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Abstract: Shiga-toxin producing E. coli (STEC) can cause serious illnesses, including hemorrhagic
colitis and hemolytic uremic syndrome. This is the first systematic review of STEC in Brazil, and will
report the main serogroups detected in animals, food products and foodborne diseases. Data were
obtained from online databases accessed in January 2019. Papers were selected from each database
using the Mesh term entries. Although no human disease outbreaks in Brazil related to STEC has
been reported, the presence of several serogroups such as O157 and O111 has been verified in animals,
food, and humans. Moreover, other serogroups monitored by international federal agencies and
involved in outbreak cases worldwide were detected, and other unusual strains were involved in
some isolated individual cases of foodborne disease, such as serotype O118:H16 and serogroup
O165. The epidemiological data presented herein indicates the presence of several pathogenic
serogroups, including O157:H7, O26, O103, and O111, which have been linked to disease outbreaks
worldwide. As available data are concentrated in the Sao Paulo state and almost completely lacking
in outlying regions, epidemiological monitoring in Brazil for STEC needs to be expanded and
food safety standards for this pathogen should be aligned to that of the food safety standards of
international bodies.

Keywords: STEC; food microbiology; food-borne diseases; VTEC; EHEC; shiga-toxigenic
Escherichia coli; bloody diarrhea

1. Introduction

Brazil is one of the largest producers and exporters of food in the world. Animal products, such as
beef, poultry, pork, fish, and crops such as corn, soybeans, and rice represent Brazil’s major exports [1].
However, it is a challenge to maintain both high production efficiency and control physical, chemical
and microbiological contamination [2]. In addition, the production of different animals and crops may
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be carried out in the same geographic region and the use of animal manure as a fertilizer may promote
the contamination of fruits and vegetables [3].

The main microorganisms involved in food contamination belong to the Enterobacteriaceae,
with Escherichia coli representing a major species. This bacterium represents one of the most extensively
studied and was one of the first to be sequenced [4,5]. In addition, Escherichia coli is the main
bacterium involved in food contamination in Brazil [6]. It possesses seven pathogenic groups, namely
enterotoxigenic (ETEC), enteroinvasive (EIEC), enteropathogenic (EPEC) diffusely adherent (DAEC),
invasive adherent (AIEC), enteroaggregative (EAEC), and Shiga-toxin producing (STEC) [7].

These pathogenic groups are involved in outbreaks related to food consumption, and STEC in
particular are of importance to public health, potentially causing diarrhea, bloody diarrhea (hemorrhagic
colitis), hemolytic uremic syndrome (HUS) and renal injury [8–10]. STEC strains may produce two
immunologically distinct toxins: Shiga-toxin type 1 and 2. In addition, STEC strains may have a
pathogenicity island, LEE (Locus of Enterocyte Effacement), which encodes the proteins that include
those responsible for induction of attaching-and-effacing lesions [11,12].

In Brazil, there are no reports of outbreaks involving STEC. The hypothesis is that: (i) Disease
outbreaks are not being recorded due to lack of a centralized reporting system or (ii) disease outbreaks
are not being recognized as there is no surveillance system for STEC. Farm animals have been shown
to be carriers and contamination of food as well as sporadic STEC infections in humans have been
reported [13,14]. In addition, STEC infections have been reported in several South American countries,
including an endemic issue in Argentina, which borders on Brazil. The possible reasons for this
contrast are the differences in cattle breeds, surveillance systems, more livestock confinement system
or a combination of these factors. Moreover, Brazil’s large cattle populations pose a direct risk,
as STEC infections are mainly linked to beef and milk consumption. Furthermore, understanding the
relationships among the STEC serogroups in the different Brazilian regions and sources (livestock,
food, humans) in recent years is crucial for the future monitoring and control strategies concerning this
relevant pathogen [4]. There are some documents that have compiled global STEC data based on sites
of health institutions and overview by continent [15,16]. However, the prevalence and distribution of
STEC serogroups in Brazil remains unclear. In this context, the aim of the present study was to conduct
the first systematic review of Escherichia coli STEC with a focus on Brazil and to compare the presence
of serogroups detected in food products, animals and humans.

2. Materials and Methods

Data were obtained from online databases PubMed, Scielo, Lilacs, Web of Science and Cochrane
BVS. The date interval filter was set from January 2000 to December 2018, accessed between 10
September 2018 and 2 January 2019. Papers were selected according to the Prisma guidelines and flow
diagram [17]. Therefore, from each database using the Mesh term entries: “Verotoxigenic Escherichia
coli” OR “Verotoxigenic” OR “STEC” OR “Shiga Toxigenic E. coli” OR “Shiga Toxigenic Escherichia coli”
OR “Shiga Toxin-Producing Escherichia coli” OR “VTEC” OR “Vero Cytotoxin-Producing Escherichia
coli” OR “Verotoxigenic E. coli” OR “Verotoxigenic Escherichia coli” OR “Verotoxin-Producing Escherichia
coli” AND “Brazil”. Papers in both English and Portuguese were included in this review. Duplicates
were traced and excluded. A total of 161 papers were collected, independent of sample size or
culture/detection methods. The full text for each paper was obtained and evaluated individually
(Figure 1). Papers were excluded when reporting the characterization of strains isolated from another
published article, when assessing decreases in intentional contamination (inactivation methods),
and when composed of literature reviews or experimental infection. After the application of these
criteria, a total of 80 papers were selected.
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3. Results

3.1. Animals

Data on livestock were evaluated in 35 scientific articles, analyzing the presence of STEC through
the collection of feces from healthy animals and those with diarrhea (Table 1). The frequency of
STEC was heterogeneous and determination of the presence of STEC in herds presents a challenge.
STEC contamination rates in cattle ranged from 17.5% to 71.0%, and relevant serogroups O157:H7,
O113:H21 and O111 were detected.

In calves, STEC prevalence rates ranged from 12.0% to 20.9%, and serogroups O26, O103 and
O111 were detected. These serogroups are monitored in meat by control agencies, such as the EFSA
(European Food Safety Authority) and USDA-FSIS (Food Safety and Inspection Service), which require
their absence in meat products. In addition, STEC were isolated from 2.7% to 78.3% of sheep and
O103:H2 was detected in sheep (Table 1) and has been associated with human disease cases in Brazil [18].
Other animals were also positive for STEC such as pigs (2.2%) and rabbits (5.1%). In chickens, a study
evaluated 110 strains of avian pathogenic Escherichia coli (APEC) and noted that stx1 and stx2 were
present in 30.9% of the strains, indicating possible dispersion of the stx genes between STEC and APEC.
In addition, stx1 and stx2 were detected in 4.7% of poultry litter samples in the south of Brazil (Table 1).

Table 1. Prevalence of Shiga toxin-producing Escherichia coli (STEC) isolated in animals reared in Brazil.

Host State Number of Samples Prevalence Serotype or Genes Amplified Author

Bovine and
Buffaloes

Rio Grande do Sul 243 feces from dairy cattle 49% O157:H-, O91:H-, O125:H-,
O119:H-, O112:H-, O29:H- [19]

São Paulo 182 E. coli isolated from
milk samples 12.08% stx1 and stx2 [20]

São Paulo 153 fecal samples 25.5% O113:H21, O157:H7, O111:H-,
O22:H8 [13]

Rio Grande do Sul 243 feces from dairy cattle 48.9% O157, O157:NM, O91:NM,
O112:NM [21]

Minas Gerais 100 water buffaloes 37%

O137:H41, O74:H25, O159:H21,
O41, O77:H18, O88:H25,

O116:H21, O141:H49, O178:H19,
O23:H7, O82:H8, O93:H19,

O59:H8, O113:H21, O93:H19,
O156:H21, O22:H16, O49,

O49:H21, O77:H41, O176:H2,
O93:H16, O79:H14

[22]
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Table 1. Cont.

Host State Number of Samples Prevalence Serotype or Genes Amplified Author

Minas Gerais 205 healthy beef and dairy
cattle, and 106 reared goats

57.5% (goats)
39.2%

(beef cattle
17.5% in

dairy cattle

O181:H4, O22:H8, O104:H2,
O116:H21, O105:H8, O157:H7,
O98:H14, O22:H16, O22:H4,
O150:H8, O179:H8, O79:H14,
O6:H49, O19:H7, O91:H21,

O141:H49, O178:H19, O174:H21,
O174:H8, O39:H49, O124:H21

[23]

Paraná 190 healthy cattle 36%

O6:H34, O10:H42, O17:H41,
O22:H8, O22:H16, O41:H2,
O74:H42, O79:H, O82:H8,

O98:H41, O110:H2, O113:H21,
O117:H8, O124:H11, O159:H21,

O174:H21, O175:H21, O178:H19,
O179:H8, O181:H4

[24]

Goiás 198 rectal swabs 72.73% stx1, stx2, ehxA [25]

Rio Grande do Sul 108 carcass swabs 20.37% O157:H7 [26]

Birds

São Paulo 171 fecal samples 19.4% stx1 and stx2 [27]

São Paulo 516 fecal samples 0.74% stx2 [28]

São Paulo 446 fecal samples 9.8% O6, O48 [29]

Minas Gerais 100 fresh fecal samples 2% stx1 and stx2 [30]

Ceará Case report - stx1 [31]

São Paulo 118 pigeons and 38
great egrets 2.5% (pigeons) stx2f [32]

São Paulo Case report - O137:H6 [33]

Sheep

São Paulo 48 sheep 52.1%

O5:H-, O16:H-, O75:H-, O75:H8,
O87:H16, O91:H-, O146:H21,

O172:H- OR:H-, ONT:H-,
ONT:H16

[34]

São Paulo 330 feces and 99
carcass samples

2.72% (Feces),
1.01% (Carcass) O5, O75, and O91 [35]

Paraná Case report - O103:H2 [36]

Paraná 130 fecal samples 50% O76:H19 and O65:H– [37]

Goiás 115 E. coli strains 78.3% stx1, stx2 [38]

Calves

Mato Grosso do Sul 205 E. coli strains 9.75% (stx1),
6.34% (stx2) O26:H, O111:H, O118:H16 [39]

São Paulo 139 diarrheic and 205
non-diarrheic fecal samples 12.7% O113:H21, O118:H16, O123:H2,

O111:NM, O111:H8 [40]

São Paulo 264 diarrheic and 282
healthy fecal samples 12%

O7:H7, O7:H10, O48:H7,
O111:H19, O123:H2, O132:H51,

O173:H(-), O175:H49
[41]

Paraná 29 diarrheic and 21 healthy
fecal samples 101 strains

O1, O3, O7, O8, O17, O23, O78,
O144, O146, ONT, O26, O55, O103,

O117, O123, O124, O153, O15,
O128, O175, O119, O4, O156

[42]

Minas Gerais 850 fecal samples 20.9% stx1, eae, iha, toxB, ehxA, efa-1,
saa, astA [43]

Chickens São Paulo 110 APEC E. coli samples 30.90% stx1, stx2 [44]

Pigs Mato Grosso 74 lumen content samples 2.2% stx2 [45]

Dogs São Paulo 25 feces from diarrheic dogs 48% O157:H7 and stx1, stx2, eaeA [46]

Cats São Paulo 40 feces samples and 3 urine
infection samples 0% - [47]

Dogs and Cats Paraná 50 cat feces and 50 dogs 0% - [48]

Rabbits São Paulo 178 E. coli isolates 5.05%
O20:H28, O41:H-, O103:H19,
O110:H6, O126:H- O126:H20,
O128:H2, O132:H2, O153:H7

[49]

Avian Organic
Fertilizers Paraná 40 fertilizers 4.7% stx1, stx2 [50]

Stomoxys
calcitrans Rio de Janeiro 40 Stomoxys calcitrans flies 15% stx1, stx2 and eae [51]
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In other species that could possibly act as vectors, STEC rates were 0.7% to 20.4% in wild birds
and 15% in stable flies (Stomoxys calcitrans). Prevalence rates in dogs ranged between 0 and 48%, but to
date there are no reports of STEC in cats in Brazil.

3.2. Food

The Shiga toxin-producing contamination in food was evaluated in 23 scientific articles (Table 2).
In six studies, the presence of STEC in beef was assessed, with prevalence rates ranged from 0 to 27.5%,
the serogroups O157 and the “big six” (O26, O45, O103, O111, O121, and O145) were not isolated.
In milk, the presence of stx1 and stx2 in E. coli ranged from 0 to 31.1%, but isolates were not serotyped
in these studies [52–54]. However, STEC were detected in 0 to 14% of cheese samples. In addition, the
presence of O111, O55, and O157:H7, serogroups frequently linked to food-borne disease outbreaks
worldwide [55] were also found in Brazilian cheese.

Contaminated water is increasingly linked to STEC outbreaks associated with fruits and
vegetables in Europe [56]. Although STEC contamination is usually related to products of
animal-origin, contamination of plant products occurs as a result of cross-contamination [57]. In Brazil,
STEC prevalence rates in water ranged from 0.65 to 5.93% with only a single sample testing positive
for O157:H7. Water can also be a source of contamination of plant products. For example, in a study
with lettuce, 0.76% of samples were contaminated with O157:H7.

Table 2. Prevalence of Shiga toxin-producing Escherichia coli isolated in food produced in Brazil.

Matrix State Number of Samples Prevalence Serotype or Genes Amplified Author

Beef

São Paulo 204 bovine carcass swabs
27.5% (rainy

season), 17.5%
(dry season)

stx1 and stx2 [58]

São Paulo 250 raw ground
beef samples 1.6% O93:H19, O174:HNT [59]

São Paulo 91 beef samples 2.1% stx2 [60]

São Paulo 70 raw kibe samples 2.8% O125:H19, O149:H8 [61]

São Paulo 552 meat products samples 0% - [62]

Rio Grande do Sul 5 beef jerky samples 0% - [63]

Mato Grosso 80 samples 10%

O83:H19, O26:HNT, O73:H45,
O8:H21, O79:H7, O113:H21,

O22:H16, O117:H7, O21:H19,
O132:H21

[4]

Milk

São Paulo 30 milk samples 3.3% stx1, stx2 [64]

Minas Gerais
Rio Grande do Sul

670 bovine mastitis
milk samples 8.6% stx1, stx2 [65]

Rio Grande do Sul 101 milk samples 31.1% stx1, stx2 [52]

São Paulo 62 milk samples 0% - [53]

Paraná 87 milk E. coli strains 0% - [54]

Cheese

Minas Gerais 50 cheese samples 14% O125, O111, O55, O119 [66]

Minas Gerais 30 cheese samples 0% - [67]

Goiás 60 cheese samples 6.7% O157:H7 [68]

Minas Gerais 147 E. coli strains isolated
from 38 cheeses 9.5% stx1 [69]

Water

São Paulo 133 E. coli isolates 0.75% stx2 [70]

Paraná 1850 drinking
water samples 0.65% ehxA, saa, lpfAO113, iha,

subAB, cdtV [71]

Rio de Janeiro 178 E. coli isolates 2.8% stx1 [72]

São Paulo 25 water samples 19 isolates stx2, rfbEO157:H7 [73]

Rio Grande do Sul 219 water samples 5.93% O157:H7 [74]

Vegetable Rio Grande do Sul 260 lettuce samples 0.76% O157:H7 [75]

Shrimp meat São Paulo 42 chilled shrimp samples 0% - [76]
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3.3. Human

The presence of STEC contamination in humans was evaluated in 22 scientific articles (Table 3).
In five studies, STEC infection was reported in case reports or in samples collected from patients
with hemolytic uremic syndrome, and was associated with O26:H11, O103:H2, O165, O157, O157:H7
and O104:H4 (enteroaggregative group with the acquisition of the stx gene). Through whole genome
sequencing, the O104:H4 strain in Brazil was found to be similar to a strain isolated from an American
citizen diagnosed with hemolytic uremic syndrome (HUS) who had traveled to Germany during the
2011 HUS outbreak [14].

Table 3. Prevalence of Shiga toxin-producing Escherichia coli isolated in cases of foodborne disease
in Brazil.

State Number of Samples Prevalence Toxin Type Serotype Author

São Paulo

1010 children feces samples 0.3% stx1 O111ac [77]

3 patient strain samples Case report stx1 and stx2 O157:H7 [78]

2607 samples from patients
with diarrhea 1.1% stx1 and stx2

O55:H19, O93:H19, O118:H16,
O157:H7 O111:HNM, O111:H8,

O26:H11
[79]

1 haemolytic anaemia and 2
faecal with diarrhea samples Case report stx1 and stx2 O103:H2 [18]

Feces from
19-month-old children Case report stx2 O165:HNM [80]

337 children and 102 HIV
adult patients 1.8% stx1 and stx2

O111:HNM, O157:H7, ONT:H2,
O103:H2, O118:H16, O77:H18,

ONT:H8
[81]

13 post-diarrheal HUS cases Case report stx2, stx2c O26:H11, O157:H7, O165:H- [82]

Stool specimens collected
from 115 children 0.86% stx1 and stx2 ONT:H19 [83]

Stools and ileum biopsy of a
51-year-old woman Case report stx1 O104:H4 [14]

5047 cases of human infection 4.2%
stx1a, stx1d,
stx2a, stx2c,

stx2d, and stx2e

O8:H19, O24:H4, O26:H11,
O71:H8, O91:H14, O100:HNM,

O103:HNM, O111:H11,
O111:H8, O111:HNM,
O118:H16, O123:H2,

O123:HNM, O145:HNM,
O153:H21, O153:H7, O157:H7,

O177:HNM, O178:H19

[84]

Bahia

1233 children feces 1.6% stx1, stx2 O26:H11, O21:H21 [85]

1233 children feces 1.6% Not disclosed 0% [86]

1207 children feces 0.6% stx2 O157:H7, O26:H11, O111:H- [87]

Paraná
306 culture stool samples 0.65% stx1, stx2 O69:H11, O178:H19 [88]

141 children fecal samples 2.83% stx1, stx2 0% [89]

Rio de Janeiro
307 children samples 0% 0% 0% [90]

Human gastroenteritis caused
by E. coli O157:NM Case report stx2 O157:NM [91]

Rio Grande do Norte
and Santa Catarina 2 strains Case report stx1 and stx2 O157 [92]

Rio Grande do Sul 375 children feces samples 0.26% stx2 O91:H21 [93]

Piauí 400 children feces samples 0.4% Not disclosed O125 [94]

Espírito Santo 560 children feces samples 0.17% Not disclosed 0% [95]

Paraíba 580 children feces samples 0% 0% 0% [96]

In other studies of diarrhea or healthy subjects, the serogroups predominantly detected were
O26:H11, O103:H2, O111 Not typeable (NT), O118:H16, O165:NT and O157:H7 (Figure 2).
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Some of these serogroups were reported in animal and food studies in Brazil. For instance,
the O111 and O157 serogroups were verified in all three groups. Our hypothesis is that the dispersion
of the strains has contaminated all stages of the food chain (pre and post-processing). Moreover, the
O103 strains in animals were linked to those found in humans. In contrast, stains O165 and O118:H16
were only detected in human clinical cases.

4. Discussion

The most frequent serogroups described in peer-reviewed papers in samples collected in Brazil are
represented in Figure 2. As with studies in other countries, O157:H7 was the serotype most frequently
linked to human cases and also had the highest occurrence rates in animal, food and humans in
Brazil. However, due to the large-scale outbreaks related to this serotype in the USA in 1982 and 1993,
much effort has been invested in methods to detect this specific serotype. It can be readily isolated
as non-sorbitol fermenting colonies (the main O157 characteristic) and identified using PCR primers
designed specifically for the O157 antigen or the flagellum H7. Consequently, a higher prevalence of
O157:H7 in Brazil might also be related to its ease of detection.

Serogroup O111 was also reported in animals, food and humans and has been linked to clinical
human cases in Brazil [13,66,77] and worldwide [55,97]. O111 is one of six non-O157 serogroups
classified by the USDA-FSIS (2013) as foodborne pathogens that should be monitored during meat
production. Considering the serogroups listed by the USDA-FSIS, three: O157, O111, O26:H11 and
O103:H2 have been associated with foodborne disease in Brazil (Figure 2). However, two other
non-O157 strains, O165 and O118:H16 are not part of the USDA-FSIS “big six”, but were linked to
cases of diarrhea, hemolytic uremic syndrome or hemorrhagic colitis in Brazil.

Serogroup O165 has been reported in cases of hemolytic uremic syndrome in Japan [98],
and Germany [99]. This serotype has also been identified in cattle in the United States [100].
In addition, its genome has recently been made available on the GenBank/NCBI platform [101] for
comparisons and genetic investigations, emphasizing the increasing importance of this serogroup in
food production and human infection. Serotype O118:H16 has been linked to foodborne diseases in
Germany [102], the United States [103], and its genome sequence was included in GenBank/NCBI in
2014 [104]. Detection of other new STEC in future cases of human disease is likely.

Studies evaluating different cattle feeds indicate that different diets may increase the acid
resistance of Escherichia coli strains, enabling the bacteria to survive during passage through the human
stomach [105]. Strain resistance due to diet may be responsible for the selection of some strains of STEC
in Brazilian herds. In addition, a recent study by Acquaotta [106] identified a correlation between STEC
infections and climatic differences in North America, where more cases of contamination were reported
during warm periods as compared to cold periods. This result emphasizes the need for monitoring and
control during food production as Brazil’s tropical climate may increase the risk of STEC infections.
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Foods showed the greatest diversity among serogroups, followed by animal sources (Figure 2).
This diversity may be related to several factors, such as breeding and production heterogeneity,
the nature of the animal and food carrier, the innate (animal) or initial (food) microbial load and the
applied methodology (antibiotic use for pre-enrichment, colony morphology and analyzed genes).
Moreover, serogroups detected in humans display greater homogeneity, perhaps related to toxin
subtypes (stx2e) or other genetic factors including virulence [107,108].

Studies were concentrated mainly in Brazil’s most developed areas and especially in the state of
Sao Paulo (Figure 3), with the southern and southeastern regions accounting for 69% of the Brazilian
population [6]. However, the majority of animal and grain-production occurs in central Brazil, which is
responsible for 34.4% of animal and 42% of grain production [109]. Differences in the number of STEC
studies directly reflect national development and demographics. Further studies in the central region
would provide a better description of STEC present in livestock and food and would aid in obtaining a
more accurate national picture of foodborne STEC risks.
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Currently, the main legislation in force in Brazil concerning food production is Resolution 12 of
2001 [110], which applies to coliforms in frozen or fresh meat. This resolution, however, does not call
for STEC serogroup analyses in any food products. However, the Ministry of Livestock and Food
Supply (MAPA) established an internal standard in 2013, requesting E. coli STEC tests for O157 and the
“big six” non-O157 in beef destined for export [111]. However, any data about the frequency of STEC
isolation has not been released.

The analysis procedure determined by MAPA is based on the methodology used by the USDA
FSIS [112], comprising molecular screening followed by cultivation on Rainbow™ agar O157 (Biolog
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Inc, Hayward, USA) and serology of the positive isolates. The use of this methodology assists in
production control and monitoring of the main STEC, followed by subsequent implementation of
measures to combat contamination. However, this measure is only for beef, and it is necessary to extend
the standard to other food matrices as the present review demonstrated high STEC contamination
rates in milk and cheese, as well as water. The STEC causing infection and for which microbiological
monitoring and control during production is required show some geographical variation and new
STEC continually evolve. Instead of continuing to add new serogroups to a long list of food adulterants,
microbiological monitoring could instead aim for the absence of strains that possess Shiga-toxin gene(s)
in their genome.

Moreover, the improvement and cost reduction of molecular tools such as whole genomic
sequencing (WGS), metagenomics, and others will facilitate the understanding of serotype epidemiology
and the dispersion of these strains in neighboring countries and in other continents. Epigenetics
advances will also improve the understanding of gene expression and the impact of good animal
management practices, as well as possible genome mutations that may influence virulence and
antimicrobial resistance profiles [113].

5. Conclusions

The epidemiological data presented in this review indicate that O157:H7, O26, O103 and O111
strains, classified as foodborne pathogens and monitored by the USDA-FSIS (USA), U.S. FDA,
EFSA (European Food Safety Authority - EU) and MAPA (Ministry of Agriculture, Livestock and
Supply - Brazil), are currently circulating in different regions of Brazil. Although no STEC outbreak
cases in Brazil have been reported, several animal, food and human studies have indicated the presence
of STEC in Brazil and it has been related to several foodborne outbreaks around the world. Thus,
improved epidemiological monitoring and food production control is necessary. Novel studies should
be financed in regions presenting significant agricultural production, such as Brazil’s central region in
order to better assess potential threats and prevent human STEC infections.
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