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This review will describe the structure and function of the eosinophil. The roles of several 
relevant cell surface molecules and receptors will be discussed. We will also explore 
the systemic and local processes triggering eosinophil differentiation, maturation, and 
migration to the lungs in asthma, as well as the cytokine-mediated pathways that result 
in eosinophil activation and degranulation, i.e., the release of multiple pro-inflammatory 
substances from eosinophil-specific granules, including cationic proteins, cytokines, 
chemokines growth factors, and enzymes. We will discuss the current understanding of 
the roles that eosinophils play in key asthma processes such as airway hyperresponsive-
ness, mucus hypersecretion, and airway remodeling, in addition to the evidence relating 
to eosinophil–pathogen interactions within the lungs.
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iNTRODUCTiON

The three main processes responsible for the clinical features of asthma are well recognized: 
bronchoconstriction, mucus hypersecretion, and airway inflammation. However, the underlying 
pathophysiology responsible for these processes is complex and nuanced, involving multiple cell 
types and cytokines (1). Furthermore, the activity and clinical impact of each cellular and subcel-
lular component varies considerably between individuals and can change over time, as well as in 
response to drug therapy and environmental/lifestyle influences.

Among these myriad cellular interactions and this extremely heterogeneous patient group, it is 
possible to identify certain key cells that are commonly involved—of which, arguably, the eosinophil 
is the most important.

Eosinophil precursors originate in the bone marrow and following differentiation traffic to 
the lungs (among other sites) via the bloodstream (2). While high concentrations of circulating 
eosinophils are often measured in asthmatic patients, of more clinical relevance is the lung tissue 
eosinophilia that is also frequently present.

The phenotype of “severe eosinophilic asthma” refers to a subgroup of asthmatic patients with 
evidence of eosinophilia that often require high maintenance doses of oral corticosteroids to 
maintain reasonable disease control. The notoriously non-specific mechanisms of action of corti-
costeroid therapy give rise to numerous well-documented adverse effects (3), which have driven 
decades of research focused on the development of targeted anti-eosinophil drug therapies. In order 
to understand how to better assist this group of patients, who currently have an unmet clinical 
need, it is helpful to understand the eosinophil itself, and the role that it plays in asthma. Targeted 
anti-eosinophil therapies will be touched upon but will be covered in greater detail by other reviews 
in this Research Topic.
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FigURe 1 | Eosinophil ultrastructure. Schematic representation of an eosinophil showing the major organelles (black labels) and cell surface receptors (blue labels). 
Abbreviation: MHC-II, major histocompatibility complex-II.
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eOSiNOPHiL CeLL STRUCTURe

Eosinophils are granulocytes, typically measuring 10–16 µm in 
diameter. They possess segmented (usually bi-lobed) nuclei and 
their nucleus: cytoplasm ratio is approximately 30%. Eosinophils 
stain with acidophilic dyes—a feature noted in 1879 by Paul 
Ehrlich, who first described eosinophils and appreciated their 
increased presence in patients with asthma and helminth infec-
tions, among other conditions (4). See Figure 1 for an overview 
of the eosinophil ultrastructure.

The presence of large specific granules, also known as sec-
ondary granules, is a characteristic feature that distinguishes 
eosinophils from other granulocytes (neutrophils and baso-
phils). Specific granules consist of a dense crystalline core and 
a matrix, surrounded by a membrane (5). They contain a large 
number of mediators capable of inducing inflammation and/or 
tissue damage, including basic proteins, cytokines, chemokines, 
growth factors, and enzymes. The predominant substances are 
the proteins: major basic protein (MBP) is located in the core, 
while the matrix contains eosinophil cationic protein (ECP), 
eosinophil peroxidase (EPO), and eosinophil-derived neuro-
toxin (EDN) (6).

Primary granules tend to be smaller than specific granules. 
They are the principal location of Charcot–Leyden crystal protein 
(galactin-10): hexagonal bipyramidal crystals, which exhibit 

lysophospholipase activity and have been identified in tissues 
subject to eosinophilic inflammation (7).

Lipid bodies are particularly important when considering the 
role of eosinophils in asthma, due to their involvement in the 
production of eicosanoids, including cysteinal leukotrienes, pros-
taglandins, and thromboxane (2). Lipid bodies are a key site of 
arachidonic acid esterification and eicosanoid production due to 
their high concentrations of relevant enzymes such as cyclooxy-
genases, 5-lipoxygenase, and leukotriene C4-synthase (5).

Golgi bodies, endoplasmic reticulum, and mitochondria are 
also present and fulfill the fundamental duties of protein and 
adenosine triphosphate production within the eosinophil.

The histological appearance of eosinophils varies depending 
on the level of activation. For example, higher numbers of vesicles 
such as eosinophil sombrero vesicles may be seen when the cell is 
undergoing piecemeal degranulation (PMD), a process described 
in detail further on.

eOSiNOPHiL SURFACe MOLeCULeS  
AND ReCePTORS

The varied roles of the eosinophil are reflected in its wide 
repertoire of surface molecules and receptors, which integrate 
eosinophils with both the innate and adaptive immune systems.
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Cytokine and growth Factor Receptors
The heterodimeric receptor for IL-5 is thought to be the most 
important cytokine receptor expressed by eosinophils. The 
beta-subunit is identical to the beta-subunit of the receptors for 
granulocyte–macrophage colony-stimulating factor (GM-CSF) 
and IL-3 (both of which are also present on eosinophil cell 
membranes). The alpha-subunit, IL-5Rα, is specific to IL-5 and 
has been identified as a therapeutic target for severe eosinophilic 
asthma and other eosinophil-mediated conditions. The IL-5 
receptor is also expressed by basophils.

Eosinophils also express receptors for multiple other cytokines 
and growth factors, including for IL-4, IL-13, IL-33, thymic stro-
mal lymphopoietin, and transforming growth factor-β (TGF-β).

Chemoattractant Receptors
Chemokines are small cytokines, which stimulate the migration 
of specific subsets of leukocytes. Chemokines are divided into 
four groups, depending on the presence or absence of one or 
more interposing amino acid(s) between two cysteine residues 
(known as CXC-, CX3C-, and CC-chemokines), or the presence 
of only one cysteine residue (XC-chemokines) (8).

CC-chemokine receptor-3 (CCR3) is an important G protein-
coupled receptor expressed on eosinophil cell membranes. CCR3 
binds to all three subtypes of eotaxin (a variety of CC-chemokine 
that functions as a selective eosinophil chemoattractant). CCR3 
also binds to several other chemokines including monocyte 
chemoattractant protein-3 (MCP-3) and MCP-4. The airways of 
patients with asthma have been shown to contain higher numbers 
of cells expressing mRNA for CCR3 and its ligands, compared  
to non-asthmatic control subjects (9). In mouse models of aller-
gic airway inflammation, antigen-induced airway eosinophilia 
may be inhibited by the administration of either a monoclonal 
antibody against CCR3 (10) or a low molecular weight CCR3-
antagonist (11).

CCR1 is another key chemokine receptor on eosinophils, 
which is activated by chemoattractant cytokine ligand-3 (CCL-3) 
and CCL-5 (also known as RANTES—regulated on activation, 
normal T cell expressed and secreted).

Lipid Mediator Receptors
Eosinophils possess cell surface receptors for lipid mediators such 
as leukotrienes, prostaglandins, and platelet-activating factor, all 
of which have been shown to have a role in asthma pathophysiol-
ogy (12–14).

Pattern Recognition Receptors (PRRs)
Pattern recognition receptors react to microbial pathogen-
associated molecular patterns (PAMPs) or host-derived damage-
associated molecular patterns (DAMPs) and regulate the immune 
response to these indicators of infection and/or tissue damage (15).

Toll-like receptors (TLRs) are a family of PRRs, which are 
expressed by eosinophils, as well as multiple other cell lines. In 
humans there are 10 types of TLRs. TLRs are transmembrane 
glycoproteins, some of which are located at the cell surface and 
some in endosomes. The cytoplasmic domain resembles that 
of the IL-1 receptor, and the intracellular signals generated are 
therefore similar (16).

Eosinophils also express several other families of PRR, includ-
ing retinoic acid-inducible gene-I-like receptors, nucleotide-
binding oligomerisation domain-like (NOD-like) receptors, and 
the receptor for advanced glycation endproducts (RAGE) (15).

Fc Receptors
Fc receptors to IgA, IgD, IgE, IgG, and IgM are expressed on the 
surface of eosinophils, facilitating interaction with the adaptive 
immune system.

The high-affinity FcεR1 receptor binds IgE and signals via 
intracellular tyrosine kinases. On mast cells and basophils, 
where FcεR1 is expressed as a tetramer (αβγ2), stimulation by 
IgE results in degranulation. However, on eosinophils, FcεR1 is 
usually expressed in very small quantities as a trimer (without a β 
chain) and has no role in eosinophil activation (17). In contrast, 
cross-linking of FcαRI and FcγRII, with IgA and IgG, respectively, 
has been shown to trigger eosinophil activation (18).

Major Histocompatibility Complex-ii 
(MHC-ii)
Eosinophils have an additional role as antigen-presenting 
cells, facilitated by the presence of MHC-II molecules and 
co-stimulatory molecules such as CD80 and CD86. In allergic 
patients, evaluated after segmental antigen challenge, expression 
of HLA-DR (a subtype of MHC-II molecule) was found to be 
approximately four times greater in lung eosinophils compared 
to blood eosinophils (19).

Adhesion Receptors
Adhesion receptors, as their name suggests, allow cells such 
as the eosinophil to adhere to the extracellular matrix (ECM) 
and to other cells. They also allow the eosinophil to sense its 
surroundings and respond accordingly. Adhesion receptors are 
divided into four main groups: integrins, cadherins, selectins, 
and immunoglobulin-like cell adhesion molecules (Ig-CAM). 
Integrins and selectins are the main forms of adhesion receptors 
expressed on eosinophil cell membranes.

Eosinophils express seven types of integrins, which are trans-
membrane glycoproteins, consisting of an α and a β chain (20). 
Examples include very late antigen-4 (VLA-4, CD49d/CD29) 
and the complement receptor CR3 (CD11b/CD18), which is 
otherwise known as macrophage-1 antigen (Mac-1).

Selectins are single-chain transmembrane glycoproteins with 
multiple domains. There are three families: E-, L-, and P-selectin; 
the latter two are expressed by human eosinophils, whereas 
E-selectin is present on activated endothelium (21).

Siglec-8
Siglec-8 is a sialic acid immunoglobulin-like lectin (a carbo-
hydrate-binding protein) expressed by eosinophils, mast cells, 
and basophils. Its physiological role has not yet been identi-
fied, although it is thought to represent a potential therapeutic 
target for eosinophil-mediated disease, due to the observation 
that administration of an antibody targeted against Siglec-8 
can induce selective eosinophil apoptosis and inhibit mast cell 
degranulation (22).
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eOSiNOPHiL DiFFeReNTiATiON, 
MATURATiON, MigRATiON, ACTivATiON, 
AND DegRANULATiON

Eosinophils develop from pluripotent CD34+ granulocyte pro-
genitor cells.

Differentiation and maturation occurs as follows:

 

Myeloblast Promyelocyte Eosinophil myelocyte
Eosinophil me

→ →
→ ttamyelocyte Eosinophil.→  

Allergen challenge of mild asthmatics results in increased 
expression of IL-5Rα on CD34+ cells in the bone marrow, 
associated with blood and sputum eosinophilia (23). Eosinophil 
differentiation usually occurs in the bone marrow. However, 
eosinophil precursors have been isolated from the peripheral 
blood of atopic subjects at significantly higher concentrations 
compared to non-atopic controls (24). Increased numbers of 
CD34+/IL-5Rα+ eosinophil precursors have also been identified 
in bronchial biopsies of atopic asthmatics, compared to non-
asthmatic control subjects (both atopic and non-atopic) (25). 
Eosinophil-lineage committed cells have also been identified in 
lung tissue in a mouse model of allergic airway inflammation (26). 
More recently, eosinophil progenitors isolated from the blood of 
patients with severe eosinophilic asthma have been shown to have 
an exaggerated clonogenic response to IL-5 in vitro, compared 
to eosinophil precursors from mild asthmatics, suggesting that 
in  situ eosinophilopoiesis may have a clinically relevant role in 
severe eosinophilic asthma (27).

The differentiation of eosinophils is regulated by the transcrip-
tion factors GATA-binding protein 1 (GATA-1), PU.1, and the 
CCAAT-enhancing binding protein (c/EBP) family. GATA-1 and 
PU.1 synergistically promote transcription of MBP (28). GATA-1 
is thought to have the most important role, as disruption of the 
GATA-1 gene in mice results in a strain completely devoid of 
eosinophils (29).

The cytokines IL-3, IL-5, and GM-CSF also synergistically 
contribute to the development of mature eosinophils (30). IL-5 
is the most eosinophil-specific and also promotes the release of 
eosinophils from the bone marrow to the bloodstream, acting 
synergistically with eotaxin (31, 32). Eosinophils are present in 
relatively low numbers in peripheral blood, usually accounting 
for no more than 5% of the total white blood cell count (33). 
They have a relatively short blood half-life of approximately 
18 h (34). Migration to specific body sites, including the lungs 
and intestines, is mediated by eosinophil chemoattractants such 
as eotaxins. Eotaxins are a variety of CC-chemokines. There are 
three known subtypes: eotaxin-1 (CCL-11), eotaxin-2 (CCL-24), 
and eotaxin-3 (CCL-26). These bind to CCR3 receptors on the 
cell membranes of eosinophils and induce chemotaxis. 5-oxo 6, 
8, 11, 14-eicosatetraenoic acid (5-oxo-ETE) is another eosinophil 
chemoattractant.

In vitro, the presence of prostaglandin-D2 (PGD2) has been 
shown to significantly enhance the chemoattractant effects of 
eotaxin-1 and 5-oxo-ETE on eosinophils and—unlike eotaxin-1 
or 5-oxo-ETE—PGD2 retains its chemoattractant effect in the 
presence of blood or plasma (35). It is therefore proposed that 

PGD2 acts as the initial chemoattractant, triggering the migra-
tion of circulating eosinophils to specific tissues, where eotaxins 
and 5-oxo-ETE then predominate. PGD2 is released from 
activated mast cells (36) and acts via CRTh2 (chemoattractant 
recep tor-homologous molecule expressed on TH2 cells).

In allergic inflammation and asthma, circulating eosinophils 
adhere to the vascular endothelium and roll along it, before 
extravasating to the lung tissue. Initial tethering to the endothe-
lium occurs as a result of the eosinophil cell membrane adhesion 
receptor P-selectin binding to P-selectin glycoprotein ligand-1 on 
the endothelium (37). Binding of the integrin VLA-4 to vascular 
cell adhesion molecule-1 promotes eosinophil activation and 
extravasation (37). IL-13 results in increased eosinophil expres-
sion of P-selectin and increased P-selectin mediated adhesion to 
endothelial cells (38).

The eosinophil’s ability to store several preformed cytotoxic 
mediators ready for rapid release upon appropriate stimulation 
facilitates a much quicker reaction to pro-inflammatory stimuli, 
compared to other cells, whose responses depend on upregulat-
ing the transcription of genes coding for such proteins.

The bronchial epithelium produces the cytokines IL-25, IL-33, 
and thymic stromal lymphopoietin, collectively known as the 
alarmins, in response to irritants such as allergens, pollutants, 
and pathogens. These cytokines trigger an inflammatory cascade 
involving, among others, T helper-2 (TH2) cells and type-2 innate 
lymphoid cells (ILC2s), resulting in increased production of 
numerous cytokines including IL-4, IL-5, and IL-13, therefore 
prompting eosinophil activation (1, 39).

High mobility group box 1 protein, acting via receptors TLR-2, 
TLR-4, and RAGE, also promotes eosinophilia, although less is 
known regarding its mechanism of action (2).

Specific granule contents may be released via three different 
degranulation processes. Conventional exocytosis entails the 
specific granules fusing with the eosinophil cell membrane, 
resulting in the release of the entire contents of the specific 
granule. Alternatively, the eosinophil may be lysed (cytolysis), 
releasing all the cell contents, including the intact specific 
granules. These extracellular granules can be found in tissues 
affected by eosinophil-mediated disease and may subsequently 
release their contents in response to pro-inflammatory stimuli 
(40). However, the most common mechanism of eosinophil 
granulation is termed piecemeal degranulation (PMD). In this 
process, vesicles (both round and tubular) are released from 
specific granules and travel to the cell membrane to discharge 
their contents to the extracellular domain (41). The tubular 
vesicles tend to curl into a hoop-like morphology, giving rise 
to the term “eosinophil sombrero vesicles” (42). Vesicles with 
particular contents may be selectively released in response to 
particular cytokines, allowing eosinophils to supply a specific 
combination of cytotoxic mediators on demand (42, 43).

The activation of TLRs on eosinophils has been shown to 
promote adhesion and the release of certain cytokines and 
superoxides (44). Activation of TLR-2 and TLR-9 triggers 
eosinophil degranulation (44, 45). In vitro, eosinophils from 
atopic subjects have been shown to produce more IL-8 and EDN 
in response to stimulation of TLR-7 and TLR-9, compared to 
healthy controls (45).
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Eosinophil survival is promoted by IL-3, IL-5, GM-CSF, 
and eotaxin (37). Activation of TLR-7 (the most abundant TLR 
subtype expressed by eosinophils) also enhances eosinophil 
survival (45).

iL-3, iL-5, AND gM-CSF

Among the type-2 cytokines, IL-3, IL-5, and GM-CSF are particu-
larly important for the initiation and perpetuation of eosinophilic 
airway inflammation. These three cytokines are closely linked, in 
that the genes for all three are all located on chromosome 5, and 
their receptors also share a common β-subunit (βc).

Monoclonal antibodies against IL-5 have been developed in 
order to treat eosinophil-mediated diseases such as eosinophilic 
asthma. Although inhibition of IL-5 activity in this manner 
(using mepolizumab) results in significant depletion of circulat-
ing eosinophils, the effect on bronchial tissue eosinophilia is less 
marked, with a median reduction of 55% (46). The residual tissue 
eosinophilia may reflect ongoing effects mediated by IL-3 and 
GM-CSF.

In a mouse model of allergic airways inflammation, allergen-
induced lung tissue eosinophilia was abolished in mice bred to 
lack the common β-subunit, therefore incapable of responding to 
IL-3, IL-5, and GM-CSF (47). In the same study, lung tissue from 
βc-deficient mice was found to contain fewer myeloid dendritic 
cells, and the local TH2 cells showed a reduced ability to prolifer-
ate and produce type-2 cytokines (47). These findings suggest a 
multifactorial role for the common β-subunit in the regulation of 
allergic airway inflammation.

THe ROLe OF THe eOSiNOPHiL iN 
HeALTH

In comparison to the roles that eosinophils play in diseases and 
infections, relatively little is known about their purpose in health. 
However, an increasing number of homeostatic mechanisms have 
been attributed to—or at least associated with—eosinophils in 
recent years. This has prompted a call for a fundamental change 
of the perception of eosinophils purely as cytotoxic effector cells 
(48, 49).

In health, eosinophils are found in the thymus, spleen, 
lymph nodes, and gastrointestinal (GI) tract (50). The number 
of eosinophils in the thymus declines with age (51). Eosinophils 
may have a role in T cell selection. In a mouse model of MHC 
I-restricted acute negative selection, eosinophil recruitment to 
the corticomedullary region of the thymus and association with 
apoptotic bodies has been demonstrated (52). Eosinophils also 
enhance the ability of macrophages to phagocytose apoptotic 
thymic cells (53).

Eosinophils migrate to the GI tract during embryonic devel-
opment, i.e., prior to the development of any viable gut flora 
(54). In health, they are present throughout the GI tract—with 
the notable exception of the esophagus. Eosinophils contribute 
to the immune defense against gut microorganisms, due to 
multiple antimicrobial properties. (The antimicrobial properties 
of eosinophils are discussed in detail further on, with specific 

relation to respiratory pathogens.) Other potential homeostatic 
roles for eosinophils within the gut are not currently well defined 
but may relate to their ability to interact with the enteric neuronal 
system and increase smooth muscle reactivity (via release of 
MBP) (55).

In murine white adipose tissue, a positive correlation was 
identified between eosinophil counts and the numbers of 
arginase-1-expressing macrophages (56). Macrophages express-
ing arginase-1 are thought to contribute to glucose homeostasis, 
although macrophage classification is contentious (57). In a more 
recent study involving more than 9,000 human participants, the 
peripheral blood eosinophil percentage was found to be inversely 
associated with the risk of type-2 diabetes mellitus and insulin 
resistance (58).

Eosinophils have also been implicated in the regeneration 
of liver tissue (59) and skeletal muscle (60). The increased pres-
ence of eosinophils in preovulatory ovarian follicles (61) and in 
endometrium (62) has prompted speculation that they may have 
a role in tissue remodeling related to ovulation and menstruation.

Eosinophils also perform several important immunomodula-
tory functions, discussed in the following section.

THe eOSiNOPHiL’S ROLe iN ASTHMA 
PATHOPHYSiOLOgY

Asthma pathophysiology is complex, and the relative contribu-
tions of the various cytokine networks involved vary between 
patients. Core features include airway hyperresponsiveness 
(AHR), mucus hypersecretion, tissue damage, and airway 
remodeling. See Figure 2 for an overview of the eosinophil’s role 
in asthma pathophysiology.

It has long been observed that eosinophil counts in periph-
eral blood and bronchoalveolar lavage (BAL) fluid are higher 
in asthmatics compared to healthy controls (63). Analysis of 
BAL fluid obtained from patients with atopic asthma reveals 
increased expression of TH2 cytokines (64), including IL-5, 
which are strongly associated with eosinophilic inflammation 
(65). In general, the degree of eosinophilia correlates with 
disease severity and exacerbation frequency (63, 66). However, 
non-eosinophilic asthma phenotypes are also recognized (67). 
Peripheral blood eosinophilia may also occur in numerous other 
conditions (see Box 1).

AHR and Mucus Hypersecretion
Eosinophils may be prompted to release a number of different 
mediators with the capacity to cause AHR. Human MBP is 
known to result in AHR when administered to primates (70) 
and rats (71). In the former study, administration of EPO also 
caused AHR, although ECP and EDN did not (70). Data from 
the latter study suggested the mechanism of action involved the 
stimulation of bradykinin production (71). MBP can also trigger 
mast cells and basophils to release histamine, a potent mediator 
of bronchial hyperreactivity (72, 73).

Eosinophils are a source of several cytokines including IL-13, 
which causes AHR, and also promotes mucus hypersecretion 
via enhanced differentiation of goblet cells (74). IL-13 is also 
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FigURe 2 | The role of eosinophils in asthma. An overview of the main stimuli for eosinophilic airway inflammation (gray boxes) and the means by which eosinophils 
elicit the main pathophysiological changes associated with asthma (green boxes). Abbreviations: MBP, major basic protein; EPO, eosinophil peroxidase; IL, 
interleukin; TGF-β, transforming growth factor-β; GM-CSF, granulocyte–macrophage colony-stimulating factor; PGD2, prostaglandin-D2; 5-oxo-ETE, 5-oxo 6, 8, 11, 
14-eicosatetraenoic acid; PAMPs, pathogen associated molecular patterns; DAMPs, damage associated molecular patterns; Ig, immunoglobulin.

BOx 1 | Alternative (i.e., non-asthma) causes of peripheral eosinophilia  
(68, 69).

Respiratory
Eosinophilic granulomatosis with polyangiitis (EGPA)
Allergic bronchopulmonary aspergillosis
Sarcoidosis

Hematological and neoplastic
Myeloproliferative hypereosinophilic syndrome
Lymphocytic-variant hypereosinophilic syndrome
Certain leukemias and lymphomas
Systemic mastocytosis
Solid tumors—adenocarcinomas, squamous cell carcinomas, large cell lung 
carcinomas, transitional cell carcinoma of the bladder

Infective
Parasitic infection, in particular helminths
Human immunodeficiency virus

Dermatological
Eczema
Scabies infestation

Iatrogenic
Certain drug hypersensitivity reactions
Graft vs host disease
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produced by TH2 cells and ILC2s. Lipid mediators such as leukot-
rienes, which are produced in eosinophil lipid bodies (and mast 
cells), also cause AHR and mucus hypersecretion (75).

Studies involving two different strains of eosinophil- 
defi cient mice have attempted to clarify the role of eosinophils in an 
ovalbumin model of asthma but yielded seemingly contradictory 
results. In one study, performed by Lee et al., eosinophil-deficient 
mice were protected from AHR and mucus hypersecretion (76). 
However, another study, led by Humbles, found that eosinophil 
deficiency was not protective in this regard (77). Several theories 
have been put forward to explain the conflicting results, including 
evidence of residual lung eosinophils in the Humbles study and 
differences between the underlying mouse strains (78).

In terms of practical application, the existence in humans of 
eosinophilic bronchitis, a condition characterized by marked 
airway eosinophilia in the absence of AHR, calls into question the 
concept that eosinophils—acting alone—have a clinically signifi-
cant impact on AHR. In patients with mild asthma, administra-
tion of a monoclonal antibody to IL-5 has been shown to reduce 
blood and sputum eosinophilia but had no effect on AHR (79). 
This may reflect the cellular redundancy of AHR pathophysiol-
ogy, which involves several cell types including TH2 cells, ILC2s, 
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and mast cells. In addition, the current evidence relating to AHR 
does not specifically study the pathophysiology of asthma exacer-
bations, during which it is possible that eosinophil degranulation 
may contribute to worsening AHR.

Tissue Damage and Airway Remodeling
Postulation that eosinophils are major effectors of lung tissue dam-
age in asthma is well founded, given their propensity to release 
highly charged basic proteins, which exert multiple cytotoxic 
effects. MBP is toxic to respiratory epithelial cells in vitro and has 
been identified in postmortem lung tissue specimens of patients 
who have died of asthma, in association with epithelial damage 
(80). ECP and EDN share 67% amino acid sequence homology 
and tend to be grouped together as eosinophil-associated RNases, 
although ECP’s RNase activity is much less potent (81). ECP 
binds to cell membranes and alters their permeability (82). EDN, 
as its name suggests, is neurotoxic. It was first identified following 
the observation that, in rabbits, the intracerebral administration 
of eosinophils resulted in the destruction of cerebellar Purkinje 
cells and neurological features named “the Gordon phenomenon” 
(83, 84). EPO catalyzes the oxidation of halides and thiocyanate, 
resulting in cytotoxic reactive oxidant species (85).

Cell damage triggers the activation of repair pathways which, 
if excessive, may contribute to structural changes referred to 
as airway remodeling. The underlying pathological processes 
include hyperplasia of fibroblasts, airway smooth muscle (ASM) 
and goblet cells, deposition of ECM proteins, and angiogenesis 
(86). Airway remodeling is associated with the severity of asthma 
(87). It has been hypothesized that airway remodeling is respon-
sible for the accelerated decline in lung function and development 
of fixed airway obstruction observed in some asthmatic patients. 
However, bronchial biopsies of children with difficult asthma 
have been shown to display reticular basement membrane thick-
ening to a similar degree compared with adult asthmatics (88). 
Furthermore, there is evidence that some pathological features 
of airway remodeling can become evident within 24 h of allergen 
exposure (89).

Eosinophils release multiple growth factors and fibrogenic 
mediators that promote airway remodeling (see Table  1). For 
example, eosinophils are known to produce TGF-β in disease states 
involving the skin (atopy) (90), nose (nasal polyposis) (91), and 
blood (idiopathic hypereosinophilic syndrome) (92). Eosinophils 
are the main source of TGF-β in bronchial biopsies taken from 
asthmatic patients (93) and can also stimulate epithelial cells to 
produce a number of mediators, including TGF-β (94). TGF-β 
is implicated in tissue remodeling via fibroblast proliferation 
and increased production of collagen and glycosaminoglycans 
(95–97).

Eosinophils isolated from asthmatics, when cocultured with 
ASM cells, promote enhanced ASM proliferation, which is inhib-
ited by the addition of the leukotriene antagonist montelukast 
(117). It appears that eosinophils and ASM enjoy a reciprocal 
relationship, as ASM cells are also known to produce pro-
eosinophil cytokines (118). Mouse studies lend further support 
to the assertion that eosinophils have an important role in airway 
remodeling, as eosinophil-deficient mice are protected against 
airway deposition of collagen and smooth muscle (77).

Treatment with the anti-IL-5 monoclonal antibody mepoli-
zumab has been shown to reduce bronchial tissue eosinophilia, 
in association with decreased TGF-β1 in BAL specimens, and 
reduced reticular basement membrane procollagen III, tenascin, 
and lumican (119).

Asthma exacerbations
Airway eosinophilia is an early feature of asthma exacerbations. 
In a study of steroid-dependent asthmatic patients, whose pred-
nisolone dose was gradually reduced to below their maintenance 
requirement, the sputum eosinophil count started to rise 4 weeks 
before the blood eosinophil count and 6 weeks prior to spiromet-
ric and symptomatic deterioration (120). In fact, the adoption 
of an asthma treatment strategy based on sputum eosinophilia 
rather than traditional markers of disease activity (such as 
symptoms and spirometry) was found to reduce the frequency 
of exacerbations, with no overall increase in the average daily 
corticosteroid dose (121).

The primary action of anti-IL-5 therapies appears to be 
a reduction in exacerbation frequency. Administration of 
mepolizumab to selected patient groups reduced exacerbation 
rates by approximately 50% (122–124). A similar reduction in 
exacerbation rates was seen with reslizumab, another anti-IL-5 
monoclonal antibody (125). Mepolizumab has also been found 
to have a moderate glucocorticoid-sparing effect in a phase III 
clinical trial (126).

Benralizumab is a monoclonal antibody targeted against the 
alpha subunit of the IL-5 receptor (IL-5Rα). As well as blocking 
the interaction between IL-5 and its receptor, benralizumab causes 
eosinophil cell death via antibody-dependent cell-mediated 
cytotoxicity (127), resulting in striking (95%) airway eosinophil 
depletion (128). Phase III clinical trials have demonstrated reduc-
tions in exacerbation rates (129, 130).

immunomodulation
In addition to the direct effects of eosinophils on asthma patho-
physiology, they have an important role in immunomodulation 
(2). MBP, released from eosinophil-specific granules, stimulates 
inflammatory responses from neutrophils (increased produc-
tion of superoxide and IL-8) (131) and mast cells (increased 
histamine release) (72). Nerve growth factor (also released from 
specific granules) has also been shown to prolong the survival of 
neutrophils (132) and mast cells (133). EDN promotes the activa-
tion of dendritic cells (134), which in turn trigger the prolifera-
tion of T cells (both helper and cytotoxic) and B cells via antigen 
presentation. Eosinophils themselves can also present antigens 
to T cells (135, 136).

The cytokines released from eosinophil-specific granules 
have various immunomodulatory effects. For example, IL-4 and 
IL-13 simulate the proliferation of B  cells and IgE production 
(137, 138), and IL-6 enhances survival of plasma cells (139, 140)  
Eosinophil-specific granules are also capable of releasing sev-
eral chemokines. Depending on the stimulation they receive, 
these include CCL-17 and CCL-22, which attract TH2 cells, 
and CXCL-9 and CXCL-10, which are TH1 chemokines (141). 
In addition, eosinophils express indoleamine 2,3-dioxygenase 
(IDO), an enzyme that catalyzes the production of kynurenine, 
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TABLe 1 | Factors produced by eosinophils that are associated with airway remodeling.

Factor Mechanism(s) and evidence

TGF-β •	 Epithelial/submucosal expression of TGF-β correlates with basement membrane thickness and fibroblast numbers (98).
•	 In allergen-challenged human atopic skin, eosinophils expressing TGF-β1 are associated with myofibroblast formation and deposition 

of tenascin and procollagen-1 (90).
•	 TGF-β induces hypertrophy and increased contractility of ASM in vitro (99).
•	 Administration of anti-TGF-β antibody to mice with established eosinophilic airway inflammation significantly reduces airway 

remodelling (100).

MMP-9 and TIMP-1 •	 MMP-9 breaks down ECM proteins; TIMP-1 inhibits MMP-9.
•	 Sputum MMP-9 and TIMP-1 concentrations are higher in asthmatics compared to controls; The MMP-9/TIMP-1 ratio is lower in 

patients with asthma and chronic bronchitis, and positively correlates with FEV1 (101).
•	 MMP-9 is required for angiogenesis in mice (102).

VEGF, bFGF, and angiogenin •	 VEGF, bFGF, and angiogenin promote angiogenesis.
•	 Bronchial biopsies of asthmatics exhibit greater immunoreactivity to VEGF, bFGF, and angiogenin; Immunoreactivity to these factors 

positively correlates with vascular area (103).

Specific granule proteins •	 MBP and ECP are toxic to airway epithelial cells.
•	 Damaged airway epithelium produces TGF-β (104).
•	 ECP induces fibroblast migration (105) and inhibits fibroblast-mediated proteoglycan degradation (106).

IL-17 •	 Fibroblasts isolated from bronchial biopsies produce more IL-6 and IL-11 (profibrotic cytokines) when stimulated by IL-17 (107).
•	 In a mouse model of asthma, administration of IL-17A results in increased vascular remodelling; in vitro, IL-17A accelerates EPC 

migration (108).

IL-13 •	 Mice bred to overexpress IL-13 exhibit eosinophilic airway inflammation, epithelial cell hypertrophy, mucus metaplasia, and 
subepithelial fibrosis (109).

•	 In vitro, IL-13 induces human bronchial epithelial cells to release TGF-β (110).

HB-EGF •	 Recombinant HB-EGF promotes migration of ASM cells in vitro and accelerates the thickening of the ASM layer in a mouse model of 
asthma (111).

NGF •	 NGF causes migration of vascular smooth muscle cells and fibroblasts, and proliferation of epithelial cells and ASM cells (112).
•	 In mice with chronic allergen-induced airway inflammation, anti-NGF antibodies reduce airway collagen deposition (113).

Cysteinyl leukotrienes •	 In a mouse model of allergen-induced airway remodelling, administration of montelukast (a CysLT1 receptor blocker) reverses 
established ASM layer thickening and subepithelial fibrosis (114).

SCF •	 SCF promotes mast cell proliferation and activation.
•	 Mast cells produce TNF-α, which can damage bronchial epithelial cells (115) and stimulate fibroblasts to produce TGF-β (116).

TGF, transforming growth factor; MMP, matrix metalloproteinase; ECM, extracellular matrix; TIMP, tissue inhibitor of metalloproteinase; FEV1, forced expiratory volume in 1 s; VEGF, 
vascular endothelial growth factor; bFGF, basic fibroblast growth factor; MBP, major basic protein; ECP, eosinophil cationic protein; IL, interleukin; EPC, endothelial progenitor cell; 
HB-EGF, heparin-binding epidermal growth factor-like growth factor; ASM, airway smooth muscle; NGF, nerve growth factor; CysLT1, cysteinyl leukotriene 1; SCF, stem cell factor; 
TNF, tumor necrosis factor.
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suppressing TH1 activity and promoting a type-2 inflammatory 
milieu (142, 143).

See Figure 3 for an overview of the eosinophil’s immunomod-
ulatory roles in asthma.

iNTeRACTiONS BeTweeN eOSiNOPHiLS 
AND ReSPiRATORY PATHOgeNS

Eosinophils have traditionally been regarded as end-stage 
effector cells, responding to infections directly, i.e., by releasing 
substances that are toxic to pathogens (in particular, helminths) 
and resulting in the unwanted secondary effect of human tissue 
damage. However, research performed over the last 30  years 
has revealed additional roles fulfilled by the eosinophil, involv-
ing links with both the innate and adaptive immune systems. 
These roles include antigen presentation and interaction with 
other parts of the immune system, such as the complement 
pathway (144).

Pattern recognition receptors on the cell membranes of 
eosinophils allow them to detect the presence of PAMPs such as 
lipopolysaccharide (LPS) and beta-glucans, cell wall components 

of bacteria and fungi, respectively (144). The cysteine and serine 
proteases produced by mites and fungi activate eosinophils via 
protease-activated receptors (5). TLR-7, the most common TLR 
expressed by eosinophils, is activated by viral single-stranded 
RNA (2).

The contents of eosinophil-specific granules are directly cyto-
toxic to pathogens. MBP causes disruption of cell membranes 
due to its highly basic nature (145). ECP has antiviral activity 
(146) and can also agglutinate Gram-negative bacteria by binding 
to LPS and peptidoglycans (147). EDN is only mildly toxic to 
helminths, compared to MBP and ECP (148). However, EDN 
significantly reduces the infectivity of respiratory syncytial virus 
group B, indicating a role in the immune response to viruses 
(149). EPO facilitates the generation of toxic reactive oxygen 
species (150).

In addition to releasing cytotoxic proteins, eosinophils have 
been shown to phagocytose bacteria (albeit less efficiently than 
neutrophils) (151). More recently, the “catapult-like” extrusion of 
“traps” consisting of mitochondrial DNA and eosinophil gran-
ule contents, in response to Gram-negative bacteria, has been 
observed (152).
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FigURe 3 | The immunomodulatory role of eosinophils in asthma. Eosinophils may influence other leukocytes both directly (e.g., IL-6-induced B cell activation) and 
indirectly (e.g., by enhancing antigen presentation by dendritic cells). Abbreviations: TGF-β, transforming growth factor-β; IgE, immunoglobulin E; IL, interleukin; MBP, 
major basic protein; EPO, eosinophil peroxidase; NGF, nerve growth factor; TH1, type 1 T helper cell; TH2, type 2 T helper cell.
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Eosinophils express receptors for various complement pro-
teins, including C3a and C5a, which are known to promote 
eosinophil recruitment, extravasation, and activation (153, 154). 
Complement is thought to facilitate eosinophil adherence to, and 
damage of, nematode larvae (155), although the development 
of secondary immunity is unaffected in complement-deficient 
mice (156).

As fungi are known to trigger the production of TH2- 
associated cytokines (i.e., type-2 cytokines) and eosinophilia, it 
has been hypothesized that subclinical fungal infection/coloni-
zation of the airways may play a role in the genesis of diseases 
characterized by eosinophilia. Such diseases include severe 
eosinophilic asthma, as well as related conditions (e.g., chronic 
rhinosinusitis). One study of patients undergoing sinus surgery 
found that 74% of those with TH2-associated conditions had evi-
dence of airway surface mycosis, compared to just 16% of controls 
(157). However, potential confounding factors such as inhaled 
and/or systemic corticosteroid usage must be considered.

The increased susceptibility to respiratory viral infections 
observed in patients with asthma has been linked to reduced pro-
duction of type I and type III interferons (158, 159). Eosinophils 
may contribute to this impairment by producing TGF-β, which 
has been shown to diminish the ability of bronchial epithelial 
cells to produce interferons in response to human rhinovirus 
in vitro (160).

The lung is known to harbor communities of bacteria, known 
as the lung microbiome, during health, which are deranged in 
disease states including asthma (161, 162). Data have recently 
been published suggesting a possible link between the level of 
eosinophilia and microbiome community structure in asthma 
(163). Further dedicated studies, examining subject groups 
matched for baseline characteristics, are required.

CONCLUSiON

Although eosinophils have been associated with asthma since 
their initial discovery, our understanding of their roles in health 
and disease has evolved significantly over time. The eosinophil’s 
status as a cytotoxic effector cell appears to be justified, due its 
capacity to release potent destructive basic proteins, capable of 
antimicrobial effects as well as host tissue damage. However, its 
ability to modulate the innate and adaptive immune systems may 
be just as important.

An appreciation of the numerous receptors expressed by 
eosinophils offers some insight into the many different interac-
tions this versatile cell is capable of. Not only is the eosinophil 
recruited to the lungs in the context of pro-inflammatory type-2 
cytokines but it is also a promoter of the type-2 inflammatory 
milieu, taking on roles such as antigen presentation and cytokine-
mediated modulation of local lymphocytes.
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There is strong evidence that eosinophils contribute to airway 
remodeling in asthma. Mechanisms also exist by which eosino-
phils could promote AHR and mucus hypersecretion.

The development of new anti-eosinophilic drugs, capable of 
selective depletion of eosinophils, offers great potential to explore 
further questions relating to the role of eosinophils in asthma and 
the consequences of their eradication. Research into variation 
in eosinophil-related gene expression between individuals may 
provide further insights regarding the relative contributions of 
eosinophils in different asthma phenotypes and the potential 
application of personalized medicine to this field.
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