa-
rily evidence of a homeostatic mechanism; rather
a result of passive transport of minerals in accor-
dance with concentration gradients during secre-
tion of primary sweat in the secretory coil (cell-
free sweat) and an artifact of surface contamina-
tion (cell-rich sweat). Furthermore, the impact of
diet on cell-rich and cell-free sweat mineral con-
centrations will differ depending upon the
mineral of interest. As discussed above, Fe and
Ca are found in much higher concentrations, and
Zn in lower concentrations in cell-rich versus
cell-free sweat [134,184,233,234,254]; further
complicating the interpretation of study results.
Future studies on diet, mineral balance, and sweat
mineral losses should carefully choose the meth-
odology employed and consider the source of the
minerals measured in the sweat. Regardless, based
on the available evidence to date, the take-home
message for healthy individuals is that small fluc-
tuations in dietary mineral intake (that do not
significantly alter mineral status or whole-body
stores) seem to have minimal impact on sweat
mineral loss.

Sweating-induced deficiencies
Sodium chloride. Of all the substances lost in sweat,
Na and Cl are lost in the highest concentrations.
Therefore, it has been suggested that Na and Cl are
the principal electrolytes whose loss may affect
homeostasis [7,134,191]. Plasma [Na] is normally
between 135 and 145 mmol/L and is a function of
the mass balance of Na, K, and water [255,256].
Hyponatremia is defined as a plasma [Na] less than
135 mmol/L [257] and can be life-threatening
depending upon the severity of plasma sodium dilu-
tion (e.g. <125–130 mmol/L) and the rapidity in
which it occurs [256]. This is because a reduction
in solute concentration in plasma promotes move-
ment of water from the extracellular to intracellular
space, which can cause swelling in the brain and/or
congestion in the lungs [257]. Hyponatremia has
been reported in healthy athletes [256], laborers
[174,258,259], and soldiers [176,260], as well as clin-
ical populations (e.g. psychogenic polydipsia) [261].
Based on mathematical models using the prediction
equation developed by Ngyuen and Kurtz [255],
plasma [Na] is most sensitive to changes in total
body water and thus the primary cause of hypona-
tremia is an increase in body mass due to overdrink-
ing (of water or other hypotonic fluid) relative to
body water losses [256]. However, the model also
predicts that plasma [Na] is moderately sensitive to
changes in the mass balance of Na and K [262], such
as through loss of electrolytes in sweat. Excessive
sweat Na losses can exacerbate decreases in plasma
[Na] caused primarily by overdrinking for a long
period of time [263] (e.g. during a > 4 h endurance
event). Hyponatremia has also been documented
concomitant with dehydration, suggesting that in
these cases excessive sweat Na loss was the primary
etiology underlying a fall in plasma [Na]
[174,259,264–266]. However, hypovolemic hypona-
tremia is rare compared with hypervolemic hypona-
tremia and usually requires excessive sweating over
longer durations (>8 h) [264].

An individual’s sweat [Na] impacts their risk for
developing hyponatremia in situations of pro-
longed thermoregulatory sweating. For example,
according to Na balance prediction models [262],
a 70 kg athlete drinking 800 ml/h of water while
running at 10 km/h in an air temperature of 28°C
would reach hyponatremia (plasma [Na] <130) in
~6–8 h if their sweat [Na] was 75 mmol/L. If an
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athlete in the same set of conditions had a sweat
[Na] of only 25 mmol/L, the model predicts that
plasma [Na] would still be above 135 mmol/L after
12 h [262]. Empirical evidence in line with these
prediction models can be found in the case study
literature; which report numerous instances where
the combination of excessive sweating (physical
labor, hot/humid conditions) and high sweat
[Na] and [Cl] have precipitated the development
of hyponatremia and hypochloremia [174–
176,259,263,265–267]. For example, a systematic
review paper reported that subacute (≤14 days)
presentation of electrolyte disturbances in 172 cys-
tic fibrosis patients was often associated with heat
exposure (61% of cases) and excessive sweating
(26% of cases) [265]. Other electrolyte imbalances
reported alongside hyponatremia in these case stu-
dies include hypokalemia, hypochloremia, and/or
metabolic alkalosis [174,176,259,265].

It is important to define or contextualize high
sweat [Na] and [Cl], sometimes referred to as
“salty sweat”. The individuals with hyponatremia
referenced in the case studies were reported to
have sweat [Na] values >80 mmol/L and sweat
[Cl] >70 mmol/L as measured on the forearm
using the pilocarpine-stimulated sweat test.
According to normative data, a forearm sweat
[Na] of 80 mmol/L is approximately two standard
deviations above average [156] (Figure 5). “Salty
sweat” has been observed in both healthy indivi-
duals [151,263,266,268,269] and cystic fibrosis
patients [174–176,259,263,267,270]. Regardless of
the underlying cause of the high sweat [Na] and
[Cl], case reports and theoretical models alike
demonstrate that excessive electrolyte losses
through sweating can contribute to the develop-
ment of Na and Cl imbalances.

Trace minerals and vitamins. There have been
some suggestions that athletes may require dietary
supplementation of certain trace minerals due in
part to excessive losses in sweat. The two trace
minerals that have received the most attention in
terms of sweat-induced deficiencies are Ca and Fe.
For example, the most recent consensus statement
from the International Olympic Committee men-
tions that excess losses in sweat, in combination
with other factors, may lead to suboptimal Fe status
in athletes and therefore may require dietary

supplementation [271]. Other papers have suggested
that sweat or dermal Ca losses in athletes may con-
tribute to reduced bone mineral density through
stimulation of parathyroid hormone during training
[226,272,273]. However, the balance of the evidence
suggests that sweat losses probably contribute mini-
mally to whole-body trace mineral and vitamin defi-
ciencies [134,148,250,253,274–279].

First, it is important to reiterate that many of
the studies reporting substantial trace mineral and
vitamin losses in sweat have used methods (e.g.
arm bag or other regional techniques, scraping
methods, minimal cleaning, inclusion of initial
sweat at start of exercise) [226,280–284] that over-
estimate sweat vitamin and mineral concentra-
tions, including [Ca] and [Fe], by up to 2-3 fold
[134,228,233,234]. For example, 65 years ago
Robinson and Robinson [134] recognized that a
primary source of Ca and Fe found in sweat is
associated with desquamated cell debris, which is
characteristic of the arm bag technique. Regional
measures of sweat trace minerals are also higher
and more variable (e.g. inter-regional differences)
than that of whole body [285,286], which makes it
difficult to draw conclusions about the amount of
sweat Ca and Fe losses and impact on homeostasis.

Studies have shown that during an acute bout of
1–2 h exercise serum ionized [Ca] decreases,
resulting in subsequent elevation of parathyroid
hormone and activation of bone reabsorption.
The long-term concern with this is a reduction in
athletes’ bone mineral density throughout the
course of training. While the underlying mechan-
isms are yet to be elucidated, one hypothesis is that
the exercise-induced increase in PTH is triggered
by sweat Ca loss. However, only one study has
reported an association between sweat Ca loss
and any measure of Ca homeostasis or bone
mineral density. Barry and Kohrt [273] found a
significant inverse correlation between sweat Ca
losses (measured during 2-h cycling) and baseline
bone mineral density at the hip, femoral neck, and
femoral shaft (r = −0.6 to −0.8) in competitive
male cyclists. While the cyclists’ bone mineral
density decreased over the course of one year of
training, there was no correlation between sweat
Ca loss and changes in bone mineral density [273].
Several other studies have reported no association
between sweat Ca loss and measures of Ca
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homeostasis (bone mineral density, parathyroid
hormone, C-terminal telopeptide of Type I col-
lagen, or bone-specific alkaline phosphatase) in
female cyclists [287], male cyclists [288,289], bas-
ketball players [226], or firefighters [277].

It is important to note that Ca supplementation
(or infusion) can attenuate increases in PTH and
activation of bone resorption during exercise
[278,287,288]; however, the underlying mechan-
ism is apparently unrelated to replacement of
sweat Ca loss. In addition to the lack of evidence
discussed above, the timing of changes in Ca
homeostasis during exercise does not agree with
the sweat Ca loss hypothesis. As pointed out by
Kohrt et al. [278], because the decrease in serum
ionized [Ca] occurs early in exercise (first 15 min)
it is unlikely that the extent of Ca loss would be
large enough to impact Ca homeostasis.
Furthermore, while in extreme circumstances
excess mineral loss cannot be ruled out as a con-
tributing factor to suboptimal trace mineral status
[290], for most athletes the main routes of loss are
likely through other avenues such as urine or the
gastrointestinal tract [249,291,292]. Taken
together, micronutrient supplementation does not
seem to be necessary on the basis of sweat excre-
tion during physical activity, provided that dietary
intakes are normal [250].

Comparison of sweat gland and kidney function

Water conservation and excretion
The sweat glands are often compared to the
nephrons of the kidneys, whose main function,
among others, is to conserve the vital constituents
of the body [293]. Indeed, sweat glands share some
similarities with the renal system; as eccrine glands
have mechanisms to conserve Na, Cl, and bicarbo-
nate losses in sweat as discussed in detail in the
Mechanisms of secretion and reabsorption section
above. For example, in response to aldosterone,
sweat glands increase Na reabsorption in the duct
leading to a decrease in sweat [Na], albeit with a
greater time lag than that of the kidneys. A vital
function of the kidneys is to regulate body water
balance, stimulating diuresis with overhydration
and antidiuresis with hypohydration and/or heat
stress. These adjustments are mediated through
changes in renal water reabsorption in response

to arginine vasopressin (AVP) concentrations in
the plasma [294]. With hyperosmotic hypovole-
mia, AVP binds to vasopressin type 2 receptors
of the distal tubule and collecting duct of the
kidneys, stimulating aquaporin transport of
water. It has been suggested that AVP might facil-
itate eccrine gland water reabsorption in a similar
manner, resulting in attenuated sweating rates and
more concentrated sweat (as a consequence of
water removal from the primary fluid along the
duct) [295–298]. However, the majority of studies
have concluded that neither administration of
AVP (e.g. subcutaneous injection of pitressin)
nor suppression of its effects (e.g. via ethanol
ingestion) alter sweating rate or sweat electrolyte
concentrations during heat exposure or exercise
[193,299–305]. These studies also reported no cor-
relation between plasma AVP concentrations and
sweating rate or sweat [Na] [151,302,306].
Moreover, one study showed that pharmacological
manipulation of vasopressin type 2 receptors with
an agonist (desmopressin) or antagonist (tolvap-
tan) prior to exercise had no effect on sweat [Na]
[306]. These results may be explained in part by
the relatively sparse ductal membrane expression
of aquaporin-5 compared with the secretory coil
[151]. Taken together it appears that AVP does
not regulate water loss via the sweat glands as it
does in the kidneys; and the sweat duct does not
play an important role in water conservation dur-
ing exercise-heat stress [210,301,306,307].
Additionally, a recent study suggests that intrader-
mal administration of atrial natriuretic peptide, a
cardiac hormone that promotes urinary excretion
of sodium and water, has no effect on sweating
rate in young adults nor does it affect sweating in
response to muscarinic receptor activation [308].

Excretion of toxicants

The notion that sweating is a means to accelerate
the elimination of persistent environmental con-
taminants from the human body has been around
for many years [309,310]. Detoxification methods
include several hours per day of sauna bathing to
stimulate excessive sweating, resulting supposedly
in purification of the body and release of toxins
from the blood. Some proponents of this method
claim that increasing sweating via exercise or heat
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stress (sauna) is an effective clinical tool to protect
against or overcome illness and disease [311–313].
Others suggest that physical activity leads to better
health outcomes as a result of accelerated toxin
elimination via thermal sweating [314,315]. As
attractive as this idea sounds, there is little if any
evidence to date that supports these claims
[309,310].

In a series of studies, Genuis et al. [311–313,316–
318] measured the concentration of environmental
toxicants in the blood, sweat, and urine of humans.
The overall finding of these studies was that many
chemicals, including persistent organic pollutants,
heavy metals, bisphenol A (BPA), and phthalate are
excreted in sweat. Interestingly, the concentrations
in sweat were often higher than that of blood and/or
urine, and in some cases, chemicals were detected in
sweat but absent in blood and urine. Such reports
[280,314,318] have led some to hypothesize that
these chemicals are perhaps preferentially excreted
in sweat to reduce the body burden. However there
are several important methodological limitations to
consider when measuring environmental toxicants
in sweat. First, many of these studies used sweat
collection methods that are susceptible to surface
contamination and sweat evaporation, which would
artificially increase the concentration of toxicants
measured in sweat samples. For instance, in most of
these studies [311–314,316–318], sweat was col-
lected by the subjects on their own (uncontrolled,
unsupervised), from any site on their body, by
scraping sweat from the skin surface with a stainless
steel spatula into a glass jar. With these methods, it
is probable that sweat samples were tainted with
sebum secretions. Scraping methods increase the
likelihood of skin surface (epidermal cells) contam-
ination because scraped sweat contains 4-10x more
lipid than clean sweat [319]; potentially explaining
the high concentrations of some the of lipophilic
toxicants in sweat. Furthermore, the method of
sweat stimulation (exercise, sauna) and timing
(with respect to how long sweating had commenced
before collection) were not controlled [311–
314,316–318]. Other studies [280,320] used the
arm bag method which is also susceptible to skin
surface contamination. As previously discussed the
epidermis contains many contaminants, including
heavy metals measured in these studies (arsenic and
lead) [321,322].

When using these methods Genuis et al. [311]
found consistently higher concentrations of BPA in
sweat than urine. Furthermore, BPA was detected in
the sweat of 16 of the 20 subjects, but only two of the
20 subjects had BPA in their serum. In another
study, PCB52 concentration was higher in sweat
than blood and urine [316]. Given that interstitial
fluid is the precursor to primary sweat secretion it is
unlikely that the BPA or PCB52 collected at the skin
surface in these studies can be attributed to eccrine
sweat if the chemical is absent in the blood. Instead
the chemicals could have originated from sebum
secretions or epidermal cell contamination. One
study lends support for this line of thinking:
Porucznik et al. [323] collected sweat (via
PharmChek absorbent patches) and urine for 7
days and found BPA in urine, but an absence of
BPA in sweat. For example, the highest measured
urine BPA concentration was 195 ng/ml for an indi-
vidual with deliberate exposure, but no BPA was
detected above background in the corresponding
sweat patch. These results suggest that the renal
system is primarily responsible for BPA elimination
from the body and pharmacokinetic studies provide
additional support for this: in humans, it has been
shown that 84–97% of BPA is eliminated in urine 5–
7 h after exposure and 100% is eliminated after 24 h
[324]. The primary avenue for heavy metals excre-
tion, based on tracer studies, is fecal output [325].
Meanwhile, there are no known mechanisms by
which the sweat glands would preferentially secrete
(concentrate) BPA, persistent organic pollutants,
and trace metals to facilitate transport out of the
body. Thus direct evidence for sweating as an effec-
tive detoxification method is lacking.

Still, future well-controlled studies designed to
collect clean eccrine sweat are needed to clarify or
refute any potential role of sweating as a therapeutic
tool to eliminate toxins from the body. While ther-
apeutic health benefits (mostly subjective measures)
from detoxification protocols in some patient popu-
lations have been documented, it is important to note
that sauna is only one component of a holistic inter-
vention [310]. Most protocols also include several
weeks of strict changes in diet, exercise, and sleep
and therefore it is not possible to attribute any benefit
solely to sauna therapy [309,310,326–328]. Moreover,
the sauna protocols used in these studies have
employed 2–5 h/day of excessive sweating. The
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efficacy of lower rates of sweat loss, more realistic to
the context of everyday life, is unknown [309].

Excretion of ethanol

Another perceived function of the eccrine sweat
glands is the elimination of ethanol from the body
through increases in sweating rate and/or sweat etha-
nol concentration. In fact, increased sweating is often
considered a hangover symptom and is part of the
Alcohol Hangover Severity Scale used as the standard
in alcohol hangover research [329]. Furthermore, it is
commonly believed that an effective cure for hang-
overs after heavy drinking is to stimulate sweating
(via exercise or sauna bathing) to accelerate recovery
from alcohol intoxication. However, the evidence to
date does not support these ideas; not to mention
there are significant health concerns with sauna bath-
ing during alcohol hangover [330].

In a validation study, the 12-symptom Alcohol
Hangover Severity Scale questionnaire (which
includes perceived sweating as well as fatigue, diz-
ziness, clumsiness, thirst, nausea, and others) had
a hangover severity predictive validity of r2 = 0.92
[329]. Interestingly though, perceived sweating
was not significantly different between the hang-
over and control groups in this naturalistic study,
while all other individual symptoms successfully
differentiated between the two conditions [329].
Furthermore, alcohol intake has been found to
have no or minimal impact on sweating rate in
laboratory intervention studies [302,331–333]. For
instance, two separate studies found no differences
in regional sweating rate (chest or upper arm) in
response to hot water immersion [332] or exercise-
heat stress [331] after alcohol ingestion (that lead
to 0.07–0.11 g/dl blood alcohol concentration)
compared with the placebo conditions. One study
did find a higher chest sweating rate during pas-
sive heat stress (33°C) 10–30 min after 0.36 g/kg
alcohol ingestion compared with water. However,
the elevated sudomotor response was transient, as
sweating rate decreased after 30 min and became
even with the water trial by 40 min into heating
[333]. In addition, differences in sweating rates
were very low (up to 0.1–0.2 mg/cm2/min) and
unlikely to be of practical significance from a

detoxification perspective. On the whole-body
level, the difference would be equivalent to ≤100
g over the course of 30 min in a 1.8 m2 individual,
but this is likely to be an overestimate since chest
sweating rate is higher than that of whole body.
On this point, no study to the author’s knowledge
has measured changes in whole-body sweating rate
in response to alcohol ingestion, either immedi-
ately after ingestion or during alcohol hangover.

It does seem that sweat ethanol concentration
increases with ethanol ingestion and rises linearly
with increases in blood alcohol concentration. For
example, Buono et al. collected serial sweat samples
(using the anaerobic technique) via pilocarpine ionto-
phoresis for 3 h after 13 mmol/kg ethanol ingestion
and found a significant correlation between blood
versus sweat ethanol concentrations and the slope of
the relation was 1.01 [334,335]. This nearly identical
ethanol concentration between blood and sweat sup-
ports the idea that sweat ethanol originates from the
interstitial fluid and its concentration is not signifi-
cantly altered during transport through the duct onto
the skin surface; which is counter to the suggestion
that the sweat glands have homeostatic mechanisms
to detoxify the blood (via concentratingmechanisms).
Moreover, the main avenue of ethanol elimination
from the body is known to be via oxidation by alcohol
dehydrogenase and aldehyde dehydrogenase even-
tually breaking ethanol down to acetyl CoA, all of
which occurs in the liver. It is in this manner that
90% of alcohol is removed from the body, with the
other 10% being excreted in breath, sweat, and urine
[336]. Taken together the available evidence suggests
that sweating likely plays a very small role in alcohol
detoxification or hangover cures.

Excretion of metabolic waste

Another important function of the kidneys is
excretion of metabolic and dietary waste products.
Since some waste products appear in sweat the
eccrine glands are also thought of as an excretory
organ. For example, sweat contains urea, the major
nitrogen-containing metabolic product of protein
catabolism. According to Sato [15], urea readily
crosses the eccrine glandular wall and cell mem-
brane and therefore concentrations of urea in
sweat are expected to be about the same as that
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of the plasma. Some studies report very high urea
concentrations in sweat [337–339], up to 50x that
of serum [337], and suggest that this is evidence
for a selective transport mechanism across the
sweat gland, especially in patients with kidney
damage, to clear the blood of high urea concentra-
tions [337]. However, many of these studies used
methods susceptible to sample evaporation (collec-
tion of sweat drippage) [337,339] or surface con-
tamination (sweat collected at onset of exercise)
[338], which can lead to artificial increases in
sweat urea concentrations (see Table 2). Other

studies have shown that uric acid and creatinine
excretion via sweat is insignificant compared with
elimination rates through the kidneys [337,339].
Taken together, there is limited evidence that the
sweat glands excretory function makes a substan-
tial contribution to homeostasis [134,193].

Altered sweat gland function from conditions
and medications

As shown in Table 6, certain medical conditions
and medications can impact sweating rate and

Table 6. Conditions and medications that alter sweat gland function.
Timing Effect on sweating rate and/or sweat composition

Selected conditions and
medications

Cystic fibrosis Chronic Higher sweat [Na] and [Cl] than normal because of a genetic deficiency or absence of functioning CFTR
leading to lower Na and Cl reabsorption rates in the sweat duct [167,168,170]

Addison’s disease Chronic Higher sweat [Na] and [Cl] than normal because of impaired adrenal cortex function (aldosterone
secretion) leading to lower Na and Cl reabsorption rates in the sweat duct [345,346]

Diabetes mellitus Chronic Reduced sweating with T1DM and T2DM; potential mechanisms related to autonomic neuropathy and
reduced thermosensitivity, reduced maximal sweating rate, and/or lower number of active sweat
glands; impaired ability to dissipate heat, especially during higher thermal loads and in individuals
with lower fitness level [340–344]

Multiple sclerosis Chronic Reduced sweating because of lesions within central nervous system leading to reduced sweat output
per gland [459]

Spinal cord injury Chronic Reduced or complete absence of sweating in the insensate skin due to disruption in neural pathways
involved in central and peripheral control of sweating [460,461]; compensatory increase in sweating
occurs in sensate skin above the spinal injury [462,463]

Severe burns and skin
grafting

Chronic Reduced or complete absence of sweating in the burned area because entire epidermal and majority
of the dermal layer (including sweat glands) are excised. Disruption in sweating remains even as the
skin graft heals [347–349]

Sunburn Acute Reduced sweating in artificially-induced mildly sunburned skin [350]
Miliaria rubra (heat rash or
prickly heat)

Acute Reduced sweating because of pore occlusion via keratin plugs causing mechanical blockage of sweat
flow onto skin surface; caused by high humidity (excessive sweat) on skin surface for long duration
[351,352]

Atopic dermatitis (eczema) Episodic Reduced sweating onto the skin surface because of obstruction of sweat pores by keratin plugs,
leakage of sweat into dermal tissue around the glands, and/or potentially histamine-induced sweat
suppression [215,353,354]; sweat glucose concentration may be higher than normal with acute atopic
dermatitis [464]

Anhidrotic ectodermal
dysplasia

Chronic Reduced or complete lack of sweating because of genetic paucity or absence of sweat glands over
entire body surface [3]

Primary hyperhidrosis Chronic/
Episodic

Increased sweating with focal or bilateral distribution affecting primarily the axilla, palms, soles, and
craniofacial areas [356,359]. Etiology involves neurogenic overactivity of otherwise normal sweat
glands [3,29]; associated with genetic predisposition [359,465]. Limited data on sweat composition.

Secondary hyperhidrosis Chronic/
Episodic

Increased sweating with generalized or unilateral distribution as a result of underlying physiologic
condition (fever, pregnancy, menopause), pathology (malignancy, infection, cardiovascular disease,
endocrine/metabolic, neurological or psychiatric disorders), or medication [3,356–359]. Limited data on
sweat composition.

Tattoos Chronic Reduced sweating rate and higher sweat [Na] in response to pharmacologically-induced local sweating
than non-tattooed skin; unknown etiology [466–468]. More research involving exercise or heat-
induced whole body sweating is needed.

Medications Acute/
Chronic

Antimuscarinic anticholinergic agents, carbonic anhydrase inhibitors, and tricyclic antidepressants can
cause generalized hypohydrosis; cholinesterase inhibitors, SSRI, opioids, and TCA can cause generalized
hyperhidrosis [346,355]. Limited data on sweat composition.

CFTR: cystic fibrosis transmembrane conductance regulator; SSRI: selective serotonin reuptake inhibitors; T1DM and T2DM, type 1 and 2 diabetes
mellitus; TCA: tricyclic antidepressants
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sweat composition. As discussed in the
Thermoregulation section above, evaporation of
sweat is crucial for temperature regulation in
warm conditions and this is evident in patients
suffering from anhidroses. Diabetes mellitus, mul-
tiple sclerosis, spinal cord injury, and anhidrotic
ectodermal dysplasia are associated with a signifi-
cant reduction in sweating; which, in some cases,
can severely impair one’s ability to dissipate heat
during higher thermal loads [340–344]. In parti-
cular, heat intolerance is well documented in
patients with anhidrotic ectodermal dysplasia, a
genetic condition resulting in a paucity of sweat
glands over the entire body surface [3,15]. In addi-
tion, the important function of salt conservation
by the sweat gland is evident in patients with
reduced ion reabsorptive capacities due to a
genetic deficiency or absence of functioning
CFTRs (cystic fibrosis) or impaired adrenal cortex
function (Addison’s disease) [345,346]; who may
be more susceptible to electrolyte imbalances
[174–176,259,263,265,267].

Other conditions associated with reduced
sweating include burns and skin grafting [347–
349], sunburn [350], miliaria rubra [351,352],
and atopic dermatitis [215,353,354], as well as
medications that interfere with neural sudomo-
tor mechanisms (e.g. anticholinergics and tricyc-
lic antidepressants) [346,355]. Hyperhidrosis,
where sweating occurs in excess of thermoregu-
latory demands, can occur with primary etiology
[3,29] or secondary to physiologic condition
(fever, pregnancy, menopause), pathology
(malignancy, endocrine, metabolic, or psychia-
tric disorder), or medication (cholinesterase
inhibitors, SSRIs, opioids) [3,356–359].
However, these types of hypo- and hyperhidrosis
are often localized and/or episodic and the
impact on whole-body thermoregulation and/or
fluid balance during exercise and/or heat stress
is not well-studied. The reader is referred to the
supporting references in Table 6 for more details
on each of the conditions and medications that
alter sweat gland function.

Conclusions

This paper discussed sweat gland physiology and
the state of the evidence regarding various roles of

sweating and sweat composition in human health.
Based on this review of the literature, the following
conclusions were drawn:

● It is well established that eccrine sweat
glands have a tremendous capacity to secrete
sweat for the liberation of heat during exer-
cise and exposure to hot environments. They
also have the capacity to enhance sweating
rate with heat acclimation for improved heat
tolerance.

● Eccrine sweat glands reabsorb NaCl and bicar-
bonate to minimize disruptions to whole-body
electrolyte balance and acid–base balance,
respectively.

● NaCl reabsorption by the sweat glands
improves with whole-body NaCl deficits
(heat acclimation, dietary restriction), but the
response is somewhat delayed (1–3 days) com-
pared with that of the kidneys (within 1–3 h).

● Individuals with salty sweat (e.g. [Cl] and
[Na] ≥70–80 mmol/L) have an increased
risk of NaCl imbalances during prolonged
periods of heavy sweating.

● Eccrine gland mechanisms for secretion and
reabsorption of other sweat solutes are poorly
understood; nonetheless, sweating-induced defi-
ciencies appear to be of minimal risk for trace
minerals (e.g. Ca and Fe), vitamins, and other
constituents.

● Eccrine sweating may play a role in skin
hydration and microbial defense, but addi-
tional research is required.

● The role of the sweat glands in eliminating
waste products and toxicants from the body
seems to be minor compared with other ave-
nues of breakdown (liver) and excretion (kid-
neys and gastrointestinal tract).

● Evidence for a selective mechanism to excrete
metabolic and dietary waste products and
toxicants via the sweat glands is lacking.
That is, sweat glands do not appear to adapt
in any way to increase excretion rates of these
substances (either via concentrating sweat or
increasing overall sweating rate) as the kid-
neys do in contributing to the regulation of
blood concentrations.
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● Unlike the renal system, sweat glands do not
appear to conserve water loss or concentrate
sweat fluid through AVP-mediated water
reabsorption.

● Studies suggesting a larger role of sweat
glands in clearing waste products or toxicants
from the body (e.g. concentrations in sweat
greater than that of blood) may be an artifact
of methodological issues rather than evidence
for selective transport.

● The utility of sweat composition as a biomar-
ker for human physiology is currently lim-
ited; more research is needed to determine
potential relations between sweat and blood
solute concentrations.

Abbreviations

ASGD activated sweat gland density
AVP arginine vasopressin
ATP adenosine triphosphate
BPA bisphenol-A
Ca calcium
CFTR cystic fibrosis transmembrane conductance regulator
Cl chloride
Cu copper
Ereq evaporative requirement for heat balance
Fe iron
HCO3 bicarbonate
K potassium
Mg magnesium
Mn mangenese
Na sodium
NH3 ammonia
RSR regional sweating rate
SGO sweat gland output
WBSR whole body sweating rate
Zn zinc
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